Cytokines and Brain

Health and Disease
  • Tammy Kielian
  • Paul D. Drew
Part of the Current Clinical Neurology book series (CCNEU)


The presence of proinflammatory cytokines in normal central nervous system (CNS) tissues remains an area of controversy (1). Several cytokines have been demonstrated in the normal CNS, and among them, tumor necrosis factor (TNF)-α, interleukin-1 (IL-1), transforming growth factor (TGF)-β, and macrophage migration inhibitory factor (MIF) have been studied in detail. The functions of TNF-α, IL-1, and TGF-β in the context of neuroinflammation have been described in detail elsewhere in this chapter; therefore, in this section, we will discuss only the potential roles these cytokines have in CNS development and physiological functions.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Migration Inhibitory Factor Bacterial Meningitis Brain Abscess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vitkovic L, Bockaert J, Jacque C. “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 2000;74:457–471.PubMedCrossRefGoogle Scholar
  2. 2.
    Breder CD, Dinarello CA, Saper CB. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 1988;240:321–324.PubMedCrossRefGoogle Scholar
  3. 3.
    Lechan RM, Toni R, Clark BD, et al. Immunoreactive interleukin-1 beta localization in the rat forebrain. Brain Res 1990;514:135–140.PubMedCrossRefGoogle Scholar
  4. 4.
    Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H. Regional and cellular codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol 1990;111:1701–1711.PubMedCrossRefGoogle Scholar
  5. 5.
    da Cunha A, Jefferson JJ, Tyor WR, Glass JD, Jannotta FS, Vitkovic L. Control of astrocytosis by interleukin-1 and transforming growth factor-beta 1 in human brain. Brain Res 1993;631:39–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Quan N, Zhang Z, Emery M, et al. In vivo induction of interleukin-1 bioactivity in brain tissue after intracerebral infusion of native gp 120 and gp 160. Neuroimmunomodulation 1996;3:56–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Ilyin SE, Plata-Salaman CR. HIV-1 gp120 modulates hypothalamic cytokine mRNAs in vivo: implications to cytokine feedback systems. Biochem Biophys Res Commun 1997;231:514–518.PubMedCrossRefGoogle Scholar
  8. 8.
    Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT. Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 1998;152:74–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Yu AC, Lau LT. Expression of interleukin-1 alpha, tumor necrosis factor alpha and interleukin-6 genes in astrocytes under ischemic injury. Neurochem Int 2000;36:369–377.PubMedCrossRefGoogle Scholar
  10. 10.
    Taishi P, Bredow S, Guha-Thakurta N, Obal F Jr, Krueger JM. Diurnal variations of interleukin-1 beta mRNA and beta-actin mRNA in rat brain. J Neuroimmunol 1997;75:69–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Meltzer JC, Sanders V, Grimm PC, et al. Production of digoxigenin-labeled RNA probes and the detection of cytokine mRNA in rat spleen and brain by in situ hybridization. Brain Res Brain Res Protoc 1998;2:339–351.PubMedCrossRefGoogle Scholar
  12. 12.
    Higgins GA, Olschowka JA. Induction of interleukin-1 beta mRNA in adult rat brain. Brain Res Mol Brain Res 1991;9:143–148.PubMedCrossRefGoogle Scholar
  13. 13.
    Pousset F. Developmental expression of cytokine genes in the cortex and hippocampus of the rat central nervous system. Brain Res Dev Brain Res 1994;81:143–146.PubMedCrossRefGoogle Scholar
  14. 14.
    Fontana A, Weber E, Dayer JM. Synthesis of interleukin 1/endogenous pyrogen in the brain of endotoxin-treated mice: a step in fever induction? J Immunol 1984;133:1696–1698.PubMedGoogle Scholar
  15. 15.
    Krueger JM, Fang J, Taishi P, Chen Z, Kushikata T, Gardi J. Sleep. A physiologic role for IL-1 beta and TNF-alpha. Ann N Y Acad Sci 1998;856:148–159.PubMedCrossRefGoogle Scholar
  16. 16.
    Perry SW, Dewhurst S, Bellizzi MJ, Gelbard HA. Tumor necrosis factor-alpha in normal and diseased brain: conflicting effects via intraneuronal receptor crosstalk? J Neurovirol 2002;8:611–624.PubMedCrossRefGoogle Scholar
  17. 17.
    Hunt JS, Chen HL, Hu XL, Chen TY, Morrison DC. Tumor necrosis factor-alpha gene expression in the tissues of normal mice. Cytokine 1992;4:340–346.PubMedCrossRefGoogle Scholar
  18. 18.
    Bredow S, Guha-Thakurta N, Taishi P, Obal F Jr, Krueger JM. Diurnal variations of tumor necrosis factor alpha mRNA and alpha-tubulin mRNA in rat brain. Neuroimmunomodulation 1997;4:84–90.PubMedGoogle Scholar
  19. 19.
    Wesselingh SL, Power C, Glass JD, et al. Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 1993;33:576–582.PubMedCrossRefGoogle Scholar
  20. 20.
    Breder CD, Tsujimoto M, Terano Y, Scott DW, Saper CB. Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system. J Comp Neurol 1993;337:543–567.PubMedCrossRefGoogle Scholar
  21. 21.
    Floyd RA, Krueger JM. Diurnal variation of TNF alpha in the rat brain. Neuroreport 1997;8:915–918.PubMedCrossRefGoogle Scholar
  22. 22.
    Munoz-Fernandez MA, Fresno M. The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 1998;56:307–340.PubMedCrossRefGoogle Scholar
  23. 23.
    Krieglstein K, Unsicker K. Bovine chromaffin cells release a transforming growth factor-beta-like molecule contained within chromaffin granules. J Neurochem 1995;65:1423–1426.PubMedCrossRefGoogle Scholar
  24. 24.
    Bottner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 2000;75:2227–2240.PubMedCrossRefGoogle Scholar
  25. 25.
    Unsicker K, Strelau J. Functions of transforming growth factor-beta isoforms in the nervous system. Cues based on localization and experimental in vitro and in vivo evidence. Eur J Biochem 2000;267:6972–6975.PubMedCrossRefGoogle Scholar
  26. 26.
    Flanders KC, Ludecke G, Engels S, et al. Localization and actions of transforming growth factor-betas in the embryonic nervous system. Development 1991;113:183–191.PubMedGoogle Scholar
  27. 27.
    Hunter KE, Sporn MB, Davies AM. Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia 1993; 7:203–211.PubMedCrossRefGoogle Scholar
  28. 28.
    Toru-Delbauffe D, Baghdassarian-Chalaye D, Gavaret JM, Courtin F, Pomerance M, Pierre M. Effects of transforming growth factor beta 1 on astroglial cells in culture. J Neurochem 1990;54:1056–1061.PubMedCrossRefGoogle Scholar
  29. 29.
    Cameron JS, Lhuillier L, Subramony P, Dryer SE. Developmental regulation of neuronal K+ channels by target-derived TGF beta in vivo and in vitro. Neuron 1998;21:1045–1053.PubMedCrossRefGoogle Scholar
  30. 30.
    Ishihara A, Saito H, Abe K. Transforming growth factor-beta 1 and-beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Res 1994;639:21–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Abe K, Chu PJ, Ishihara A, Saito H. Transforming growth factor-beta 1 promotes re-elongation of injured axons of cultured rat hippocampal neurons. Brain Res 1996;723:206–209.PubMedCrossRefGoogle Scholar
  32. 32.
    Fok-Seang J, Mathews GA, French-Constant C, Trotter J, Fawcett JW. Migration of oligodendrocyte precursors on astrocytes and meningeal cells. Dev Biol 1995; 171:1–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Schnadelbach O, Mandl C, Faissner A. Expression of DSD-1-PG in primary neural and glial-derived cell line cultures, upregulation by TGF-beta, and implications for cell-substrate interactions of the glial cell line Oli-neu. Glia 1998;23:99–119.PubMedCrossRefGoogle Scholar
  34. 34.
    Kielian T, Hickey WF. Proinflammatory cytokine, chemokine, and cellular adhesion molecule expression during the acute phase of experimental brain abscess development. Am J Pathol 2000;157:647–658.PubMedGoogle Scholar
  35. 35.
    Kielian T, Cheung A, Hickey WF. Diminished virulence of an alpha-toxin mutant of Staphylococcus aureus in experimental brain abscesses. Infect Immun 2001;69:6902–6911.PubMedCrossRefGoogle Scholar
  36. 36.
    Bacher M, Meinhardt A, Lan HY, et al. MIF expression in the rat brain: implications for neuronal function. Mol Med 1998;4:217–230.PubMedGoogle Scholar
  37. 37.
    Nishibori M, Nakaya N, Mori S, Saeki K. Immunohistochemical localization of macrophage migration inhibitory factor (MIF) in tanycytes, subcommissural organ and choroid plexus in the rat brain. Brain Res 1997;758: 259–262.PubMedCrossRefGoogle Scholar
  38. 38.
    Busche S, Gallinat S, Fleegal MA, Raizada MK, Sumners C. Novel role of macrophage migration inhibitory factor in angiotensin n regulation of neuromodulation in rat brain. Endocrinology 2001;142:4623–4630.PubMedCrossRefGoogle Scholar
  39. 39.
    Kielian T, Mayes, P, Kielian M. Characterization of microglial responses to Staphylococcus aureus: effects on cytokine, costimulatory molecule, and Toll-like receptor expression. J Neuroimmunol. 2002;130:86–99.PubMedCrossRefGoogle Scholar
  40. 40.
    Esen N, Tanga FY, DeLeo JA, Kielian T. Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus. J Neurochem 2004;88:746–758.PubMedCrossRefGoogle Scholar
  41. 41.
    Fingerle-Rowson GR, Bucala R. Neuroendocrine properties of macrophage migration inhibitory factor (MIF). Immunol Cell Biol 2001;79:368–375.PubMedCrossRefGoogle Scholar
  42. 42.
    Matsunaga J, Sinha D, Pannell L, et al. Enzyme activity of macrophage migration inhibitory factor toward oxidized catecholamines. J Biol Chem 1999;274:3268–3271.PubMedCrossRefGoogle Scholar
  43. 43.
    Repp AC, Mayhew ES, Apte S, Niederkorn JY. Human uveal melanoma cells produce macrophage migration-inhibitory factor to prevent lysis by NK cells. J Immunol 2000;165:710–715.PubMedGoogle Scholar
  44. 44.
    Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol 1998;160:5693–5696.PubMedGoogle Scholar
  45. 45.
    Streilein JW, Stein-Streilein J. Does innate immune privilege exist? J Leukoc Biol 2000;67:479–487.PubMedGoogle Scholar
  46. 46.
    John GR, Lee SC, Brosnan CF. Cytokines: powerful regulators of glial cell activation. Neuroscientist 2003;9:10–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Aloisi F. Immune function of microglia. Glia 2001;36:165–179.PubMedCrossRefGoogle Scholar
  48. 48.
    Hanisch UK. Microglia as a source and target of cytokines. Glia 2002;40:140–155.PubMedCrossRefGoogle Scholar
  49. 49.
    Walz W, Hertz L. Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog Neurobiol 1983;20:133–183.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab 2003;23:137–149.PubMedCrossRefGoogle Scholar
  51. 51.
    Wolburg H, Risau W. Formation of the blood brain barrier. In:Ransom BR KH, ed. Neuroglia. New York: Oxford University Press, 1995:763–776.Google Scholar
  52. 52.
    Frohman EM, Frohman TC, Dustin ML, et al. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin, and interleukin-1: relevance to intracerebral antigen presentation. J Neuroimmunol 1989;23:117–124.PubMedCrossRefGoogle Scholar
  53. 53.
    Hurwitz AA, Lyman WD, Guida MP, Calderon TM, Berman JW. Tumor necrosis factor alpha induces adhesion molecule expression on human fetal astrocytes. J Exp Med 1992;176:1631–1636.PubMedCrossRefGoogle Scholar
  54. 54.
    Aloisi F, Borsellino G, Samoggia P, et al. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res 1992;32:494–506.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SJ, Benveniste EN. Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol 1999;98:77–88.PubMedCrossRefGoogle Scholar
  56. 56.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science 2001; 291:657–661.PubMedCrossRefGoogle Scholar
  57. 57.
    Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001;36:180–190.PubMedCrossRefGoogle Scholar
  58. 58.
    Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 1997;75:165–173.PubMedCrossRefGoogle Scholar
  59. 59.
    Combs CK, Karlo JC, Kao SC, Landreth GE. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001; 21:1179–1188.PubMedGoogle Scholar
  60. 60.
    Meda L, Cassatella MA, Szendrei GI, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995;374:647–650.PubMedCrossRefGoogle Scholar
  61. 61.
    Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 1995; 154:944–953.PubMedGoogle Scholar
  62. 62.
    Tran EH, Hardin-Pouzet H, Verge G, Owens T. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis. J Neuroimmunol 1997;74:121–129.PubMedCrossRefGoogle Scholar
  63. 63.
    Griffin WS, Mrak RE. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 2002;72:233–238.PubMedGoogle Scholar
  64. 64.
    Claudio L, Martiney JA, Brosnan CF. Ultrastructural studies of the blood-retina barrier after exposure to interleukin-1 beta or tumor necrosis factor-alpha. Lab Invest 1994;70:850–861.PubMedGoogle Scholar
  65. 65.
    Quagliarello VJ, Wispelwey B, Long WJ Jr, Scheld WM. Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J Clin Invest 1991;87:1360–1366.PubMedGoogle Scholar
  66. 66.
    Wong D, Dorovini-Zis K. Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 1992;39:11–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Wong D, Dorovini-Zis K. Regulation by cytokines and lipopolysaccharide of E-selectin expression by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 1996;55:225–235.PubMedGoogle Scholar
  68. 68.
    Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 1988;23:339–246.PubMedCrossRefGoogle Scholar
  69. 69.
    Hisahara S, Shoji S, Okano H, Miura M. ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor. J Neurochem 1997;69:10–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Akassoglou K, Bauer J, Kassiotis G, et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 1998;153:801–813.PubMedGoogle Scholar
  71. 71.
    Andrews T, Zhang P, Bhat NR. TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J Neurosci Res 1998;54:574–583.PubMedCrossRefGoogle Scholar
  72. 72.
    Ladiwala U, Li H, Antel JP, Nalbantoglu J. p53 induction by tumor necrosis factor-alpha and involvement of p53 in cell death of human oligodendrocytes. J Neurochem 1999;73:605–611.PubMedCrossRefGoogle Scholar
  73. 73.
    Ye P, D’Ercole AJ. Insulin-like growth factor I protects oligodendrocytes from tumor necrosis factor-alpha-induced injury. Endocrinology 1999;140:3063–3072.PubMedCrossRefGoogle Scholar
  74. 74.
    Merrill JE. Effects of interleukin-1 and tumor necrosis factor-alpha on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro. Dev Neurosci 1991;13:130–137.PubMedGoogle Scholar
  75. 75.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–285.PubMedCrossRefGoogle Scholar
  76. 76.
    Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001;4:1116–1122.PubMedCrossRefGoogle Scholar
  77. 77.
    Brogi A, Strazza M, Melli M, Costantino-Ceccarini E. Induction of intracellular ceramide by interleukin-1 beta in oligodendrocytes. J Cell Biochem 1997;66:532–541.PubMedCrossRefGoogle Scholar
  78. 78.
    Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1 beta promotes repair of the CNS. J Neurosci 2001;21:7046–7052.PubMedGoogle Scholar
  79. 79.
    Gruol DL, Nelson TE. Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 1997;15:307–339.PubMedGoogle Scholar
  80. 80.
    Van Wagoner NJ, Benveniste EN. Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 1999;100:124–139.PubMedCrossRefGoogle Scholar
  81. 81.
    Selmaj KW, Farooq M, Norton WT, Raine CS, Brosnan CF. Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J Immunol 1990;144:129–135.PubMedGoogle Scholar
  82. 82.
    Constam DB, Schmid P, Aguzzi A, Schachner M, Fontana A. Transient production of TGF-beta 2 by postnatal cerebellar neurons and its effect on neuroblast proliferation. Eur J Neurosci 1994;6:766–778.PubMedCrossRefGoogle Scholar
  83. 83.
    Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 1992;117:395–400.PubMedCrossRefGoogle Scholar
  84. 84.
    Cassatella MA. The production of cytokines by polymorphonuclear neutrophils. Immunol Today 1995;16:21–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 1999;73:369–509.PubMedGoogle Scholar
  86. 86.
    Koedel U, Scheld WM, Pfister HW. Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2002;2:721–736.PubMedCrossRefGoogle Scholar
  87. 87.
    Bogdan I, Leib SL, Bergeron M, Chow L, Tauber MG. Tumor necrosis factor-alpha contributes to apoptosis in hippocampal neurons during experimental group B streptococcal meningitis. J Infect Dis 1997;176:693–697.PubMedGoogle Scholar
  88. 88.
    Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002;186(Suppl 2):S225–233.PubMedCrossRefGoogle Scholar
  89. 89.
    Nau R, Bruck W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 2002;25:38–45.PubMedCrossRefGoogle Scholar
  90. 90.
    van Furth AM, Roord JJ, van Furth R. Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 1996;64:4883–4890.PubMedGoogle Scholar
  91. 91.
    Zysk G, Bruck W, Huitinga I, et al. Elimination of blood-derived macrophages inhibits the release of interleukin-1 and the entry of leukocytes into the cerebrospinal fluid in experimental pneumococcal meningitis. J Neuroimmunol 1997;73:77–80.PubMedCrossRefGoogle Scholar
  92. 92.
    Trostdorf F, Bruck W, Schmitz-Salue M, et al. Reduction of meningeal macrophages does not decrease migration of granulocytes into the CSF and brain parenchyma in experimental pneumococcal meningitis. J Neuroimmunol 1999;99:205–210.PubMedCrossRefGoogle Scholar
  93. 93.
    Tauber MG, Moser B. Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis 1999;28:1–11;quiz 12.PubMedGoogle Scholar
  94. 94.
    Ramilo O, Saez-Llorens X, Mertsola J, et al. Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J Exp Med 1990;172:497–507.PubMedCrossRefGoogle Scholar
  95. 95.
    Pfister HW, Scheld WM. Brain injury in bacterial meningitis: therapeutic implications. Curr Opin Neurol 1997;10:254–259.PubMedCrossRefGoogle Scholar
  96. 96.
    van der Flier M, Geelen SP, Kimpen JL, Hoepelman IM, Tuomanen EI. Reprogramming the host response in bacterial meningitis: how best to improve outcome? Clin Microbiol Rev 2003;16:415–429.PubMedCrossRefGoogle Scholar
  97. 97.
    Dulkerian SJ, Kilpatrick L, Costarino AT Jr, et al. Cytokine elevations in infants with bacterial and aseptic meningitis. J Pediatr 1995;126:872–876.PubMedCrossRefGoogle Scholar
  98. 98.
    van Furth AM, Seijmonsbergen EM, Langermans JA, Groeneveld PH, de Bel CE, van Furth R. High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin Infect Dis 1995;21:220–222.PubMedGoogle Scholar
  99. 99.
    van Deuren M, van der Ven-Jongekrijg J, Bartelink AK, van Dalen R, Sauerwein RW, van der Meer JW. Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 1995;172:433–439.PubMedGoogle Scholar
  100. 100.
    Leist TP, Frei K, Kam-Hansen S, Zinkernagel RM, Fontana A. Tumor necrosis factor alpha in cerebrospinal fluid during bacterial, but not viral, meningitis. Evaluation in murine model infections and in patients. J Exp Med 1988;167:1743–1748.PubMedCrossRefGoogle Scholar
  101. 101.
    Waage A, Halstensen A, Shalaby R, Brandtzaeg P, Kierulf P, Espevik T. Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J Exp Med 1989;170:1859–1867.PubMedCrossRefGoogle Scholar
  102. 102.
    Nadal D, Leppert D, Frei K, Gallo P, Lamche H, Fontana A. Tumour necrosis factor-alpha in infectious meningitis. Arch Dis Child 1989;64:1274–1279.PubMedGoogle Scholar
  103. 103.
    Glimaker M, Kragsbjerg P, Forsgren M, Olcen P. Tumor necrosis factor-alpha (TNF alpha) in cerebrospinal fluid from patients with meningitis of different etiologies: high levels of TNF alpha indicate bacterial meningitis. J Infect Dis 1993;167:882–889.PubMedGoogle Scholar
  104. 104.
    Ohga S, Aoki T, Okada K, et al. Cerebrospinal fluid concentrations of interleukin-1 beta, tumour necrosis factor-alpha, and interferon gamma in bacterial meningitis. Arch Dis Child 1994;70:123–125.PubMedGoogle Scholar
  105. 105.
    Kornelisse RF, Savelkoul HF, Mulder PH, et al. Interleukin-10 and soluble tumor necrosis factor receptors in cerebrospinal fluid of children with bacterial meningitis. J Infect Dis 1996;173:1498–1502.PubMedGoogle Scholar
  106. 106.
    Sharief MK, Ciardi M, Thompson EJ. Blood-brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-alpha but not interleukin-1 beta. J Infect Dis 1992;166:350–358.PubMedGoogle Scholar
  107. 107.
    Akalin H, Akdis AC, Mistik R, Helvaci S, Kilicturgay K. Cerebrospinal fluid interleukin-1 beta/interleukin-1 receptor antagonist balance and tumor necrosis factor-alpha concentrations in tuberculous, viral and acute bacterial meningitis. Scand J Infect Dis 1994;26:667–674.PubMedGoogle Scholar
  108. 108.
    Arditi M, Manogue KR, Caplan M, Yogev R. Cerebrospinal fluid cachectin/tumor necrosis factor-alpha and platelet-activating factor concentrations and severity of bacterial meningitis in children. J Infect Dis 1990;162:139–147.PubMedGoogle Scholar
  109. 109.
    Lopez-Cortes LF, Cruz-Ruiz M, Gomez-Mateos J, Jimenez-Hernandez D, Palomino J, Jimenez E. Measurement of levels of tumor necrosis factor-alpha and interleukin-1 beta in the CSF of patients with meningitis of different etiologies: utility in the differential diagnosis. Clin Infect Dis 1993;16:534–539.PubMedGoogle Scholar
  110. 110.
    Diab A, Zhu J, Lindquist L, Wretlind B, Bakhiet M, Link H. Haemophilus influenzae and Streptococcus pneumoniae induce different intracerebral mRNA cytokine patterns during the course of experimental bacterial meningitis. Clin Exp Immunol 1997;109:233–241.PubMedCrossRefGoogle Scholar
  111. 111.
    Diab A, Zhu J, Lindquist L, Wretlind B, Link H, Bakhiet M. Cytokine mRNA profiles during the course of experimental Haemophilus influenzae bacterial meningitis. Clin Immunol Immunopathol 1997;85:236–245.PubMedCrossRefGoogle Scholar
  112. 112.
    Winkler F, Koedel U, Kastenbauer S, Pfister HW. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood-brain barrier breakdown. J Infect Dis 2001;183:1749–1759.PubMedCrossRefGoogle Scholar
  113. 113.
    Bitsch A, Trostdorf F, Bruck W, Schmidt H, Fischer FR, Nau R. Central nervous system TNFalpha-mRNA expression during rabbit experimental pneumococcal meningitis. Neurosci Lett 1997;237:105–108.PubMedCrossRefGoogle Scholar
  114. 114.
    Mustafa MM, Ramilo O, Olsen KD, et al. Tumor necrosis factor in mediating experimental Haemophilus influenzae type B meningitis. J Clin Invest 1989;84:1253–1259.PubMedGoogle Scholar
  115. 115.
    Paris MM, Friedland IR, Ehrett S, et al. Effect of interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor in animal models of infection. J Infect Dis 1995;171:161–169.PubMedGoogle Scholar
  116. 116.
    Saukkonen K, Sande S, Cioffe C, et al. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 1990;171:439–448.PubMedCrossRefGoogle Scholar
  117. 117.
    Wellmer A, Gerber J, Ragheb J, et al. Effect of deficiency of tumor necrosis factor alpha or both of its receptors on Streptococcus pneumoniae central nervous system infection and peritonitis. Infect Immun 2001;69:6881–6886.PubMedCrossRefGoogle Scholar
  118. 118.
    Mustafa MM, Lebel MH, Ramilo O, et al. Correlation of interleukin-1 beta and cachectin concentrations in cere-brospinal fluid and outcome from bacterial meningitis. J Pediatr 1989;115:208–213.PubMedCrossRefGoogle Scholar
  119. 119.
    Mustafa MM, Ramilo O, Saez-Llorens X, Mertsola J, Magness RR, McCracken GH Jr. Prostaglandins E2 and I2, interleukin 1-beta, and tumor necrosis factor in cerebrospinal fluid in infants and children with bacterial meningitis. Pediatr Infect Dis J 1989;8:921–922.PubMedCrossRefGoogle Scholar
  120. 120.
    van Deuren M, van der Ven-Jongekrijg J, Vannier E, et al. The pattern of interleukin-1beta (IL-1beta) and its modulating agents IL-1 receptor antagonist and IL-1 soluble receptor type n in acute meningococcal infections. Blood 1997;90:1101–1108.PubMedGoogle Scholar
  121. 121.
    Zwijnenburg PJ, van der Poll T, Florquin S, van Deventer SJ, Roord JJ, van Furth AM. Experimental pneumococcal meningitis in mice: a model of intranasal infection. J Infect Dis 2001;183:1143–1146.PubMedCrossRefGoogle Scholar
  122. 122.
    Zwijnenburg PJ, van der Poll T, Florquin S, Roord JJ, Van Furth AM. IL-1 receptor type 1 gene-deficient mice demonstrate an impaired host defense against pneumococcal meningitis. J Immunol 2003; 170:4724–4730.PubMedGoogle Scholar
  123. 123.
    Chavanet P, Bonnotte B, Guiguet M, et al. High concentrations of intrathecal interleukin-6 in human bacterial and nonbacterial meningitis. J Infect Dis 1992;166:428–431.PubMedGoogle Scholar
  124. 124.
    Matsuzono Y, Narita M, Akutsu Y, Togashi T. Interleukin-6 in cerebrospinal fluid of patients with central nervous system infections. Acta Paediatr 1995;84:879–883.PubMedGoogle Scholar
  125. 125.
    Koedel U, Bernatowicz A, Frei K, Fontana A, Pfister HW. Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J Immunol 1996;157:5185–5191.PubMedGoogle Scholar
  126. 126.
    Marby D, Lockhart GR, Raymond R, Linakis JG. Anti-interleukin-6 antibodies attenuate inflammation in a rat meningitis model. Acad Emerg Med 2001;8:946–949.PubMedGoogle Scholar
  127. 127.
    Paul R, Koedel U, Winkler F, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 2003;126:1873–1882.PubMedCrossRefGoogle Scholar
  128. 128.
    Howard M, O’Garra A, Ishida H, de Waal Malefyt R, de Vries J. Biological properties of interleukin 10. J Clin Immunol 1992;12:239–247.PubMedCrossRefGoogle Scholar
  129. 129.
    Strle K, Zhou JH, Shen WH, et al. Interleukin-10 in the brain. Crit Rev Immunol 2001;21:427–449.PubMedGoogle Scholar
  130. 130.
    Molina-Holgado F, Grencis R, Rothwell NJ. Actions of exogenous and endogenous IL-10 on glial responses to bacterial LPS/cytokines. Glia 2001;33:97–106.PubMedCrossRefGoogle Scholar
  131. 131.
    Opal SM, Wherry JC, Grint P. Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clin Infect Dis 1998;27:1497–1507.PubMedGoogle Scholar
  132. 132.
    Pajkrt D, Camoglio L, Tiel-van Buul MC, et al.Attenuation of proinflammatory response by recombinant human IL-10 in human endotoxemia: effect of timing of recombinant human IL-10 administration. J Immunol 1997; 158:3971–3977.PubMedGoogle Scholar
  133. 133.
    Frei K, Nadal D, Pfister HW, Fontana A. Listeria meningitis: identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin 10. J Exp Med 1993;178:1255–1261.PubMedCrossRefGoogle Scholar
  134. 134.
    Torre D, Zeroli C, Martegani R, Speranza F. Levels of interleukin-10 and tumor necrosis factor alpha in patients with bacterial meningitis. Clin Infect Dis 1996;22:883–885.PubMedGoogle Scholar
  135. 135.
    Lehmann AK, Halstensen A, Sornes S, Rokke O, Waage A. High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect Immun 1995;63:2109–2112.PubMedGoogle Scholar
  136. 136.
    Zwijnenburg PJ, van der Poll T, Florquin S, Roord JJ, van Furth AM. Interleukin-10 negatively regulates local cytokine and chemokine production but does not influence antibacterial host defense during murine pneumococcal meningitis. Infect Immun 2003;71:2276–2279.PubMedCrossRefGoogle Scholar
  137. 137.
    Paris MM, Hickey SM, Trujillo M, Ahmed A, Olsen K, McCracken GH Jr. The effect of interleukin-10 on meningeal inflammation in experimental bacterial meningitis. J Infect Dis 1997;176:1239–1246.PubMedGoogle Scholar
  138. 138.
    Adorini L. Interleukin-12, a key cytokine in Th1-mediated autoimmune diseases. Cell Mol Life Sci 1999;55:1610–1625.PubMedCrossRefGoogle Scholar
  139. 139.
    Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003;19:641–644.PubMedCrossRefGoogle Scholar
  140. 140.
    Kornelisse RF, Hack CE, Savelkoul HF, et al. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect Immun 1997;65:877–881.PubMedGoogle Scholar
  141. 141.
    Mastroianni CM, Paoletti F, Lichtner M, D’Agostino C, Vullo V, Delia S. Cerebrospinal fluid cytokines in patients with tuberculous meningitis. Clin Immunol Immunopathol 1997;84:171–176.PubMedCrossRefGoogle Scholar
  142. 142.
    Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol 2003;73:213–224.PubMedCrossRefGoogle Scholar
  143. 143.
    Prinz M, Hanisch UK. Murine microglial cells produce and respond to interleukin-18. J Neurochem 1999;72:2215–2218.PubMedCrossRefGoogle Scholar
  144. 144.
    Fassbender K, Mielke O, Bertsch T, et al. Interferon-gamma-inducing factor (IL-18) and interferon-gamma in inflammatory CNS diseases. Neurology 1999;53:1104–1106.PubMedGoogle Scholar
  145. 145.
    Zwijnenburg PJ, van der Poll T, Florquin S, et al. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis. J Neuroimmunol 2003;138:31–37.PubMedCrossRefGoogle Scholar
  146. 146.
    Huang CC, Chang YC, Chow NH, Wang ST. Level of transforming growth factor beta 1 is elevated in cerebrospinal fluid of children with acute bacterial meningitis. J Neurol 1997;244:634–638.PubMedCrossRefGoogle Scholar
  147. 147.
    Ossege LM, Voss B, Wiethege T, Sindern E, Malin JP. Detection of transforming growth factor beta 1 mRNA in cerebrospinal fluid cells of patients with meningitis by non-radioactive in situ hybridization. J Neurol 1994;242:14–19.PubMedCrossRefGoogle Scholar
  148. 148.
    Ossege LM, Sindern E, Voss B, Malin JP. Expression of tumor necrosis factor-alpha and transforming growth factor-beta 1 in cerebrospinal fluid cells in meningitis. J Neurol Sci 1996; 144:1–13.PubMedCrossRefGoogle Scholar
  149. 149.
    Pfister HW, Frei K, Ottnad B, Koedel U, Tomasz A, Fontana A. Transforming growth factor beta 2 inhibits cere-brovascular changes and brain edema formation in the tumor necrosis factor alpha-independent early phase of experimental pneumococcal meningitis. J Exp Med 1992;176:265–268.PubMedCrossRefGoogle Scholar
  150. 150.
    Townsend GC, Scheld WM. Infections of the central nervous system. Adv Intern Med 1998;43:403–447.PubMedGoogle Scholar
  151. 151.
    Kielian T, Barry B, Hickey WF. CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol 2001;166:4634–4643.PubMedGoogle Scholar
  152. 152.
    Flaris NA, Hickey WF. Development and characterization of an experimental model of brain abscess in the rat. Am J Pathol 1992;141:1299–1307.PubMedGoogle Scholar
  153. 153.
    Kielian T, Hickey, W.F. Chemokines and neural inflammation in experimental brain abscesses. In: Ransohoff RM, Suzuki K, Proudfoot AEI, Hickey WF, Harrison JK, ed. Universes in Delicate Balance: Chemokines and the Nervous System. Amsterdam: Elsevier Science B.V., 2002: 217–224.Google Scholar
  154. 154.
    Kielian T, Bearden ED, Baldwin AC, Esen N. IL-1 and TNF-α play a pivotal role in the host immune response in a mouse model of Staphylococcus aureus-induced experimental brain abscess. J Neuropathol Exp Neurol. 2004;63:381–396.PubMedGoogle Scholar
  155. 155.
    Re F, Sironi M, Muzio M, et al. Inhibition of interleukin-1 responsiveness by type n receptor gene transfer: a surface “receptor” with anti-interleukin-1 function. J Exp Med 1996;183:1841–1850.PubMedCrossRefGoogle Scholar
  156. 156.
    Eikelenboom P, Bate C, Van Gool WA, et al. Neuroinflammation in Alzheimer’s disease and prion disease. Glia 2002;40:232–239.PubMedCrossRefGoogle Scholar
  157. 157.
    McGeer PL, McGeer EG. Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 2002;8:529–538.PubMedCrossRefGoogle Scholar
  158. 158.
    Hemmer B, Cepok S, Nessler S, Sommer N. Pathogenesis of multiple sclerosis: an update on immunology. Curr Opin Neurol 2002;15:227–231.PubMedCrossRefGoogle Scholar
  159. 159.
    Baldwin A, Kielian T. Persistent immune activation associated with a mouse model of Staphylococcus aureus-induced experimental brain abscess. J Neuroimmunol. 2004; 151:24–32.PubMedCrossRefGoogle Scholar
  160. 160.
    Ho DD, Rota TR, Schooley RT, et al. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med 1985;313:1493–1497.PubMedCrossRefGoogle Scholar
  161. 161.
    Gabuzda DH, Ho DD, de la Monte SM, Hirsch MS, Rota TR, Sobel RA. Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol 1986;20:289–295.PubMedCrossRefGoogle Scholar
  162. 162.
    Davis LE, Hjelle BL, Miller VE, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 1992;42:1736–1739.PubMedGoogle Scholar
  163. 163.
    Gray F, Scaravilli F, Everall I, et al. Neuropathology of early HIV-1 infection. Brain Pathol 1996;6:1–15.PubMedGoogle Scholar
  164. 164.
    Goudsmit J, de Wolf F, Paul DA, et al. Expression of human immunodeficiency virus antigen (HIV-Ag) in serum and cerebrospinal fluid during acute and chronic infection. Lancet 1986;2:177–180.PubMedCrossRefGoogle Scholar
  165. 165.
    Resnick L, Berger JR, Shapshak P, Tourtellotte WW. Early penetration of the blood-brain-barrier by HIV. Neurology 1988;38:9–14.PubMedGoogle Scholar
  166. 166.
    Achim CL, Wiley CA. Inflammation in AIDS and the role of the macrophage in brain pathology. Curr Opin Neurol 1996;9:221–225.PubMedCrossRefGoogle Scholar
  167. 167.
    Koenig S, Gendelman HE, Orenstein JM, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986;233:1089–1093.PubMedCrossRefGoogle Scholar
  168. 168.
    Stoler MH, Eskin TA, Benn S, Angerer RC, Angerer LM. Human T-cell lymphotropic virus type III infection of the central nervous system. A preliminary in situ analysis. JAMA 1986;256:2360–2364.PubMedCrossRefGoogle Scholar
  169. 169.
    Michaels J, Price RW, Rosenblum MK. Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: proliferation, infection and fusion. Acta Neuropathol (Berl) 1988;76:373–379.CrossRefGoogle Scholar
  170. 170.
    Kure K, Lyman WD, Weidenheim KM, Dickson DW. Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohistochemical method. Am J Pathol 1990;136:1085–1092.PubMedGoogle Scholar
  171. 171.
    Peudenier S, Hery C, Montagnier L, Tardieu M. Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-1 infection. Ann Neurol 1991;29:152–161.PubMedCrossRefGoogle Scholar
  172. 172.
    An SF, Groves M, Giometto B, Beckett AA, Scaravilli F. Detection and localisation of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction/in situ hybridisation technique. Acta Neuropathol (Berl) 1999;98:481–487.CrossRefGoogle Scholar
  173. 173.
    Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 1996; 39:705–711.PubMedCrossRefGoogle Scholar
  174. 174.
    McArthur JC, Hoover DR, Bacellar H, et al. Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 1993;43:2245–2252.PubMedGoogle Scholar
  175. 175.
    Maschke M, Kastrup O, Esser S, Ross B, Hengge U, Hufnagel A. Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 2000;69:376–380.PubMedCrossRefGoogle Scholar
  176. 176.
    Sacktor N, Lyles RH, Skolasky R, et al. HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990–1998. Neurology 2001;56:257–260.PubMedGoogle Scholar
  177. 177.
    Sacktor N, McDermott MP, Marder K, et al. HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 2002;8:136–142.PubMedGoogle Scholar
  178. 178.
    Sacktor N. The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 2002;8(Suppl 2): 115–121.PubMedCrossRefGoogle Scholar
  179. 179.
    Lipton SA, Gendelman HE. Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 1995;332:934–940.PubMedCrossRefGoogle Scholar
  180. 180.
    Glass JD, Fedor H, Wesselingh SL, McArthur JC. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 1995;38:755–762.PubMedCrossRefGoogle Scholar
  181. 181.
    Masliah E, Heaton RK, Marcotte TD, et al.Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 1997; 42:963–972.PubMedCrossRefGoogle Scholar
  182. 182.
    Adle-Biassette H, Chretien F, Wingertsmann L, et al. Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 1999;25:123–133.PubMedCrossRefGoogle Scholar
  183. 183.
    Garden GA. Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 2002;40:240–251.PubMedCrossRefGoogle Scholar
  184. 184.
    Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001;410:988–994.PubMedCrossRefGoogle Scholar
  185. 185.
    Glass JD, Wesselingh SL. Microglia in HIV-associated neurological diseases. Microsc Res Tech 2001;54:95–105.PubMedCrossRefGoogle Scholar
  186. 186.
    Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol 2003;74:691–701.PubMedCrossRefGoogle Scholar
  187. 187.
    Tyor WR, Glass JD, Griffin JW, et al. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol 1992;31:349–360.PubMedCrossRefGoogle Scholar
  188. 188.
    Achim CL, Heyes MP, Wiley CA. Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest 1993;91:2769–2775.PubMedGoogle Scholar
  189. 189.
    Nuovo GJ, Gallery F, MacConnell P, Braun A. In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-alpha RNA in the central nervous system. Am J Pathol 1994; 144:659–666.PubMedGoogle Scholar
  190. 190.
    Sippy BD, Hofman FM, Wallach D, Hinton DR. Increased expression of tumor necrosis factor-alpha receptors in the brains of patients with AIDS. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10:511–521.PubMedGoogle Scholar
  191. 191.
    Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 1997;74:1–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Seilhean D, Kobayashi K, He Y, et al. Tumor necrosis factor-alpha, microglia and astrocytes in AIDS dementia complex. Acta Neuropathol (Berl) 1997;93:508–517.CrossRefGoogle Scholar
  193. 193.
    Nuovo GJ, Alfieri ML. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines. Mol Med 1996;2:358–366.PubMedCrossRefGoogle Scholar
  194. 194.
    Griffin DE. Cytokines in the brain during viral infection: clues to HIV-associated dementia. J Clin Invest 1997;100:2948–2951.PubMedGoogle Scholar
  195. 195.
    Saha RN, Pahan K. Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 2003;86:1057–1071.PubMedCrossRefGoogle Scholar
  196. 196.
    Stanley LC, Mrak RE, Woody RC, et al. Glial cytokines as neuropathogenic factors in HIV infection: pathogenic similarities to Alzheimer’s disease. J Neuropathol Exp Neurol 1994;53:231–238.PubMedGoogle Scholar
  197. 197.
    Wahl SM, Allen JB, McCartney-Francis N, et al. Macrophage-and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med 1991;173:981–991.PubMedCrossRefGoogle Scholar
  198. 198.
    Perrella O, Carreiri PB, Perrella A, et al.Transforming growth factor beta-1 and interferon-alpha in the AIDS dementia complex (ADC): possible relationship with cerebral viral load? Eur Cytokine Netw 2001;12:51–55.PubMedGoogle Scholar
  199. 199.
    Rho MB, Wesselingh S, Glass JD, et al. A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav Immun 1995;9:366–377.PubMedCrossRefGoogle Scholar
  200. 200.
    Gallo P, Frei K, Rordorf C, Lazdins J, Tavolato B, Fontana A. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid. J Neuroimmunol 1989;23:109–116.PubMedCrossRefGoogle Scholar
  201. 201.
    Gallo P, Laverda AM, De Rossi A, et al. Immunological markers in the cerebrospinal fluid of HIV-1-infected children. Acta Paediatr Scand 1991;80:659–666.PubMedGoogle Scholar
  202. 202.
    Perrella O, Carrieri PB, Guarnaccia D, Soscia M. Cerebrospinal fluid cytokines in AIDS dementia complex. J Neurol 1992;239:387–388.PubMedGoogle Scholar
  203. 203.
    Laverda AM, Gallo P, De Rossi A, et al. Cerebrospinal fluid analysis in HIV-1-infected children: immunological and virological findings before and after AZT therapy. Acta Paediatr 1994;83:1038–1042.PubMedGoogle Scholar
  204. 204.
    Krivine A, Force G, Servan J, et al. Measuring HIV-1 RNA and interferon-alpha in the cerebrospinal fluid of AIDS patients: insights into the pathogenesis of AIDS Dementia Complex. J Neurovirol 1999;5:500–506.PubMedGoogle Scholar
  205. 205.
    Mastroianni CM, Paoletti F, Massetti AP, Falciano M, Vullo V. Elevated levels of tumor necrosis factor (TNF) in the cerebrospinal fluid from patients with HIV-associated neurological disorders. Acta Neurol (Napoli) 1990;12:66–67.Google Scholar
  206. 206.
    Grimaldi LM, Martino GV, Franciotta DM, et al. Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann Neurol 1991;29:21–25.PubMedCrossRefGoogle Scholar
  207. 207.
    Franciotta DM, Melzi d’Eril GL, Bono G, Brustia R, Ruberto G, Pagani I. Tumor necrosis factor alpha levels in serum and cerebrospinal fluid of patients with AIDS. Funct Neurol 1992;7:35–38.PubMedGoogle Scholar
  208. 208.
    Shaskan EG, Thompson RM, Price RW. Undetectable tumor necrosis factor-alpha in spinal fluid from HIV-1-infected patients. Ann Neurol 1992;31:687–689.PubMedCrossRefGoogle Scholar
  209. 209.
    Watkins BA, Dorn HH, Kelly WB, et al. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 1990;249:549–553.PubMedCrossRefGoogle Scholar
  210. 210.
    Jordan CA, Watkins BA, Kufta C, Dubois-Dalcq M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol 1991;65:736–742.PubMedGoogle Scholar
  211. 211.
    Strizki JM, Albright AV, Sheng H, O’Connor M, Perrin L, Gonzalez-Scarano F. Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. J Virol 1996;70:7654–7662.PubMedGoogle Scholar
  212. 212.
    Albright AV, Shieh JT, O’Connor MJ, Gonzalez-Scarano F. Characterization of cultured microglia that can be infected by HIV-1. J Neurovirol 2000;6(Suppl 1):S53–60.PubMedGoogle Scholar
  213. 213.
    Lee SC, Hatch WC, Liu W, Kress Y, Lyman WD, Dickson DW. Productive infection of human fetal microglia by HIV-1. Am J Pathol 1993;143:1032–1039.PubMedGoogle Scholar
  214. 214.
    Ioannidis JP, Reichlin S, Skolnik PR. Long-term productive human immunodeficiency virus-1 infection in human infant microglia. Am J Pathol 1995;147:1200–1206.PubMedGoogle Scholar
  215. 215.
    Ranki A, Nyberg M, Ovod V, et al. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. Aids 1995;9:1001–1008.PubMedCrossRefGoogle Scholar
  216. 216.
    Bagasra O, Lavi E, Bobroski L, et al. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. Aids 1996;10:573–585.PubMedCrossRefGoogle Scholar
  217. 217.
    Fiala M, Rhodes RH, Shapshak P, et al. Regulation of HIV-1 infection in astrocytes: expression of Nef, TNF-alpha and IL-6 is enhanced in coculture of astrocytes with macrophages. J Neurovirol 1996;2:158–166.PubMedGoogle Scholar
  218. 218.
    Sabri F, Tresoldi E, Di Stefano M, et al. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors. Virology 1999;264:370–384.PubMedCrossRefGoogle Scholar
  219. 219.
    Janabi N, Di Stefano M, Wallon C, Hery C, Chiodi F, Tardieu M. Induction of human immunodeficiency virus type 1 replication in human glial cells after proinflammatory cytokines stimulation: effect of IFNgamma, IL1beta, and TNFalpha on differentiation and chemokine production in glial cells. Glia 1998;23:304–315.PubMedCrossRefGoogle Scholar
  220. 220.
    Giulian D, Vaca K, Noonan CA. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 1990;250:1593–1596.PubMedCrossRefGoogle Scholar
  221. 221.
    Pulliam L, Herndier BG, Tang NM, McGrath MS. Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 1991; 87:503–512.PubMedGoogle Scholar
  222. 222.
    Tardieu M, Hery C, Peudenier S, Boespflug O, Montagnier L. Human immunodeficiency virus type 1-infected monocytic cells can destroy human neural cells after cell-to-cell adhesion. Ann Neurol 1992;32:11–17.PubMedCrossRefGoogle Scholar
  223. 223.
    Xiong H, Zheng J, Thylin M, Gendelman HE. Unraveling the mechanisms of neurotoxicity in HIV type 1-associated dementia: inhibition of neuronal synaptic transmission by macrophage secretory products. AIDS Res Hum Retroviruses 1999;15:57–63.PubMedCrossRefGoogle Scholar
  224. 224.
    Xiong H, Zeng YC, Zheng J, Thylin M, Gendelman HE. Soluble HIV-1 infected macrophage secretory products mediate blockade of long-term potentiation: a mechanism for cognitive dysfunction in HIV-1-associated dementia. J Neurovirol 1999;5:519–528.PubMedGoogle Scholar
  225. 225.
    Genis P, Jett M, Bernton EW, et al. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 1992;176:1703–1718.PubMedCrossRefGoogle Scholar
  226. 226.
    Merrill JE, Koyanagi Y, Zack J, Thomas L, Martin F, Chen IS. Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol 1992;66:2217–2225.PubMedGoogle Scholar
  227. 227.
    Wilt SG, Milward E, Zhou JM, et al. In vitro evidence for a dual role of tumor necrosis factor-alpha in human immunodeficiency virus type 1 encephalopathy. Ann Neurol 1995;37:381–394.PubMedCrossRefGoogle Scholar
  228. 228.
    Chao CC, Hu S. Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci 1994;16:172–179.PubMedGoogle Scholar
  229. 229.
    Gelbard HA, Dzenko KA, DiLoreto D, del Cerro C, del Cerro M, Epstein LG. Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for AIDS neuropathogenesis. Dev Neurosci 1993;15:417–422.PubMedGoogle Scholar
  230. 230.
    Fine SM, Angel RA, Perry SW, et al. Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 1996;271:15,303–15,306.PubMedCrossRefGoogle Scholar
  231. 231.
    Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ. Induction of NF-kappa B during monocyte differentiation is associated with activation of HIV-gene expression. Res Virol 1991;142:233–238.PubMedCrossRefGoogle Scholar
  232. 232.
    Khanna KV, Yu XF, Ford DH, Ratner L, Hildreth JK, Markham RB. Differences among HIV-1 variants in their ability to elicit secretion of TNF-alpha. J Immunol 2000;164:1408–1415.PubMedGoogle Scholar
  233. 233.
    Mellors JW, Griffith BP, Ortiz MA, Landry ML, Ryan JL. Tumor necrosis factor-alpha/cachectin enhances human immunodeficiency virus type 1 replication in primary macrophages. J Infect Dis 1991;163:78–82.PubMedGoogle Scholar
  234. 234.
    Tadmori W, Mondal D, Tadmori I, Prakash O. Transactivation of human immunodeficiency virus type 1 long terminal repeats by cell surface tumor necrosis factor alpha. J Virol 1991;65:6425–6429.PubMedGoogle Scholar
  235. 235.
    Chao CC, Hu S, Peterson PK. Glia: the not so innocent bystanders. J Neurovirol 1996;2:234–239.PubMedGoogle Scholar
  236. 236.
    Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 2002;25:537–562.PubMedCrossRefGoogle Scholar
  237. 237.
    Hurtrel B, Chakrabarti L, Hurtrel M, Montagnier L. Target cells during early SIV encephalopathy. Res Virol 1993; 144:41–46.PubMedGoogle Scholar
  238. 238.
    Watry D, Lane TE, Streb M, Fox HS. Transfer of neuropathogenic simian immunodeficiency virus with naturally infected microglia. Am J Pathol 1995;146:914–923.PubMedGoogle Scholar
  239. 239.
    Czub S, Muller JG, Czub M, Muller-Hermelink HK. Impact of various simian immunodeficiency virus variants on induction and nature of neuropathology in macaques. Res Virol 1996;147:165–170.PubMedCrossRefGoogle Scholar
  240. 240.
    Lane JH, Sasseville VG, Smith MO, et al. Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neurovirol 1996;2:423–432.PubMedGoogle Scholar
  241. 241.
    Williams KC, Corey S, Westmoreland SV, et al. Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 2001;193:905–915.PubMedCrossRefGoogle Scholar
  242. 242.
    Chakrabarti L, Hurtrel M, Maire MA, et al. Early viral replication in the brain of SIV-infected rhesus monkeys. Am J Pathol 1991;139:1273–1280.PubMedGoogle Scholar
  243. 243.
    Gonzalez RG, Cheng LL, Westmoreland SV, et al. Early brain injury in the SIV-macaque model of AIDS. Aids 2000;14:2841–2849.PubMedCrossRefGoogle Scholar
  244. 244.
    Rausch DM, Heyes MP, Murray EA, et al. Cytopathologic and neurochemical correlates of progression to motor/cognitive impairment in SIV-infected rhesus monkeys. J Neuropathol Exp Neurol 1994;53:165–175.PubMedGoogle Scholar
  245. 245.
    Lane TE, Buchmeier MJ, Watry DD, Fox HS. Expression of inflammatory cytokines and inducible nitric oxide syn-thase in brains of SIV-infected rhesus monkeys: applications to HIV-induced central nervous system disease. Mol Med 1996;2:27–37.PubMedGoogle Scholar
  246. 246.
    Orandle MS, MacLean AG, Sasseville VG, Alvarez X, Lackner AA. Enhanced expression of proinflammatory cytokines in the central nervous system is associated with neuroinvasion by simian immunodeficiency virus and the development of encephalitis. J Virol 2002;76:5797–5802.PubMedCrossRefGoogle Scholar
  247. 247.
    Sopper S, Demuth M, Stahl-Hennig C, et al. The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 1996;220:320–329.PubMedCrossRefGoogle Scholar
  248. 248.
    Tyor WR, Power C, Gendelman HE, Markham RB. A model of human immunodeficiency virus encephalitis in SCID mice. Proc Natl Acad Sci U S A 1993;90:8658–8662.PubMedCrossRefGoogle Scholar
  249. 249.
    Persidsky Y, Limoges J, McComb R, et al. Human immunodeficiency virus encephalitis in SCID mice. Am J Pathol 1996;149:1027–1053.PubMedGoogle Scholar
  250. 250.
    Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE. An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol 1997;3:401–416.PubMedGoogle Scholar
  251. 251.
    Philippon V, Vellutini C, Gambarelli D, et al. The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 1994;205:519–529.PubMedCrossRefGoogle Scholar
  252. 252.
    Wang P, Barks JD, Silverstein FS. Tat, a human immunodeficiency virus-1-derived protein, augments excitotoxic hippocampal injury in neonatal rats. Neuroscience 1999;88:585–597.PubMedCrossRefGoogle Scholar
  253. 253.
    Bagetta G, Corasaniti MT, Berliocchi L, et al. Involvement of interleukin-1beta in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience 1999;89:1051–1066.PubMedCrossRefGoogle Scholar
  254. 254.
    Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM. Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 2000;879:42–49.PubMedCrossRefGoogle Scholar
  255. 255.
    Sporer B, Koedel U, Paul R, et al. Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol 2000;102:125–130.PubMedCrossRefGoogle Scholar
  256. 256.
    Corasaniti MT, Piccirilli S, Paoletti A, et al. Evidence that the HIV-1 coat protein gp120 causes neuronal apoptosis in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor. Neurosci Lett 2001;312:67–70.PubMedCrossRefGoogle Scholar
  257. 257.
    Corasaniti MT, Maccarrone M, Nistico R, Malorni W, Rotiroti D, Bagetta G. Exploitation of the HIV-1 coat glycoprotein, gp120, in neurodegenerative studies in vivo. J Neurochem 2001;79:1–8.PubMedCrossRefGoogle Scholar
  258. 258.
    Barak O, Goshen I, Ben-Hur T, Weidenfeld J, Taylor AN, Yirmiya R. Involvement of brain cytokines in the neurobehavioral disturbances induced by HIV-1 glycoprotein120. Brain Res 2002;933:98–108.PubMedCrossRefGoogle Scholar
  259. 259.
    Pu H, Tian J, Flora G, et al. HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 2003;24:224–237.PubMedCrossRefGoogle Scholar
  260. 260.
    Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 1994;367:188–193.PubMedCrossRefGoogle Scholar
  261. 261.
    Wiley CA, Baldwin M, Achim CL. Expression of HIV regulatory and structural mRNA in the central nervous system. Aids 1996;10:843–847.PubMedCrossRefGoogle Scholar
  262. 262.
    Hudson L, Liu J, Nath A, et al. Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 2000;6:145–155.PubMedGoogle Scholar
  263. 263.
    Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993;67:277–287.PubMedGoogle Scholar
  264. 264.
    Cupp C, Taylor JP, Khalili K, Amini S. Evidence for stimulation of the transforming growth factor beta 1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene 1993;8:2231–2236.PubMedGoogle Scholar
  265. 265.
    Chen P, Mayne M, Power C, Nath A. The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem 1997;272:22,385–22,388.PubMedCrossRefGoogle Scholar
  266. 266.
    Sawaya BE, Thatikunta P, Denisova L, Brady J, Khalili K, Amini S. Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells. J Neuroimmunol 1998;87:33–42.PubMedCrossRefGoogle Scholar
  267. 267.
    Sheng WS, Hu S, Hegg CC, Thayer SA, Peterson PK. Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin Immunol 2000;96:243–251.PubMedCrossRefGoogle Scholar
  268. 268.
    Bruce-Keller AJ, Barger SW, Moss NI, Pham JT, Keller JN, Nath A. Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J Neurochem 2001;78:1315–1324.PubMedCrossRefGoogle Scholar
  269. 269.
    Gibellini D, Zauli G, Re MC, et al. Recombinant human immunodeficiency virus type-1 (HIV-1) Tat protein sequentially up-regulates IL-6 and TGF-beta 1 mRNA expression and protein synthesis in peripheral blood monocytes. Br JHaematol 1994;88:261–267.Google Scholar
  270. 270.
    Scala G, Ruocco MR, Ambrosino C, et al.The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 1994; 179:961–971.PubMedCrossRefGoogle Scholar
  271. 271.
    Shi B, Raina J, Lorenzo A, Busciglio J, Gabuzda D. Neuronal apoptosis induced by HIV-1 Tat protein and TNF-alpha: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia. J Neurovirol 1998; 4:281–290.PubMedCrossRefGoogle Scholar
  272. 272.
    Koka P, He K, Zack JA, et al. Human immunodeficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor alpha, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain. J Exp Med 1995;182:941–951.PubMedCrossRefGoogle Scholar
  273. 273.
    Yeung MC, Pulliam L, Lau AS. The HIV envelope protein gp120 is toxic to human brain-cell cultures through the induction of interleukin-6 and tumor necrosis factor-alpha. Aids 1995;9:137–143.PubMedGoogle Scholar
  274. 274.
    Kong LY, Wilson BC, McMillian MK, Bing G, Hudson PM, Hong JS. The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell Immunol 1996;172:77–83.PubMedCrossRefGoogle Scholar
  275. 275.
    Wahl LM, Corcoran ML, Pyle SW, Arthur LO, Harel-Bellan A, Farrar WL. Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1. Proc Natl Acad Sci USA 1989;86:621–625.PubMedCrossRefGoogle Scholar
  276. 276.
    Clouse KA, Cosentino LM, Weih KA, et al. The HIV-1 gp120 envelope protein has the intrinsic capacity to stimulate monokine secretion. J Immunol 1991;147:2892–2901.PubMedGoogle Scholar
  277. 277.
    Benos DJ, Hahn BH, Bubien JK, et al. Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex. Proc Natl Acad Sci USA 1994;91:494–498.PubMedCrossRefGoogle Scholar
  278. 278.
    Reinhart TA. Chemokine induction by HIV-1: recruitment to the cause. Trends Immunol 2003;24:351–353.PubMedCrossRefGoogle Scholar
  279. 279.
    Kielian T. Microglia and chemokines in infectious diseases of the nervous system: views and reviews. Front Biosci 2004;9:732–750.PubMedCrossRefGoogle Scholar
  280. 280.
    Keegan BM, Noseworthy JH. Multiple sclerosis. Annu Rev Med 2002;53:285–302.PubMedCrossRefGoogle Scholar
  281. 281.
    Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Curr Opin Neurol 2003;16:259–265.PubMedCrossRefGoogle Scholar
  282. 282.
    Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992;10:153–187.PubMedCrossRefGoogle Scholar
  283. 283.
    Sadovnick AD, Ebers GC. Epidemiology of multiple sclerosis: a critical overview. Can J Neurol Sci 1993;20:17–29.PubMedGoogle Scholar
  284. 284.
    Martyn C. The epidemiology of multiple sclerosis. In: WB M, ed. McAlpine’s Multiple Sclerosis. New York: Churchill Livingstone, 1991.Google Scholar
  285. 285.
    Croxford JL, Olson JK, Miller SD. Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun Rev 2002;1:251–260.PubMedCrossRefGoogle Scholar
  286. 286.
    Wekerle H, Hohlfeld R. Molecular mimicry in multiple sclerosis. N Engl J Med 2003;349:185–186.PubMedCrossRefGoogle Scholar
  287. 287.
    Arnason BG. Relevance of experimental allergic encephalomyelitis to multiple sclerosis. Neurol Clin 1983;1:765–782.PubMedGoogle Scholar
  288. 288.
    Raine CS. Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest 1984;50:608–635.PubMedGoogle Scholar
  289. 289.
    Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995;45:1268–1276.PubMedGoogle Scholar
  290. 290.
    Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 1996;39:285–294.PubMedCrossRefGoogle Scholar
  291. 291.
    Panitch HS, McFarlin DE. Experimental allergic encephalomyelitis: enhancement of cell-mediated transfer by con-canavalin A. J Immunol 1977;119:1134–1137.PubMedGoogle Scholar
  292. 292.
    Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2-T lymphocytes. J Immunol 1981;127:1420–1423.PubMedGoogle Scholar
  293. 293.
    Seder R, Mosmann TM. Differentiation of effectos phenotypes of CD4+ and CD8+ T cells. In: Paul W, ed. Fundamental Immunology. Philadelphia: Lippencott-Raven, 1999: 1879–1908.Google Scholar
  294. 294.
    Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 1989;124:132–143.PubMedCrossRefGoogle Scholar
  295. 295.
    Powell MB, Mitchell D, Lederman J, et al. Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol 1990;2:539–544.PubMedCrossRefGoogle Scholar
  296. 296.
    Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 1995; 16:34–38.PubMedCrossRefGoogle Scholar
  297. 297.
    Olsson T. Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1995;144:245–268.PubMedCrossRefGoogle Scholar
  298. 298.
    Becher B, Dodelet V, Fedorowicz V, Antel JP. Soluble tumor necrosis factor receptor inhibits interleukin 12 production by stimulated human adult microglial cells in vitro. J Clin Invest 1996;98:1539–1543.PubMedGoogle Scholar
  299. 299.
    Lodge PA, Sriram S. Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leukoc Biol 1996;60:502–508.PubMedGoogle Scholar
  300. 300.
    Suzumura A, Sawada M, Takayanagi T. Production of interleukin-12 and expression of its receptors by murine microglia. Brain Res 1998;787:139–142.PubMedCrossRefGoogle Scholar
  301. 301.
    Stalder AK, Pagenstecher A, Yu NC, et al. Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J Immunol 1997;159:1344–1351.PubMedGoogle Scholar
  302. 302.
    Windhagen A, Newcombe J, Dangond F, et al. Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 1995;182:1985–1996.PubMedCrossRefGoogle Scholar
  303. 303.
    Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL. Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 1997; 94:599–603.PubMedCrossRefGoogle Scholar
  304. 304.
    Comabella M, Balashov K, Issazadeh S, Smith D, Weiner HL, Khoury SJ. Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest 1998;102:671–678.PubMedGoogle Scholar
  305. 305.
    Santambrogio L, Crisi GM, Leu J, Hochwald GM, Ryan T, Thorbecke GJ. Tolerogenic forms of auto-antigens and cytokines in the induction of resistance to experimental allergic encephalomyelitis. J Neuroimmunol 1995;58:211–22.PubMedCrossRefGoogle Scholar
  306. 306.
    Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 1995;181:381–386.PubMedCrossRefGoogle Scholar
  307. 307.
    Segal BM, Dwyer BK, Shevach EM. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 1998;187:537–546.PubMedCrossRefGoogle Scholar
  308. 308.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260:547–549.PubMedCrossRefGoogle Scholar
  309. 309.
    Manetti R, Parronchi P, Giudizi MG, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993;177:1199–1204.PubMedCrossRefGoogle Scholar
  310. 310.
    Afonso LC, Scharton TM, Vieira LQ, Wysocka M, Trinchieri G, Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 1994;263:235–237.PubMedCrossRefGoogle Scholar
  311. 311.
    Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for inter-feron gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA 1993;90:10,188–10,192.PubMedCrossRefGoogle Scholar
  312. 312.
    Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 1994;84:4008–4027.PubMedGoogle Scholar
  313. 313.
    Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996;382:174–177.PubMedCrossRefGoogle Scholar
  314. 314.
    Magram J, Sfarra J, Connaughton S, et al. IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann N Y Acad Sci 1996;795:60–70.PubMedCrossRefGoogle Scholar
  315. 315.
    Thierfelder WE, van Deursen JM, Yamamoto K, et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 1996;382:171–174.PubMedCrossRefGoogle Scholar
  316. 316.
    Hayes MP, Wang J, Norcross MA. Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-gamma of lipopolysaccharide-inducible p35 and p40 genes. Blood 1995;86:646–650.PubMedGoogle Scholar
  317. 317.
    Ma X, Chow JM, Gri G, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 1996;183:147–157.PubMedCrossRefGoogle Scholar
  318. 318.
    Szabo SJ, Dighe AS, Gubler U, Murphy KM. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 1997;185:817–824.PubMedCrossRefGoogle Scholar
  319. 318a.
    Gran, B, Zhang G-X, Rostami A. Role of the IL-12/IL-23 system in the regulation of T-cell responses in central nervous system inflammatory demyelination. Critical Rev Immunol 2004; 24:87–110.CrossRefGoogle Scholar
  320. 319.
    Conti B, Park LC, Calingasan NY, et al. Cultures of astrocytes and microglia express interleukin 18. Brain Res Mol Brain Res 1999;67:46–52.PubMedCrossRefGoogle Scholar
  321. 320.
    Jander S, Stoll G. Differential induction of interleukin-12, interleukin-18, and interleukin-1 beta converting enzyme mRNA in experimental autoimmune encephalomyelitis of the Lewis rat. J Neuroimmunol 1998;91:93–99.PubMedCrossRefGoogle Scholar
  322. 321.
    Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 1999;96:6873–6878.PubMedCrossRefGoogle Scholar
  323. 322.
    Furlan R, Martino G, Galbiati F, et al. Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 1999;163:2403–2409.PubMedGoogle Scholar
  324. 323.
    Furlan R, Filippi M, Bergami A, et al. Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry 1999;67:785–788.PubMedGoogle Scholar
  325. 324.
    Wildbaum G, Youssef S, Grabie N, Karin N. Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis. J Immunol 1998;161:6368–6374.PubMedGoogle Scholar
  326. 325.
    Robinson D, Shibuya K, Mui A, et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 1997;7:571–581.PubMedCrossRefGoogle Scholar
  327. 326.
    Micallef MJ, Ohtsuki T, Kohno K, et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur J Immunol 1996;26:1647–1651.PubMedCrossRefGoogle Scholar
  328. 327.
    Ahn HJ, Maruo S, Tomura M, et al. A mechanism underlying synergy between IL-12 and IFN-gamma-inducing factor in enhanced production of IFN-gamma. J Immunol 1997;159:2125–2131.PubMedGoogle Scholar
  329. 328.
    Kohno K, Kataoka J, Ohtsuki T, et al. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 1997;158:1541–1550.PubMedGoogle Scholar
  330. 329.
    Xu D, Chan WL, Leung BP, et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med 1998;188:1485–1492.PubMedCrossRefGoogle Scholar
  331. 330.
    Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol 1998;161:3400–3407.PubMedGoogle Scholar
  332. 331.
    Kaplan MH, Grusby MJ. Regulation of T helper cell differentiation by STAT molecules. J Leukoc Biol 1998;64:2–5.PubMedGoogle Scholar
  333. 332.
    Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leukoc Biol 1998;63:658–664.PubMedGoogle Scholar
  334. 333.
    Young HA. Regulation of interferon-gamma gene expression. J Interferon Cytokine Res 1996;16:563–568.PubMedGoogle Scholar
  335. 334.
    O’Garra A, Stapleton G, Dhar V, et al. Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int Immunol 1990;2:821–832.PubMedCrossRefGoogle Scholar
  336. 335.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991;174:1209–1220.PubMedCrossRefGoogle Scholar
  337. 336.
    Mizuno T, Sawada M, Marunouchi T, Suzumura A. Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun 1994;205:1907–1915.PubMedCrossRefGoogle Scholar
  338. 337.
    Sheng WS, Hu S, Kravitz FH, Peterson PK, Chao CC. Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin Diagn Lab Immunol 1995;2:604–608.PubMedGoogle Scholar
  339. 338.
    Williams K, Dooley N, Ulvestad E, Becher B, Antel JP. IL-10 production by adult human derived microglial cells. Neurochem Int 1996;29:55–64.PubMedCrossRefGoogle Scholar
  340. 339.
    Jander S, Pohl J, D’Urso D, Gillen C, Stoll G. Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system. Am J Pathol 1998;152:975–982.PubMedGoogle Scholar
  341. 340.
    Aloisi F, De Simone R, Columba-Cabezas S, Levi G. Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro-and anti-inflammatory activities. J Neurosci Res 1999;56:571–580.PubMedCrossRefGoogle Scholar
  342. 341.
    Yoshikawa M, Suzumura A, Tamaru T, Takayanagi T, Sawada M. Effects of phosphodiesterase inhibitors on cytokine production by microglia. Mult Scler 1999;5:126–133.PubMedGoogle Scholar
  343. 342.
    Calabresi PA, Tranquill LR, McFarland HF, Cowan EP. Cytokine gene expression in cells derived from CSF of multiple sclerosis patients. J Neuroimmunol 1998;89:198–205.PubMedCrossRefGoogle Scholar
  344. 343.
    Link H. The cytokine storm in multiple sclerosis. Mult Scler 1998;4:12–15.PubMedGoogle Scholar
  345. 344.
    van Boxel-Dezaire AH, Hoff SC, van Oosten BW, et al. Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Ann Neurol 1999;45:695–703.PubMedCrossRefGoogle Scholar
  346. 345.
    Rott O, Fleischer B, Cash E. Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 1994;24:1434–1440.PubMedCrossRefGoogle Scholar
  347. 346.
    Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10-and IL-4-deficient and transgenic mice. J Immunol 1998;161:3299–3306.PubMedGoogle Scholar
  348. 347.
    Xiao BG, Bai XF, Zhang GX, Link H. Suppression of acute and protracted-relapsing experimental allergic encephalomyelitis by nasal administration of low-dose IL-10 in rats. J Neuroimmunol 1998;84:230–237.PubMedCrossRefGoogle Scholar
  349. 348.
    Cua DJ, Groux H, Hinton DR, Stohlman SA, Coffman RL. Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J Exp Med 1999;189:1005–1010.PubMedCrossRefGoogle Scholar
  350. 349.
    Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989;170:2081–2095.PubMedCrossRefGoogle Scholar
  351. 350.
    Chomarat P, Rissoan MC, Banchereau J, Miossec P. Interferon gamma inhibits interleukin 10 production by monocytes. J Exp Med 1993;177:523–527.PubMedCrossRefGoogle Scholar
  352. 351.
    Libraty DH, Airan LE, Uyemura K, et al. Interferon-gamma differentially regulates interleukin-12 and interleukin-10 production in leprosy. J Clin Invest 1997;99:336–341.PubMedGoogle Scholar
  353. 352.
    Shaw MK, Lorens JB, Dhawan A, et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 1997;185:1711–1714.PubMedCrossRefGoogle Scholar
  354. 353.
    Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL. IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 1998;28:2780–2790.PubMedCrossRefGoogle Scholar
  355. 354.
    Falcone M, Rajan AJ, Bloom BR, Brosnan CF. A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J Immunol 1998; 160:4822–4830.PubMedGoogle Scholar
  356. 355.
    Liblau R, Steinman L, Brocke S. Experimental autoimmune encephalomyelitis in IL-4-deficient mice. Int Immunol 1997;9:799–803.PubMedCrossRefGoogle Scholar
  357. 356.
    Samoilova EB, Horton JL, Chen Y. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol 1998;188:118–124.PubMedCrossRefGoogle Scholar
  358. 357.
    Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol 2003;23:147–161.PubMedCrossRefGoogle Scholar
  359. 358.
    Kurata H, Lee HJ, O’Garra A, Arai N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 1999;11:677–688.PubMedCrossRefGoogle Scholar
  360. 359.
    Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE. Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 2001;166:7276–7281.PubMedGoogle Scholar
  361. 360.
    Lawless VA, Zhang S, Ozes ON, et al. Stat4 regulates multiple components of IFN-gamma-inducing signaling pathways. J Immunol 2000;165:6803–6308.PubMedGoogle Scholar
  362. 361.
    Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997;272:21,597–21,603.PubMedCrossRefGoogle Scholar
  363. 362.
    Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587–596.PubMedCrossRefGoogle Scholar
  364. 363.
    Ferber IA, Lee HJ, Zonin F, et al. GATA-3 significantly downregulates IFN-gamma production from developing Th1 cells in addition to inducing IL-4 and IL-5 levels. Clin Immunol 1999;91:134–144.PubMedCrossRefGoogle Scholar
  365. 364.
    Sriram S, Rodriguez M. Indictment of the microglia as the villain in multiple sclerosis. Neurology 1997;48:464–470.PubMedGoogle Scholar
  366. 365.
    MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323–350.PubMedCrossRefGoogle Scholar
  367. 366.
    Raine CS. The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion. J Neuroimmunol 1997;77:135–152.PubMedCrossRefGoogle Scholar
  368. 367.
    Mattson MP, Barger SW, Furukawa K, et al. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer’s disease. Brain Res Brain Res Rev 1997;23:47–61.PubMedCrossRefGoogle Scholar
  369. 368.
    Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 1993;151:2132–2141.PubMedGoogle Scholar
  370. 369.
    Mitrovic B, Ignarro LJ, Montestruque S, Smoll A, Merrill JE. Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience 1994;61:575–585.PubMedCrossRefGoogle Scholar
  371. 370.
    Mitrovic B, Parkinson J, Merrill JE. An in vitro model of o ligodendrocyte destruction by nitric oxide and its relevance to multiple sclerosis. Methods 1996;10:501–513.PubMedCrossRefGoogle Scholar
  372. 371.
    Boullerne AI, Nedelkoska L, Benjamins JA. Synergism of nitric oxide and iron in killing the transformed murine oligodendrocyte cell line N20.1. J Neurochem 1999;72:1050–1060.PubMedCrossRefGoogle Scholar
  373. 372.
    Rosenberg PA, Li Y, Ali S, Altiok N, Back SA, Volpe JJ. Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J Neurochem 1999;73:476–484.PubMedCrossRefGoogle Scholar
  374. 373.
    Zhao W, Tilton RG, Corbett JA, et al. Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J Neuroimmunol 1996;64:123–133.PubMedCrossRefGoogle Scholar
  375. 374.
    Hooper DC, Bagasra O, Marini JC, et al.Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci USA 1997; 94:2528–2533.PubMedCrossRefGoogle Scholar
  376. 375.
    Ding M, Zhang M, Wong JL, Rogers NE, Ignarro LJ, Voskuhl RR. Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice. J Immunol 1998; 160:2560–2564.PubMedGoogle Scholar
  377. 376.
    van der Veen RC, Roberts LJ. Contrasting roles for nitric oxide and peroxynitrite in the peroxidation of myelin lipids. J Neuroimmunol 1999;95:1–7.PubMedCrossRefGoogle Scholar
  378. 377.
    Cross AH, Manning PT, Stern MK, Misko TP. Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 1997;80:121–130.PubMedCrossRefGoogle Scholar
  379. 378.
    Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP. Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 1998;88:45–56.PubMedCrossRefGoogle Scholar
  380. 379.
    Fenyk-Melody JE, Garrison AE, Brunnert SR, et al. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J Immunol 1998;160:2940–2946.PubMedGoogle Scholar
  381. 380.
    Sahrbacher UC, Lechner F, Eugster HP, Frei K, Lassmann H, Fontana A. Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis. Eur J Immunol 1998;28:1332–1338.PubMedCrossRefGoogle Scholar
  382. 381.
    Juedes AE, Ruddle NH. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 2001;166:5168–5175.PubMedGoogle Scholar
  383. 382.
    O’Brien NC, Charlton B, Cowden WB, Willenborg DO. Inhibition of nitric oxide synthase initiates relapsing remitting experimental autoimmune encephalomyelitis in rats, yet nitric oxide appears to be essential for clinical expression of disease. J Immunol 2001;167:5904–5912.PubMedGoogle Scholar
  384. 383.
    Okuda Y, Sakoda S, Fujimura H, Yanagihara T. Aminoguanidine, a selective inhibitor of the inducible nitric oxide synthase, has different effects on experimental allergic encephalomyelitis in the induction and progression phase. J Neuroimmunol 1998;81:201–210.PubMedCrossRefGoogle Scholar
  385. 384.
    Korner H, Riminton DS, Strickland DH, Lemckert FA, Pollard JD, Sedgwick JD. Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med 1997; 186:1585–1590.PubMedCrossRefGoogle Scholar
  386. 385.
    Riminton DS, Korner H, Strickland DH, Lemckert FA, Pollard JD, Sedgwick JD. Challenging cytokine redundancy: inflammatory cell movement and clinical course of experimental autoimmune encephalomyelitis are normal in lymphotoxin-deficient, but not tumor necrosis factor-deficient, mice. J Exp Med 1998;187:1517–1528.CrossRefGoogle Scholar
  387. 386.
    Kassiotis G, Pasparakis M, Kollias G, Probert L. TNF accelerates the onset but does not alter the incidence and severity of myelin basic protein-induced experimental autoimmune encephalomyelitis. Eur J Immunol 1999;29:774–780.PubMedCrossRefGoogle Scholar
  388. 387.
    Ruddle NH, Bergman CM, McGrath KM, et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 1990;172:1193–1200.PubMedCrossRefGoogle Scholar
  389. 388.
    Selmaj K, Raine CS, Farooq M, Norton WT, Brosnan CF. Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J Immunol 1991;147:1522–1529.PubMedGoogle Scholar
  390. 389.
    Sedgwick JD, Riminton DS, Cyster JG, Korner H. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 2000;21:110–113.PubMedCrossRefGoogle Scholar
  391. 390.
    Dal Canto RA, Shaw MK, Nolan GP, Steinman L, Fathman CG. Local delivery of TNF by retrovirus-transduced T lymphocytes exacerbates experimental autoimmune encephalomyelitis. Clin Immunol 1999;90:10–14.CrossRefGoogle Scholar
  392. 391.
    Liu J, Marino MW, Wong G, et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 1998;4:78–83.PubMedCrossRefGoogle Scholar
  393. 392.
    Kassiotis G, Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 2001;193:427–434.PubMedCrossRefGoogle Scholar
  394. 393.
    Suen WE, Bergman CM, Hjelmstrom P, Ruddle NH. A critical role for lymphotoxin in experimental allergic encephalomyelitis. J Exp Med 1997;186:1233–1240.PubMedCrossRefGoogle Scholar
  395. 394.
    Bachmann R, Eugster HP, Frei K, Fontana A, Lassmann H. Impairment of TNF-receptor-1 signaling but not fas signaling diminishes T-cell apoptosis in myelin oligodendrocyte glycoprotein peptide-induced chronic demyelinating autoimmune encephalomyelitis in mice. Am J Pathol 1999;154:1417–1422.PubMedGoogle Scholar
  396. 395.
    Eugster HP, Frei K, Bachmann R, Bluethmann H, Lassmann H, Fontana A. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol 1999;29:626–632.PubMedCrossRefGoogle Scholar
  397. 396.
    Probert L, Eugster HP, Akassoglou K, et al. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 2000;123(Pt 10):2005–2019.PubMedCrossRefGoogle Scholar
  398. 397.
    Suvannavejh GC, Lee HO, Padilla J, Dal Canto MC, Barrett TA, Miller SD. Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35-55)-induced experimental autoimmune encephalomyelitis. Cell Immunol 2000;205:24–33.PubMedCrossRefGoogle Scholar
  399. 398.
    Mannie MD, Dinarello CA, Paterson PY. Interleukin 1 and myelin basic protein synergistically augment adoptive transfer activity of lymphocytes mediating experimental autoimmune encephalomyelitis in Lewis rats. J Immunol 1987;138:4229–4235.PubMedGoogle Scholar
  400. 399.
    Schiffenbauer J, Streit WJ, Butfiloski E, LaBow M, Edwards C, 3rd, Moldawer LL. The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin Immunol 2000; 95:117–123.PubMedCrossRefGoogle Scholar
  401. 400.
    Martin D, Near SL. Protective effect of the interleukin-1 receptor antagonist (IL-1ra) on experimental allergic encephalomyelitis in rats. J Neuroimmunol 1995;61:241–245.PubMedCrossRefGoogle Scholar
  402. 401.
    Badovinac V, Mostarica-Stojkovic M, Dinarello CA, Stosic-Grujicic S. Interleukin-1 receptor antagonist suppresses experimental autoimmune encephalomyelitis (EAE) in rats by influencing the activation and proliferation of encephalitogenic cells. J Neuroimmunol 1998;85:87–95.PubMedCrossRefGoogle Scholar
  403. 402.
    Huitinga I, Schmidt ED, van der Cammen MJ, Binnekade R, Tilders FJ. Priming with interleukin-1beta suppresses experimental allergic encephalomyelitis in the Lewis rat. J Neuroendocrinol 2000;12:1186–1193.PubMedCrossRefGoogle Scholar
  404. 403.
    Arnett HA, Hellendall RP, Matsushima GK, et al. The protective role of nitric oxide in a neurotoxicant-induced demyelinating model. J Immunol 2002;168:427–433.PubMedGoogle Scholar
  405. 404.
    Morishima-Kawashima M, Ihara Y. Alzheimer’s disease: beta-Amyloid protein and tau. J Neurosci Res 2002; 70:392–401.PubMedCrossRefGoogle Scholar
  406. 405.
    Ritchie K, Lovestone S. The dementias. Lancet 2002;360:1759–1766.PubMedCrossRefGoogle Scholar
  407. 406.
    Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997;48:626–632.PubMedGoogle Scholar
  408. 407.
    Broe GA, Grayson DA, Creasey HM, et al. Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch Neurol 2000;57:1586–1591.PubMedCrossRefGoogle Scholar
  409. 408.
    Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC. Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 2002;59:880–886.PubMedGoogle Scholar
  410. 409.
    McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987;79:195–200.PubMedCrossRefGoogle Scholar
  411. 410.
    McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:741–749.PubMedCrossRefGoogle Scholar
  412. 411.
    Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988;9:339–349.PubMedCrossRefGoogle Scholar
  413. 412.
    Togo T, Akiyama H, Iseki E, et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 2002;124:83–92.PubMedCrossRefGoogle Scholar
  414. 413.
    Griffin WS, Sheng JG, Roberts GW, Mrak RE. Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 1995;54:276–281.PubMedGoogle Scholar
  415. 414.
    Fukumoto H, Asami-Odaka A, Suzuki N, Iwatsubo T. Association of A beta 40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in non-demented aged individuals. Neurodegeneration 1996;5:13–17.PubMedCrossRefGoogle Scholar
  416. 415.
    Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21:383–421.PubMedCrossRefGoogle Scholar
  417. 416.
    Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 1989;86:7611–7615.PubMedCrossRefGoogle Scholar
  418. 417.
    van der Wal EA, Gomez-Pinilla F, Cotman CW. Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies. Neuroreport 1993;4:69–72.PubMedCrossRefGoogle Scholar
  419. 418.
    Wood JA, Wood PL, Ryan R, et al. Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1 beta or IL-1RA but increases in the associated acute phase proteins IL-6, alpha 2-macroglobulin and C-reactive protein. Brain Res 1993;629:245–252.PubMedCrossRefGoogle Scholar
  420. 419.
    Cacabelos R, Alvarez XA, Fernandez-Novoa L, et al. Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Find Exp Clin Pharmacol 1994;16:141–151.PubMedGoogle Scholar
  421. 420.
    Sheng JG, Ito K, Skinner RD, et al. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 1996;17:761–766.PubMedCrossRefGoogle Scholar
  422. 421.
    Griffin WS, Sheng JG, Royston MC, et al. Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 1998;8:65–72.PubMedCrossRefGoogle Scholar
  423. 422.
    Tarkowski E, Blennow K, Wallin A, Tarkowski A. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol 1999; 19:223–230.PubMedCrossRefGoogle Scholar
  424. 423.
    Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging 2001;22:945–956.PubMedCrossRefGoogle Scholar
  425. 424.
    Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 1997;388:878–881.PubMedCrossRefGoogle Scholar
  426. 425.
    Chong Y. Effect of a carboxy-terminal fragment of the Alzheimer’s amyloid precursor protein on expression of proinflammatory cytokines in ratglial cells. Life Sci 1997;61:2323–2333.PubMedCrossRefGoogle Scholar
  427. 426.
    Collins JS, Perry RT, Watson B Jr, et al. Association of a haplotype for tumor necrosis factor in siblings with late-onset Alzheimer disease: the NIMH Alzheimer Disease Genetics Initiative. Am J Med Genet 2000;96:823–830.PubMedCrossRefGoogle Scholar
  428. 427.
    Du Y, Dodel RC, Eastwood BJ, et al. Association of an interleukin 1 alpha polymorphism with Alzheimer’s disease. Neurology 2000;55:480–483.PubMedGoogle Scholar
  429. 428.
    Grimaldi LM, Casadei VM, Ferri C, et al. Association of early-onset Alzheimer’s disease with an interleukin-1 alpha gene polymorphism. Ann Neurol 2000;47:361–365.PubMedCrossRefGoogle Scholar
  430. 429.
    Nicoll JA, Mrak RE, Graham DI, et al. Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann Neurol 2000;47:365–368.PubMedCrossRefGoogle Scholar
  431. 430.
    Papassotiropoulos A, Bagli M, Jessen F, et al. A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease. Ann Neurol 1999;45:666–668.PubMedCrossRefGoogle Scholar
  432. 431.
    Rebeck GW. Confirmation of the genetic association of interleukin-1 A with early onset sporadic Alzheimer’s disease. Neurosci Lett 2000;293:75–77.PubMedCrossRefGoogle Scholar
  433. 432.
    McCusker SM, Curran MD, Dynan KB, et al. Association between polymorphism in regulatory region of gene encoding tumour necrosis factor alpha and risk of Alzheimer’s disease and vascular dementia: a case-control study. Lancet 2001;357:436–439.PubMedCrossRefGoogle Scholar
  434. 433.
    Hedley R, Hallmayer J, Groth DM, Brooks WS, Gandy SE, Martins RN. Association of interleukin-1 polymorphisms with Alzheimer’s disease in Australia. Ann Neurol 2002;51:795–797.PubMedCrossRefGoogle Scholar
  435. 434.
    Sheng JG, Mrak RE, Griffin WS. Microglial interleukin-1 alpha expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution. Neuropathol Appl Neurobiol 1995;21:290–301.PubMedGoogle Scholar
  436. 435.
    Sheng JG, Zhou XQ, Mrak RE, Griffin WS. Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease. J Neuropathol Exp Neurol 1998;57:714–717.PubMedGoogle Scholar
  437. 436.
    Goldgaber D, Harris HW, Hla T, et al. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 1989;86:7606–7610.PubMedCrossRefGoogle Scholar
  438. 437.
    Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res 1992;16:128–134.PubMedCrossRefGoogle Scholar
  439. 438.
    Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 1993; 150:2659–2667.PubMedGoogle Scholar
  440. 439.
    Sebire G, Emilie D, Wallon C, et al. In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J Immunol 1993;150:1517–1523.PubMedGoogle Scholar
  441. 440.
    Das S, Potter H. Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 1995; 14:447–456.PubMedCrossRefGoogle Scholar
  442. 441.
    Marshak DR. S100 beta as a neurotrophic factor. Prog Brain Res 1990;86:169–181.PubMedGoogle Scholar
  443. 442.
    Barger SW, Van Eldik LJ. S100 beta stimulates calcium fluxes in glial and neuronal cells. J Biol Chem 1992; 267:9689–9694.PubMedGoogle Scholar
  444. 443.
    Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 1992;22:396–402.PubMedCrossRefGoogle Scholar
  445. 444.
    Shirodaria S, Smith J, McKay IJ, Kennett CN, Hughes FJ. Polymorphisms in the IL-1 A gene are correlated with levels of interleukin-1 alpha protein in gingival crevicular fluid of teeth with severe periodontal disease. J Dent Res 2000;79:1864–1869.PubMedCrossRefGoogle Scholar
  446. 445.
    McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson’s disease. Adv Neurol 2001;86:83–89.PubMedGoogle Scholar
  447. 446.
    Jenner P, Olanow CW. Understanding cell death in Parkinson’s disease. Ann Neurol 1998;44:S72–84.PubMedGoogle Scholar
  448. 447.
    Kosel S, Grasbon-Frodl EM, Mautsch U, et al. Novel mutations of mitochondrial complex I in pathologically proven Parkinson disease. Neurogenetics 1998;1:197–204.PubMedCrossRefGoogle Scholar
  449. 448.
    Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 1992;115(Pt 2):333–342.PubMedCrossRefGoogle Scholar
  450. 449.
    Ebadi M, Govitrapong P, Sharma S, et al. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 2001;10:224–253.PubMedCrossRefGoogle Scholar
  451. 450.
    McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988;38:1285–1291.PubMedGoogle Scholar
  452. 451.
    Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979–980.PubMedCrossRefGoogle Scholar
  453. 452.
    Bronstein DM, Perez-Otano I, Sun V, et al. Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res 1995;704:112–116.PubMedCrossRefGoogle Scholar
  454. 453.
    McNaught KS, Jenner P. Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium-and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J Neurochem 1999;73:2469–2476.PubMedCrossRefGoogle Scholar
  455. 454.
    Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000;7:429–447.PubMedCrossRefGoogle Scholar
  456. 455.
    Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002;81:1285–1297.PubMedCrossRefGoogle Scholar
  457. 456.
    Castano A, Herrera AJ, Cano J, Machado A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 2002;81:150–157.PubMedCrossRefGoogle Scholar
  458. 457.
    Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 2000:277–290.Google Scholar
  459. 458.
    Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiol Exp (Wars) 1999;59:1–8.Google Scholar
  460. 459.
    Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 2003;53(Suppl 3):S49–58; discussion S58–60.PubMedCrossRefGoogle Scholar
  461. 460.
    Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999;19:3440–3447.PubMedGoogle Scholar
  462. 461.
    Qureshi GA, Baig S, Bednar I, Sodersten P, Forsberg G, Siden A. Increased cerebrospinal fluid concentration of nitrite in Parkinson’s disease. Neuroreport 1995;6:1642–1644.PubMedCrossRefGoogle Scholar
  463. 462.
    Rousselet E, Callebert J, Parain K, et al. Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol 2002;177:183–192.PubMedCrossRefGoogle Scholar
  464. 463.
    Hartmann A, Troadec JD, Hunot S, et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001;21:2247–2255.PubMedGoogle Scholar
  465. 464.
    Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome prolif-erator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 2002;82:615–624.PubMedCrossRefGoogle Scholar
  466. 465.
    Du Y, Ma Z, Lin S, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A 2001;98:14,669–14,674.PubMedCrossRefGoogle Scholar
  467. 466.
    He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 2001;909:187–193.PubMedCrossRefGoogle Scholar
  468. 467.
    Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002;22:1763–1771.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Tammy Kielian
    • 1
  • Paul D. Drew
    • 1
  1. 1.Department of Neurobiology and Developmental SciencesUniversity of Arkansas for Medical SciencesLittle Rock

Personalised recommendations