Skip to main content

The Manipulation of Mesenchymal Stem Cells for Bone Repair

  • Chapter
  • 511 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Bone homeostasis is a dynamic process consisting of mutually dependent interactions between cells, substrates, and molecular signals that are, in turn, influenced by hormones, mitogens and differentiation factors. In general, when this environment is perturbed as a consequence of disease, including osteoporosis or injury, cell and molecular signals initiate a cascade of genetically programmed repair processes. Depending on the molecular signals and responding cells, the response to injury typically promotes regeneration to a form and function virtually indistinguishable from the preinjured state. However, if the injury becomes too extensive (i.e., becomes of a critical size), these regenerative processes are insufficient for meaningful repair. In these cases, a variety of therapeutic interventions including autografting, grafting from banked bone, or grafts of supplemental bone graft substitute materials are used. For numerous reasons, each of these therapies is associated with an unacceptably high failure rate (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg 1991; 73-A:1123–1142.

    Google Scholar 

  2. Reddi AH. Initiation of fracture repair by bone morphogenetic proteins. Clin Orthop Rel Res 1998; 355S:S66–S72.

    Article  Google Scholar 

  3. Burgess EA, Hollinger JO. Options for engineering bone. In: Patrick CW Jr, Mikos AG, McIntire LV, eds. Frontiers in Tissue Engineering. New York, Pergamon, 1998, pp. 383–399.

    Google Scholar 

  4. Hollinger JO, Mayer MH. Bone regeneration: concepts and update. In: McCarthy J, ed. Distraction of the Craniofacial Skeleton. New York, Springer-Verlag, 2001.

    Google Scholar 

  5. Bonadio J, Goldstein SA, Levy RJ. Gene therapy for tissue repair and regeneration. Adv Drug Deliv Rev 1998; 33:53–69.

    Article  PubMed  CAS  Google Scholar 

  6. Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene therapy in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 1999;5:753–759.

    Article  PubMed  CAS  Google Scholar 

  7. Winn SR, Hu Y, Sfeir C, Hollinger JO. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev 2000;42:121–138.

    Article  PubMed  CAS  Google Scholar 

  8. Wang J-S, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC-J. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thor Cardiovasc Surg 2000;120: 999–1006.

    Article  CAS  Google Scholar 

  9. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;1015: 93–98.

    Article  Google Scholar 

  10. Tomita S, Mickle DAG, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123: 1132–1140.

    Article  PubMed  Google Scholar 

  11. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thoracic Surg 2002;73: 1919–1926.

    Article  Google Scholar 

  12. Kotton DN, Ma BY, Cardoso WV, et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Dev Dis 2001;128:5181–5188.

    CAS  Google Scholar 

  13. Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003;100:8407–8411.

    Article  PubMed  CAS  Google Scholar 

  14. Jin HK, Carter JE, Huntley GW, Schuchman EH. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest 2002;109:1183–1191.

    Article  PubMed  CAS  Google Scholar 

  15. Pereira RF, Oh MD, Laptev AV, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Genetics 1998;95:1142–1147.

    CAS  Google Scholar 

  16. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309–313.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of parkinson disease. Human Gene Ther 1999;10:2539–2549.

    Article  CAS  Google Scholar 

  18. Li Y, Chen J, Want L, Zhang LJ, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 2001; 316:67–70.

    Article  PubMed  CAS  Google Scholar 

  19. Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuro Rep 2000;11:3001–3005.

    CAS  Google Scholar 

  20. Hofstetter CP, Schwarz E, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002;99:2199–2204.

    Article  PubMed  CAS  Google Scholar 

  21. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the Rat Spinal Cord by Transplantation of Identified Bone Marrow Stromal Cells. Journal of Neuroscience 2002; 22:6623–6630.

    PubMed  CAS  Google Scholar 

  22. Wu S, Suzuki Y, Ejiri Y, et al. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 2003;72:343–351.

    Article  PubMed  CAS  Google Scholar 

  23. Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 2002;59:514–523.

    PubMed  CAS  Google Scholar 

  24. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogenic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 2002; 30: 215–222.

    Article  PubMed  CAS  Google Scholar 

  25. Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227–1231.

    Article  PubMed  CAS  Google Scholar 

  26. Horwitz EM, Gordon PL, Koo WWK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002;99:8932–8937.

    Article  PubMed  CAS  Google Scholar 

  27. Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000;18:307–316.

    PubMed  CAS  Google Scholar 

  28. Kleinschmidt J, Hollinger JO. Animal models in bone research. In: Reddi MHaH, ed. Bone Grafts and Bone Substitutes. Philadelphia, W.B. Saunders, 1992, pp. 133–147.

    Google Scholar 

  29. Pan WT, Einhorn TA. The biochemistry of fracture healing. Curr Orthop 1992;6:207–213.

    Article  Google Scholar 

  30. Cornell CN. Current assessment of fracture healing. In: Brighton CT, Freidlaender GE, Lane JM, eds. Bone Formation and Repair. Rosemont, IL, AAOS, 1994, pp. 499–504.

    Google Scholar 

  31. Einhorn TA. Enhancement of fracture healing by molecular or physical means: an overview. In: Brighton CT, Freidlaender GE, Lane JM, eds. Bone Formation and Repair. Rosemont, IL, AAOS, 1994, pp. 223–238.

    Google Scholar 

  32. Schenk RK, Hunziker EB. Histologic and ultrastructural features of fracture healing. In: Brighton CT, Freidlander GE, Lane JM, eds. Bone Formation and Repair. Rosemont, IL, AAOS, 1994, pp. 117–146.

    Google Scholar 

  33. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg 1995;77A:940–956.

    Google Scholar 

  34. Hollinger JO, Wong MEK. The integrated processes of hard tissue regeneration with special emphasis on fracture healing. Oral Surg Oral Med Oral Pathol 1996;82:594–606.

    CAS  Google Scholar 

  35. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Min Res 1999;14:1805–1815.

    Article  CAS  Google Scholar 

  36. Clark RAF. The Molecular and Cellular Biology of Wound Repair. New York, Plenum Press, 1996, pp. 1–611.

    Google Scholar 

  37. Hollinger JO, Buck DC, Bruder S. Biology of bone healing: its impact on clinical therapy. In: S. Lynch RG, R. Marx, ed. Tissue Engineering: Applications in Maxillofacial Surgery and Periodontics. San Diego, Quintessence, 1998, pp. 17–53.

    Google Scholar 

  38. Fitzpatrick LA, Bilezkian JP. Actions of parathyroid hormone. In: Bilezkian JP, Raisz LG, Rodan GA, eds. Principles of Bone Biology. New York, Academic Press, 1996, pp. 339–346.

    Google Scholar 

  39. Wang EA, Isreal DL, Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 1993;9:57–71.

    PubMed  CAS  Google Scholar 

  40. Rosen V, Nove J, Song JJ, Thies S, Cox K, Wozney JM. Responsiveness of clonal limb bud cell lines to bone morphogenetic protein-2 reveals a sequential relationship between cartilage and bone cell phenotypes. J Bone Min Res 1994;9:1759–1768.

    Article  CAS  Google Scholar 

  41. Rodan G. Control of bone formation and resorption: biological and clinical perspective. J Cell Biochem 1998;30:S55–S61.

    Article  Google Scholar 

  42. Ducy P, Karsenty G. Genetic control of cell differentiation in the skeleton. Curr Opinion Cell Biol 1998;10:614–619.

    Article  PubMed  CAS  Google Scholar 

  43. Ng W, Romas E, Donnan L, Findlay D. Bone Biology. Bailliere’s Clin Endocrin Metab 1997;11: 1–22.

    Article  CAS  Google Scholar 

  44. Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G. Expression of human morphogenetic proteins-2 or −4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 1993;12:871–880.

    PubMed  CAS  Google Scholar 

  45. Reddi AH. Bone and cartilage differentiation. Curr Opin Gen De. 1994;4:737.

    Article  CAS  Google Scholar 

  46. Yamaguchi A. Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by transforming growth factor-beta superfamily. Cell Biol 1995;6:165–173.

    CAS  Google Scholar 

  47. Asahina I, Sampath TK, Hauschka PV. Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation. Exp Cell Res 1996;222:38–47.

    Article  PubMed  CAS  Google Scholar 

  48. Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 1996;122:2079–2088.

    PubMed  CAS  Google Scholar 

  49. Dernyck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-β responses. Cell 1998; 95:737–740.

    Article  Google Scholar 

  50. Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath TK, Dijke PT. Localization of Smads, the TGF-β family of intracellular signaling components during endochondral ossification. J Bone Min Res 1999;14: 1145–1152.

    Article  CAS  Google Scholar 

  51. Schmitt JM, Hwang K, Winn SR, Hollinger JO. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Re. 1999;17:269–278.

    Article  CAS  Google Scholar 

  52. Mayer MH. Clinical perspectives on bone grafting: avoiding the complications of developmental malformations. In: Seyfer A, Hollinger J, eds. Bone Repair and Regeneration, vol. 21. Philadelphia, W.B. Saunders, 1994, pp. 365–376.

    Google Scholar 

  53. Mayer MH, Hollinger JO, Ron E, Wozney J. Repair of alveolar clefts in dogs with recombinant bone morphogenetic protein and poly(alpha-hydroxy acid). Plastic Reconstr Surg 1996;98: 247–259.

    Article  CAS  Google Scholar 

  54. Urist MR. Fundamental and Clinical Bone Physiology. Philadelphia, J.B. Lippincott, 1980.

    Google Scholar 

  55. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Rel Res 1987; 225:7–16.

    Google Scholar 

  56. Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM. Biology of cancellous bone grafts. Orthop Clin North Am 1987;18:179–183.

    PubMed  CAS  Google Scholar 

  57. Manson P. Facial bone healing and bone grafts. A review of clinical physiology. In: Seyfer AE, Hollinger JO, eds. Bone Repair and Regeneration, vol. 21. Philadelphia, W.B. Saunders, 1994, pp. 331–348.

    Google Scholar 

  58. Tomford W. Current concepts review. Transmission of disease through transplantation of musculoskeletal allografts. J. Bone Joint Surg 1995;77-A:1742–1754.

    Google Scholar 

  59. Stevenson S. Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Rel Res 1998;355S:S239–S246.

    Article  Google Scholar 

  60. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–926.

    Article  PubMed  CAS  Google Scholar 

  61. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.

    Article  PubMed  CAS  Google Scholar 

  62. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283:534–537.

    Article  PubMed  CAS  Google Scholar 

  63. Azizi S, Stokes D, Augelli B, DiGirolamo D, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998; 95:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  64. Reyes M, Verfaillie CM. Turning marrow into brain: generation of glial and neuronal cells from adult bone marrow mesenchymal stem cells. Blood 1999;94:377a.

    Google Scholar 

  65. Woodbury D, Schwarz E, Prockop DJ, Black IB. Adult cell and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364–370.

    Article  PubMed  CAS  Google Scholar 

  66. Mezey K, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003;1000:1364–1369.

    Article  CAS  Google Scholar 

  67. Lagasse E, Connors H, Al-Dhalimy M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000;6:1229–1234.

    Article  PubMed  CAS  Google Scholar 

  68. Austin TW, Lagasse E. Hepatic regeneration from hematopoietic stem cells. Mech Dev 2003;120: 131–135.

    Article  PubMed  CAS  Google Scholar 

  69. Ferrari G, Ciusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  70. Orlic D, Kajstura J, Chimenti S. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701–705.

    Article  PubMed  CAS  Google Scholar 

  71. Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999;96:14482–14486.

    Article  PubMed  CAS  Google Scholar 

  72. Hematti P, Sloand E, Carvallo C. Absence of donor-derived keratinocyte stem cells in skin tissues cultured from patients after mobilized peripheral blood hematopoietic stem cell transplantation. Exp Hematol 2002;30: 943–949.

    Article  PubMed  Google Scholar 

  73. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003;196:245–250.

    Article  PubMed  CAS  Google Scholar 

  74. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259.

    Article  PubMed  CAS  Google Scholar 

  75. Caplan AI. The mesengenic process. Clin Plastic Surg 1994;21:429–435.

    CAS  Google Scholar 

  76. Friedenstein AJ, Petrakova KV, Kurolesova AL, Frolova GP. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6:230–247.

    Article  PubMed  CAS  Google Scholar 

  77. Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974;2:82–92.

    Google Scholar 

  78. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641–650.

    Article  PubMed  CAS  Google Scholar 

  79. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone 1992;13:81–88.

    Article  PubMed  CAS  Google Scholar 

  80. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro. J Cell Physiol 1996;166:585–592.

    Article  PubMed  CAS  Google Scholar 

  81. Majumdar MK, Thiede MA, Mosca JD, Moorman MA, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998;176:57–66.

    Article  PubMed  CAS  Google Scholar 

  82. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28:875–884.

    Article  PubMed  CAS  Google Scholar 

  83. Devine SM. Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl 2002; 38:73–79.

    Article  PubMed  CAS  Google Scholar 

  84. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 2001;938:231–233.

    Article  PubMed  CAS  Google Scholar 

  85. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615–2625.

    Article  PubMed  CAS  Google Scholar 

  86. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.

    Article  PubMed  CAS  Google Scholar 

  87. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol 2002;3:314–317.

    Article  PubMed  CAS  Google Scholar 

  88. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295–312.

    Article  PubMed  CAS  Google Scholar 

  89. Dennis JE, Caplan AI. Differential potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. J Cell Physiol 1996;167:523–538.

    Article  PubMed  CAS  Google Scholar 

  90. Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 1999;14:1–10.

    Article  Google Scholar 

  91. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Differentiation of human mesenchymal stem cells by transforming growth factor beta superfamily: expression of osteoblast phenotype by BMP-2 and BMP-4. J. Bone Miner Res 2000;14:20.

    Google Scholar 

  92. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994;56:283–294.

    Article  PubMed  CAS  Google Scholar 

  93. Lindholm TS, Gao TJ. Functional carriers for bone morphogenetic proteins. Ann Chir Gynaecol 1993; 82:3–12.

    Google Scholar 

  94. Hollinger JO, Brekke J, Gruskin E, Lee D. The role of bone substitutes. Clin Orthop Rel Res 1996; 324:55–65.

    Article  Google Scholar 

  95. Winn SR, Uludag H, Hollinger JO. Sustained release emphasizing recombinant human bone morphogenetic protein-2. Adv Drug Deliv Rev 1998;31:303–318.

    Article  PubMed  CAS  Google Scholar 

  96. Urist MR. Bone: formation by autoinduction. Science 1965;150:893–899.

    Article  PubMed  CAS  Google Scholar 

  97. Urist MR, Silverman MF, Buring K, Dubuc FL, Rosenburg JM. The bone induction principle. Clin Orthop 1967;53:243.

    PubMed  CAS  Google Scholar 

  98. Wozney J. The bone morphogenetic family: multifunctional cellular regulators in the embryo and adult. Eur J Oral Sci 1998;106:160–166.

    PubMed  CAS  Google Scholar 

  99. Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF beta, and BMP. Bone 1996;19:1–12.

    Article  Google Scholar 

  100. Urist MR. Bone morphogenetic proteins in biology and medicine. In: Lindholm TS, ed. Bone Morphogenetic Proteins: Biology, Biochemistry, and Reconstructive Surgery. New York, Academic Press, 1996, pp. 7–30.

    Google Scholar 

  101. Urist MR. Bone morphogenetic protein: The molecularization of the skeletal system. J Bone Min Res 1997; 12:343–346.

    Article  CAS  Google Scholar 

  102. Viljanen VV, Lindholm TS. The search for new members of the BMP/TGFbeta family. Genbank/genpept accession numbers and selected references. In: Lindholm TS, ed. Skeletal Reconstruction and Bioimplantation: Demineralized Bone Matrix, Non-Collagenous, Native, and Recombinant Bone Morphogenetic Proteins. New York, Academic Press, 1997, pp. 241–248.

    Google Scholar 

  103. Riedel GE, Valentin-Opran A. Preliminary report: new technology. Clinical evaluation of rhBMP-2/ACS in orthopedic trauma: a progress report. Orthopedics 1999;22:663–665.

    PubMed  CAS  Google Scholar 

  104. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Develop 1994;8:133–146.

    Article  PubMed  CAS  Google Scholar 

  105. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee S. Limb alterations in brachypodism mice due to mutations in a new member of the TGF-beta superfamily. Nature 1994;368:639–643.

    Article  PubMed  CAS  Google Scholar 

  106. Tickle C. On making a skeleton. Nature 1994;368:587–588.

    Article  PubMed  CAS  Google Scholar 

  107. Kingsley DM. Genes that define the number and shape of bones in the mouse skeleton, Portland Bone Symposium, vol. 4. Portland, OR, 1995.

    Google Scholar 

  108. Song JJ, Celeste A, Kong FM, Jirtle RL, Rosen V, Thies RS. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology 1995;136:4293–4297.

    Article  PubMed  CAS  Google Scholar 

  109. Tomizawa K, Matsui H, Kondo E, et al. Developmental alteration and neuron-specific expression of bone morphogenetic protein-6 (BMP-6) mRNA in rodent brain. Mol Brain Res 1995;28:122–128.

    Article  PubMed  CAS  Google Scholar 

  110. Vukicevic S, Helder MN, Luyten FP. The developing human lung and kidney are major sites of synthesis of bone morphogenetic protein-3. J Histochem Cytochem 1994;42:869–875.

    PubMed  CAS  Google Scholar 

  111. Lindholm TS. Bone Morphogenetic Proteins: Biology, Biochemistry and Reconstructive Surgery. San Diego, Academic Press, Inc, 1996.

    Google Scholar 

  112. Vukicevic S, Kopp J, Luyton FP, Sampath K. Induction of nephrogenic mesenchyme by osteogenic protein 1 (bone morphogenetic protein 7). Proc Natl Acad Sci USA 1996;93: 9021–9026.

    Article  PubMed  CAS  Google Scholar 

  113. Winn SR, Uludag H, Hollinger JO. Carrier systems for bone morphogenetic proteins. Clin Orthop Rel Res 1999;367:95–106.

    Article  Google Scholar 

  114. Marden LJ, Hollinger JO, Chaudhari A, Turek T, Schaub R, Ron E. Recombinant bone morphogenetic protein-2 is superior to demineralized bone matrix in repairing craniotomies defects in rat. J Biomed Mater Res 1994;28: 1127–1138.

    Article  PubMed  CAS  Google Scholar 

  115. Bostrom M, Lane J, Tomin E, et al. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop Rel Res 1996;327:272–282.

    Article  Google Scholar 

  116. Boyne PJ, Marx RE, Nevins M, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus augmentation. Int J Periodont Restor Dent 1997;17:11–25.

    CAS  Google Scholar 

  117. Zegzula HD, Buck D, Brekke J, Wozney J, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg 1997;79-A:1778–1790.

    Google Scholar 

  118. Howell TH, Fiorellini J, Jones A, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation of augmentation. Int J Periodont Rest Dent 1997;17:125–139.

    Google Scholar 

  119. Geesink RG, Hoefnagels NH, Bulstra SK. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg 1999;81-B:710–718.

    Article  Google Scholar 

  120. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998;16:155–162.

    Article  PubMed  CAS  Google Scholar 

  121. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 1997;3:173–185.

    Article  Google Scholar 

  122. Dayoub H, Dumont RJ, Zhong J, et al. Human mesenchymal stem cells transduced with recombinant bone morphogenetic protein-9 adenovirus promote osteogenesis in rodents. Tissue Eng 2003;9:347–356.

    Article  PubMed  CAS  Google Scholar 

  123. Khouri RK, Brown BK, Koudsi B. Repair of calvarial defects with flap tissue: role of bone morphogenetic proteins and competent responding tissues. Plast Reconstr Surg 1996;98:103–109.

    Article  PubMed  CAS  Google Scholar 

  124. Young BH, Peng H, Huard J. Muscle-based gene therapy and tissue engineering to improve bone healing. Clin Orthop Rel Res 2002;403:S243–S251.

    Article  Google Scholar 

  125. Balk ML. Effect of rhBMP-2 on the osteogenic potential of bone marrow stromal cells from an osteogenesis imperfecta mouse (oim). Bone 1997;21:7–15.

    Article  PubMed  CAS  Google Scholar 

  126. Caplan AI. Osteogenesis imperfecta, rehabilitation medicine and fundamental research. Conn Tissue Res 1995;31:S9–S14.

    CAS  Google Scholar 

  127. Lieberman JR, Le LQ, Wu L, et al. Regional gene therapy with a BMP-2 producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 1998;16:330–339.

    Article  PubMed  CAS  Google Scholar 

  128. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg 1999; 81-A:905–917.

    Google Scholar 

  129. Breitbart AS, Grande DA, Mason JM, Barcia M, James T, Grant RT. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg 1999;42:488–495.

    Article  PubMed  CAS  Google Scholar 

  130. Allay JA, Dennis JE, Haynesworth SE, et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Human Gene Ther 1997; 8: 1417–1427.

    Article  CAS  Google Scholar 

  131. Ono I, Gunji H, Kaneko F, Saito T, Kuboki Y. Efficacy of hydroxyapatite ceramics as a carrier for recombinant human bone morphogenetic protein. J Craniofac Surg 1995;6:238–244.

    Article  PubMed  CAS  Google Scholar 

  132. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg 1998;80-A:985–996.

    Google Scholar 

  133. Arinzeh TL, Peter SJ, Archambault MP, et al. Allogenic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 2003;85-A:1927–1935.

    PubMed  Google Scholar 

  134. Chang SC-N, Wei FC, Chuang H, et al. Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plast Reconstr Surg 2003;112:1841.

    Article  PubMed  Google Scholar 

  135. Chang SC-N, Chuang HL, Chen YR, et al. Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther 2003;10:2013–2019.

    Article  PubMed  CAS  Google Scholar 

  136. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;16:557–564.

    PubMed  CAS  Google Scholar 

  137. Koc ON, Lazarus HM. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 2001; 27:235–239.

    Article  PubMed  CAS  Google Scholar 

  138. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42–48.

    Article  PubMed  Google Scholar 

  139. Solter D, Gearhart J. Putting stem cells to work. Science 1999;283:1468–1470.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Winn, S.R. (2005). The Manipulation of Mesenchymal Stem Cells for Bone Repair. In: Lester, L.B. (eds) Stem Cells in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1385/1-59259-900-1:183

Download citation

  • DOI: https://doi.org/10.1385/1-59259-900-1:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-407-4

  • Online ISBN: 978-1-59259-900-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics