Skip to main content

Experience With Minimally Invasive Nucleus Replacement

  • Chapter
Arthroscopic and Endoscopic Spinal Surgery

Abstract

More than 5 million Americans suffer from chronic low-back pain, making it the leading cause of lost workdays in the United States and one of the most expensive health care issues today (1). Although the causes of low-back pain remain unclear, it is believed that approx 75% of cases are associated with degenerative disc disease (1). It is generally believed that dehydration of the degenerated nucleus pulposus (NP) leads to a reduction in hydrostatic pressure on the internal surface of the annulus, resulting in an abnormal stress state in the tissue and, consequently, a breakdown of the annular tissue seen macroscopically as fissures and tears. This manifests as chronic and debilitating pain owing to tissue impingement on nerve roots and presents as a herniated or ruptured disc. Current treatment options, such as discectomy and fusion, are fairly successful in reducing pain but do not restore normal biomechanical function to the disc. The likely out come of these procedures is further degeneration of either the initially affected disc (for discectomy) or adjacent segments (for fusion). Degenerative disease of the spine is one of if not the leading musculoskeletal disorder confronting our health system. The spine provides the major structural element of the neck and trunk while protecting the spinal cord. Spinal degeneration is an irreversible process leading to loss of mechanical integrity with the potential for neurological compromise. Clinical manifestations of degenerative spine disease are variable and graded and are categorized into a variety of diseases. These diseases include mechanical cervical and lumbar pain such as internal disc disruption, acute spinal instability, herniated NP, degenerative spondylolisthesis, degenerative scoliosis, and spinal stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MedPro, Month, 1998;VIII(1).

    Google Scholar 

    Google Scholar 

  2. Miller JAA, Schmatz C, Schultz, AB. Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 1988;13(2):173.

    Article  PubMed  CAS  Google Scholar 

  3. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. J Bone Joint Surg 1990;72A:403–408.

    Google Scholar 

  4. Wiesel SA, Tsournas N, Feffer HL, Citrin CM, Patronas NJ. Incidence of positive CAT scans in an asymptomatic group of patients. Spine 1984;9:549–551.

    Article  PubMed  CAS  Google Scholar 

  5. Deyo RA, Tsui-Wu YJ. Descriptive epidemiology of low back pain and its related medical care in the United States. Spine 1987;12:264–268.

    Article  PubMed  CAS  Google Scholar 

  6. Frymoyer JW. Back pain and sciatica. N Eng J Med 1988;318:291–300.

    Article  CAS  Google Scholar 

  7. Snook SH, Jensen RC. Cost, in Occupational Low Back Pain, (Pope MH, Frymoyer JW, Andersson C et al.), Praeger, New York 1984, pp. 115–121.

    Google Scholar 

  8. Biering-Sorensen F. Physical measurements as risk indicators for low back trouble over a one-year period. Spine 1984;9:106–119.

    Article  PubMed  CAS  Google Scholar 

  9. Holbrook TL, Grazier KL, Kelsey JL, Stauffer RN (eds).The Frequency of Occurence, Impact, and Cost of Musculoskeletal Conditions in the United States American Academy of Orthopaedic Surgeons, Chicago, 1984.

    Google Scholar 

  10. Bush K, Cowan N, Katz DE, Gishen P. The natural history of sciatica associated with disc pathology. Spine 1992;17:1205–1212.

    Article  PubMed  CAS  Google Scholar 

  11. Ahn S-H. Comparison of clinical outcomes and natural morphologic changes between sequestered and large central extruded disc herniations. Yonsei Med 2002;43(3):283–290.

    Google Scholar 

  12. Kambin P, Savitz MH. Arthroscopic microdicectomy: an alternative to open disc surgery. M Sinai J Med 2000;67(4):283–287.

    CAS  Google Scholar 

  13. Weber H. Lumbar disc herniation: a controlled prospective study with ten years of observation. Spine 1993;8:131–140.

    Article  Google Scholar 

  14. Lee C, Langrana NA, Parsons JR, Zimmerman MC Development of a prosthetic intervertebral disc. Spine 1991;16(6 Suppl):S253–S255.

    Article  PubMed  CAS  Google Scholar 

  15. Leong JC, Chun SY, Grange WJ, Fang D. Long-term results of lumbar intervertebral disc prolapse. Spine 1983:793–799.

    Google Scholar 

  16. Lehmann TR, Spratt KF, Tozzi JE, et al. Long-term follow-up of lower lumbar fusion patients. Spine 1987;12:97–104.

    Article  PubMed  CAS  Google Scholar 

  17. Salib RM, Pettine KA. Intervertebral disk arthroplasty. 1993: US Patent 5258031.

    Google Scholar 

  18. Patil A. Artificial intervertebral disc. 1982: US Patent 4309777.

    Google Scholar 

  19. Baumgartner W. Intervertebral disk prosthesis. 1994: US patent 5320644.

    Google Scholar 

  20. Hedman TP, Koastiuk JP, Fernie GR, Hellier WG Artificial spinal disc. 1988: US Patent 529548.

    Google Scholar 

  21. Monson GL. Synthetic intervertebral disc prosthesis. 1969: US.

    Google Scholar 

  22. Fischer H. Support chamber for holding two adjacent vertebrae. 1987: West Germany patent.

    Google Scholar 

  23. Edeland HG. Some additional suggestions for an intervertebral disc prosthesis. J Biomed Mater Res: Appl Biomater 1989;23:189–194.

    Google Scholar 

  24. Lee CK, et al. Functional and biocompatible intervertebral disc spacer. 1990: US Patent.

    Google Scholar 

  25. Parsons JR, et al. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness. 1992: US Patent.

    Google Scholar 

  26. Steffon AD. Artificial disc. 1991: US Patent.

    Google Scholar 

  27. Enker P, Steffee A, McMillin C, Keppler L, Biscup R, Miller S. Artificial disc replacement. Spine 1993;18:1067–1070.

    Article  Google Scholar 

  28. McMillin CR, Steffee AD. Artificial spinal disc with up to five years follow-up, in Transactions of the 20th Annual Society for Biomaterials, 1994, p. 89.

    Google Scholar 

  29. Steffee AD. The Steffee artificial disc, in Clinical Efficacy and Outcome in the Diagnosis and Treatment of Low Back Pain (Weinstein JN, ed.) Raven, New York: 1992, pp. 245–257.

    Google Scholar 

  30. Buttner-Janz K, et al. Intervertebral disc endoprosthesis. 1988: US Patent.

    Google Scholar 

  31. Buttner-Janz K, Schellmack R, Zippel H. Biomechanics of the SB Charite lumbar intervertebral disc endoprosthesis. Int Orthop 1989;13:173–176.

    Article  PubMed  CAS  Google Scholar 

  32. Zipple H. Charite modular: concept, experience, and results, in The Artificial Disc, (Brock M, Myer HM, Weigel K, ed.) Springer, Berlin: 1991; pp. 69–77.

    Google Scholar 

  33. Griffith SL, Shelukov AP, Buttner-Janz K. A multicenter retrospective study of the clinical results of the LINK SB Charite intervertebral prosthesis. Spine 1994;19:842–1849.

    Article  Google Scholar 

  34. Nachemson A. Some mechanical properties of the lumbar intervertebral disc. Bull Hosp Joint Dis 1962;23:130–132.

    PubMed  CAS  Google Scholar 

  35. Schneider PG, Oven R. Intervertebral disc replacement: experimental studies, clinical con sequences. Z Othop 1974;112:791–792.

    CAS  Google Scholar 

  36. Schneider PG, Oven R. Plastic surgery on intervertebral disc. Part 1: Intervertebral disc replacement in the lumbar region with silicone rubber: theoretical and experimental studies. Z Othop 1974;112:1078–1086.

    CAS  Google Scholar 

  37. Camille RG, Sailani R. Livaste, Experimental study of lumar disc replacement. Rev Chir Othop Appar Mat 1978;64(Suppl III):106–107.

    Google Scholar 

  38. Fassie B, Ginestle JF. Disc prosthesis made of silicone: experimental study and first clinical cases. Nouvelle Presse Med, 1978;21:207.

    Google Scholar 

  39. Bost M. Mechanical loading of the vertebral body cover plate: measurement of the direct stress distribution at the interface between intervertebral disc and vertebral body, in Die Wirbelsuule in Forschung, Praxis, Junulanns H, ed. Hippokrates, Stuttgart, 1982.

    Google Scholar 

  40. Ashida H, Yolurnvaniva K, Okumulu A. An attempt to develop artificial nuclei pulposi in lumbar intervertebral discs. I. Jpn Orthop Assoc 1990;64:S947.

    Google Scholar 

  41. Chan M, Chowchuen P, Workman T, Eilenberg S, Schweitzer M, Resnick D. Silicone synovitis: MR imaging in five patients. Skeletal Radiol 1998;27(1):13–17.

    Article  PubMed  CAS  Google Scholar 

  42. Gan JC, Ducheyne P, Vresilovic E, Shapiro IM. Bioactive glass serves as a substrates as a substrate for maintenance of phenotype of nucleus pulposus cells of the intervertebral disc. J Biomed Mater Res 2000;51(4):596–604.

    Article  PubMed  CAS  Google Scholar 

  43. Bertagnoli R, Schonmayr R. Surgical and clinical results with the PDN prosthetic disc nucleus device. Eur Spine J 2002;11(Suppl 2):S143–S148.

    PubMed  Google Scholar 

  44. Bao QB. Higham PA. Hydrogel intervertebral disc nucleus. 1991: US Patent.

    Google Scholar 

  45. Bao QB, Higham PA. Hydrogel intervertebral disc nucleus. 1993: US. Patent

    Google Scholar 

  46. Hara Y, Matsuura T, Taketani F. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Nippon Ganka Gakkai Zasshi 1998;102(4):247–255.

    PubMed  CAS  Google Scholar 

  47. Peppas NA, Merrill EW. Development of semicrystalline PVA networks for biomedical applications. J Biomed Mater Res. 1977;11:423–434.

    Article  PubMed  CAS  Google Scholar 

  48. Frei H, Oxland T, Rathonyi G. The effect of nucleus prosthetic device on a lumbar spine mechanics, in Transactions of the 47th Annual Meeting of the Orthopaedic Research Society, 2001.

    Google Scholar 

  49. Dooris A, Hudgins G, Goel VK. Biomechanics of a multisegmental lumbar spine with a prosthetic nucleus. Spine 2002;2:3S–44S.

    Google Scholar 

  50. Bain AC, Sherman T, Norton BK, Hutton WC. A comparison of the viscoelastic behavior of the lumbar intervertebral disc before and after the implantation of a prosthetic disc nucleus. BED 2000;48:203–204.

    Google Scholar 

  51. Eysel P, Rompe JD, Schoemayr R. Biomechanical behavior of a prosthetic lumbar nucleus. Acta Neurochir (Wien) 1999;141:1083–1087.

    Article  CAS  Google Scholar 

  52. Meakin JR, Reid JE, Hukins DW. Replacing the nucleus pulposus of the intervertebral disc. Clin Biomech 2001;16:560–565.

    Article  CAS  Google Scholar 

  53. Ledet E, Dirisio D, Tymeson M. The Raymedica PDN prosthetic disc nucleus device in the baboon lumbar spine. Spine 2002;2:47S–128S.

    Google Scholar 

  54. Thomas J, Gomes K, Lowman A, Marcolongo M. Novel associated hydrogels for nucleus pulposus replacement. J Appl Biomater, in press.

    Google Scholar 

  55. Thomas J, Lowman A, Marcolongo M. Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res 2003;67A:1329–1337.

    Article  CAS  Google Scholar 

  56. Liu X, Marcolongo M, Lowman A. Short term in vitro response of associating hydrogels. Polymers, submitted.

    Google Scholar 

  57. Risbud MV, Bhat SV. Properties of polyvinyl pyrrolidone / beta-chitosan hydrogel membranes and their biocompatibility evaluation by haemorheological method. J Mater Sci: Mater Med 2001;12:75–79.

    Article  CAS  Google Scholar 

  58. Lin-Vien D, Colthup NB, Fateley WG, Grasselli J. Alcohols and phenols, in The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic, San Diego: 1991.

    Google Scholar 

  59. Hu Y, et al. In Macromolecular Chemistry and Physics, 200. pp. 705–714.

    Google Scholar 

  60. American society for Testing and Materials. Standard Test Method for Tensile Properties of Thin Plastic Sheeting (D882-95a), ASTM in Annual Book of ASTM Standards, New York, 1995: pp. 182–187.

    Google Scholar 

  61. Melrose J, et al. R D A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosis. J Orthop Res: Off Publ Orthop Res Soc, 1992. 10(5): p. 665–676.

    CAS  Google Scholar 

  62. Bagga CS, Williams P, Higham PA, Bao QB. Development of fatigue test model for a spinal nucleus prosthesis with preliminary results for a hydrogel spinal prosthetic nucleus. BED 1997;35: p. 441–442.

    Google Scholar 

  63. Marcolongo M, Ducheyne P, Lacourse W. Surface reaction layer formation in vitro on a bioactive glass fiber/polymeric composite. J Biomed Mater Res, 1997;37:440–448.

    Article  PubMed  CAS  Google Scholar 

  64. Joshi A, Karduna A, Marcolongo M. A non-linear finite element model of the lumbar functional spinal unit to determine the ideal material properties of a hydrogel nucleus implant, in 29th Annual Proceedings of the Society for Biomaterials, 2003; p. 672.

    Google Scholar 

  65. Glazer PA, et al. In vivo evaluation of calcium sulfate as a graft substitute for lumbar spinal fusion. Spine 2001;1:395–401.

    Article  CAS  Google Scholar 

  66. Goel VK, Weinstein JN. Biomechanics of intact ligamentous spine, in Biomechanics of the Spine: Clinical and Surgical Perspective, CRC Press, Boca Raton FL: 1990; p. 116.

    Google Scholar 

  67. Suh JK, et al. Viscoelastic behavior of human cervical FSU in torsion, in NASS 11th Annual Meeting, 1996.

    Google Scholar 

  68. Langrana NA, Edwards T, Sharma M. Biomechanical Analyses of Loads on the Lumbar Spine. In The Lumbar Spine (Wiesel SW, Weinstein J, Herkowitz H, Dvorak J, Bell G, eds) W. B. Saunders, Philadelphia: 1996; pp. 163–171.

    Google Scholar 

  69. White AA, Panjabi MM. Clinical Biomechanics of the Spine, 2nd ed. Lippincott, Philadelphia, 1990.

    Google Scholar 

  70. Frankel V, Nordin M. Basic Biomechanics of the Skeletal System. Lea & Febinger, Philadelphia: 1980.

    Google Scholar 

  71. Goel A. combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 1993;18(11):1531–1541.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Marcolongo, M., Kambin, P., Lowman, A., Karduna, A. (2005). Experience With Minimally Invasive Nucleus Replacement. In: Kambin, P. (eds) Arthroscopic and Endoscopic Spinal Surgery. Humana Press. https://doi.org/10.1385/1-59259-904-4:295

Download citation

  • DOI: https://doi.org/10.1385/1-59259-904-4:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-522-4

  • Online ISBN: 978-1-59259-904-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics