Skip to main content

Germ Line Stem Cells

  • Chapter
  • 508 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Stem cells are a unique cell population in both biological and clinical contexts. Stem cells are defined by their function to reproduce themselves (self-renewal) and concurrently generate daughter cells that are committed to differentiation (1). The differentiation of stem cells leads to the production of all cell types in a given cell lineage. Furthermore, stem cells conduct this dual function for a lifetime, thereby continuously providing specialized cells that perform normal functions of self-renewing tissues/organs (e.g., bone marrow, intestinal epithelium; see ref. 2). Clinically, these characteristics of stem cells allow them to be a potentially powerful resource for various applications, such as regenerative medicine and gene therapy (3). Our ability to understand stem cell biology is therefore crucial for such practical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lagasse E, Shizuru JA, Uchida N, Tsukamoto A, Weissman IL Toward regenerative medicine. Immunity 2001;14:425–436.

    Article  PubMed  CAS  Google Scholar 

  2. Loeffler M, Potten CS. Stem cells and cellular pedigrees—a conceptual introduction. In: Potten CS, ed. Stem Cells. San Diego, Academic Press, 1997, pp. 1–27.

    Google Scholar 

  3. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000;287:1442–1446.

    Article  PubMed  CAS  Google Scholar 

  4. Rudnicki MA. Marrow to muscle, fission versus fusion. Nature Med 2003;12:1461–1462.

    Google Scholar 

  5. Nagano MC. A surgical strategy using spermatogonial stem cells for restoring male fertility. In: Gosden RG, Tulandi T, eds. Preservation of Fertility. Lancaster, UK, The Parthenon Publishing Group, 2004, pp. 125–139.

    Google Scholar 

  6. Meistrich ML, Van Beek MEAB Spermatogonial stem cells. In: Desjardins C, Ewing LL, eds. Cell and Molecular Biology of the Testis. New York, Oxford University Press, 1993, pp. 266–295.

    Google Scholar 

  7. Kiger AA, Fuller MT. Male germ-line stem cells. In: Marshak DR, Gardner RL, Gottlieb D. eds. Stem Cell Biology. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 2001, pp. 149–187.

    Google Scholar 

  8. Hogan B. Primordial germ cells as stem cells. In: Marshak DR, Garnder RL, Gottlieb D, eds. Stem Cell Biology. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 2001, pp. 189–204.

    Google Scholar 

  9. Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 1994;182:68–91.

    Article  PubMed  CAS  Google Scholar 

  10. Tam PPL, Snow MHL. Proliferation and migration of primordial germ cells during compensatory growth in the mouse embryo. J Embryol Exp Morph 1981;64:133–147.

    PubMed  CAS  Google Scholar 

  11. Russell LD, Ettlin RA, Shinha Hikim AP, Clegg ED, eds. Mammalian spermatogenesis. In: Histological and Histopathological Evaluation of the Testis. Clearwater, FL, Cache River Press, 1990, pp. 1–40.

    Google Scholar 

  12. Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 1977;741:68–85.

    Article  Google Scholar 

  13. McCarrey JR. Development of the germ cell. In: Desjardins C, Ewing LL, eds. Cell and Molecular Biology of the Testis. New York, Oxford University Press, 1993, pp. 58–89.

    Google Scholar 

  14. Lawson KA, Dunn NR, Roelen BA, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999;13:424–436.

    PubMed  CAS  Google Scholar 

  15. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002;418:293–300.

    Article  PubMed  CAS  Google Scholar 

  16. Godin I, Wylie CC. TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 1991;113:1451–1457.

    PubMed  CAS  Google Scholar 

  17. Zhao G-Q, Garbers DL. Male Germ cell specification and differentiation. Dev Cell 2002;2:537–547.

    Article  PubMed  CAS  Google Scholar 

  18. Brinster RL. Germline stem cell transplantation and transgenesis. Science 2002;296:2174–2176.

    Article  PubMed  CAS  Google Scholar 

  19. Illmensee K, Stevens LC. Teratomas and chimeras. Sci Am 1979;240:120–133.

    Article  PubMed  CAS  Google Scholar 

  20. Stevens LC. Origin of testicular teratomas from primordial germ cells in mice. J Natl Cancer Inst 1967; 38:549–552.

    PubMed  CAS  Google Scholar 

  21. Pierce GB. Teratocarcinoma: model for a developmental concept of cancer. Curr Top Dev Biol 1967;2: 223–246.

    PubMed  CAS  Google Scholar 

  22. Brinster RL. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 1974;104:1049–1056.

    Article  Google Scholar 

  23. Matsui JY, Zsebo K, Hogan BLM. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992;70:841–847.

    Article  PubMed  CAS  Google Scholar 

  24. Resnick JL, Bixler LS, Cheng L, Donovan PJ Long-term proliferation of mouse primordial germ cells in culture. Nature 1992;359:550–551.

    Article  PubMed  CAS  Google Scholar 

  25. Shim H, Gutierrez-Adan A, Chen LR, BonDurant RH, Behboodi E, Anderson GB. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 1997;57:1089–1095.

    Article  PubMed  CAS  Google Scholar 

  26. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998;95:13726–13731.

    Article  PubMed  CAS  Google Scholar 

  27. Stewart CL, Gadi I, Bhatt H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol 1994;161:626–628.

    Article  PubMed  CAS  Google Scholar 

  28. Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 1994;120:3197–3204.

    PubMed  CAS  Google Scholar 

  29. Smith A 2001 Embryoinc stem cells. In: Marshak DR, Garnder RL, Gottlieb D, eds. Stem Cell Biology. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 2001, pp. 205–230.

    Google Scholar 

  30. Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA 1997;94:5709–5712.

    Article  PubMed  CAS  Google Scholar 

  31. Tsunoda Y, Tokunaga T, Imai H, Uchida T. Nuclear transplantation of male primordial germ cells in the mouse. Development 1989;107:407–411.

    PubMed  CAS  Google Scholar 

  32. Yamazaki, Y, Mann RW, Lee SS, et al. 2003 Reprogramming of primordial germ cells begins before migration into the gential ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 2003; 100:12207–12212.

    Article  PubMed  CAS  Google Scholar 

  33. Wakayama T, Yanagimachi R1 Mouse cloning with nucleus donor cells of different age and type. Mol Reprod Dev 2001;58:376–383.

    Article  PubMed  CAS  Google Scholar 

  34. Constancia M, Pickard B, Kelsey G, Reik W Imprinting mechanisms. Genome Res 1998;8:881–900.

    PubMed  CAS  Google Scholar 

  35. Monk M. Epigenetic programming of differential gene expression in development and evolution. Dev Genet 1995;17:188–197.

    Article  PubMed  CAS  Google Scholar 

  36. Gage FH. Mammalian neural stem cells. Science 2000;287:1433–1438.

    Article  PubMed  CAS  Google Scholar 

  37. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994;91:11298–11302.

    Article  PubMed  CAS  Google Scholar 

  38. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 1994;9124:11303–11307.

    Article  Google Scholar 

  39. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 1997;41:111–122.

    PubMed  CAS  Google Scholar 

  40. Nagano MC. Spermatogonial transplantation. In: Gardner DK, Lane M, Watson A, eds. A Laboratory Guide to the Mammalian Embryo. Oxford, UK, Oxford University Press, 2004, pp. 334–351.

    Google Scholar 

  41. Ryu BY, Orwig KE, Avarbock MR, Brinster RL. Stem cell and niche development in the postnatal rat testis. Dev Biol 2003;263:253–263.

    Article  PubMed  CAS  Google Scholar 

  42. Johnston DS, Russell LD, Friel PJ, Griswold MD. Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology 2001;142: 2405–2408.

    Article  PubMed  CAS  Google Scholar 

  43. Mahato D, Goulding EH, Korach KS, Eddy EM. Spermatogenic cells do not require estrogen receptor-α for development or function. Endocrinology 2000;141:1273–1276.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang X, Ebata KT, Nagano MC. Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol Reprod 2003;69:1872–1878.

    Article  PubMed  CAS  Google Scholar 

  45. Dobrinski I, Ogawa T, Avarbock MR, Brinster RL. Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cell from transgenic donor mice. Mol Reprod Dev 1999; 53: 142–148.

    Article  PubMed  CAS  Google Scholar 

  46. Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 2003;69:701–707.

    Article  PubMed  CAS  Google Scholar 

  47. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci USA 2001;98:6186–6191.

    Article  PubMed  CAS  Google Scholar 

  48. Orwig KE, Shinohara T, Avarbock MR, Brinster RL. Functional analysis of stem cells in the adult rat testis. Biol Reprod 2002;66:944–949.

    Article  PubMed  CAS  Google Scholar 

  49. Ogawa T, Ohmura M, Yumura Y, Sawada H, Kubota Y. Expansion of murine spermatogonial stem cells through serial transplantation. Biol Reprod 2003;68:316–322.

    Article  PubMed  CAS  Google Scholar 

  50. Franca LR, Ogawa T, Avarbock MR, Brinster RL, Russell LD. Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod 1998;59:1371–1377.

    Article  PubMed  CAS  Google Scholar 

  51. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 2000;6:29–34.

    Article  PubMed  CAS  Google Scholar 

  52. de Rooij DG, Okabe M, Nishimune Y. Arrest of spermatogonial differentiation in jsd/jsd, Sl17H/Sl17H, and cryptorchid mice. Biol Reprod 1999;61:842–847.

    Article  PubMed  Google Scholar 

  53. Boettger-Tong HL, Johnston DS, Russell LD, Griswold MD, Bishop CE. Juvenile spermatogonial depletion (jsd) mutant seminiferous tubules are capable of supporting transplanted spermatogenesis. Biol Reprod 2000;63: 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  54. Meng X, Lindahl M, Hyvonen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000;287:1489–1493.

    Article  PubMed  CAS  Google Scholar 

  55. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 1996;122:1703–1709.

    PubMed  CAS  Google Scholar 

  56. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002; 4(Suppl.):s41–s49.

    PubMed  Google Scholar 

  57. Nagano M, Shinohara T, Avarbock MR, Brinster RL. Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Lett 2000;475:7–10.

    Article  PubMed  CAS  Google Scholar 

  58. Nagano M, Watson DJ, Ryu BY, Wolfe JH, Brinster RL. Lentiviral vector transduction of male germ line stem cells in mice. FEBS Lett 2002;524:111–115.

    Article  PubMed  CAS  Google Scholar 

  59. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 2003;68:2207–2214.

    Article  PubMed  CAS  Google Scholar 

  60. Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM. Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 1990;127:3206–3214.

    Article  PubMed  CAS  Google Scholar 

  61. Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod 2003;69: 1303–1307.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836–841.

    Article  PubMed  CAS  Google Scholar 

  63. Kanatsu-Shinohara M, Ogonuki N, Inoue K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003;69:612–616.

    Article  PubMed  CAS  Google Scholar 

  64. Pawliuk R, Eaves C, Humphries RK. Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood 1996;88:2852–2858.

    PubMed  CAS  Google Scholar 

  65. Iscove NN, Nawa K. Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol 1997;7:805–808.

    Article  PubMed  CAS  Google Scholar 

  66. Watt FM, Hogan BLM. Out of Eden: stem cells and their niches. Science 2000;287:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  67. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841–846.

    Article  PubMed  CAS  Google Scholar 

  68. Ohta H, Yomogida K, Dohmae K, Nishimune Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 2000;127:2125–2131.

    PubMed  CAS  Google Scholar 

  69. Vidal F, Lopez P, Lopez-Fernandez LA, et al. Gene trap analysis of germ cell signaling to Sertoli cells: NGF-TrkA mediated induction of Fra1 and Fos by post-meiotic germ cells. J Cell Sci 2001;114:435–443.

    PubMed  CAS  Google Scholar 

  70. Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F. Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep 2002;3:753–759.

    Article  PubMed  CAS  Google Scholar 

  71. Shinohara T, Avarbock MR, Brinster RL. β1-and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 1999;96:5504–5509.

    Article  PubMed  CAS  Google Scholar 

  72. Yoshinaga K, Nishikawa S, Ogawa M, et al. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 1991;113:689–699.

    PubMed  CAS  Google Scholar 

  73. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci USA 2000;97:8346–8351.

    Article  PubMed  CAS  Google Scholar 

  74. Shinohara T, Avarbock MR, Brinster RL. Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Dev Biol 2000;220:401–411.

    Article  PubMed  CAS  Google Scholar 

  75. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA 2003;100:6487–6492.

    Article  PubMed  CAS  Google Scholar 

  76. Kanatsu-Shinohara M, Toyokuni S, Shinohara T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 2004;70:70–75.

    Article  PubMed  CAS  Google Scholar 

  77. Orwig KE, Ryu BY, Avarbock MR, Brinster RL. Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proc Natl Acad Sci USA 2002;99:11706–11711.

    Article  PubMed  CAS  Google Scholar 

  78. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness:” transcriptional profiling of embryonic and adult stem cells. Science 20002;298: 97–600.

    Google Scholar 

  79. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002;298:601–604.

    Article  PubMed  CAS  Google Scholar 

  80. Fortunel NO, Otu HH, Ng HH, et al. Comment on “’ stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature.” Science 2003;302: 393.

    Article  PubMed  CAS  Google Scholar 

  81. Evsikov AV, Solter D. Comment on “’ stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature.” Science 2003;302:393.

    Article  PubMed  CAS  Google Scholar 

  82. Vogel G. ’stemness’ genes still elusive. Science 2003;302:371.

    Article  PubMed  CAS  Google Scholar 

  83. Ivanova NB, Dimos JT, Schaniel C, et al. Response to comments on “’ stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature” Science 2003;302:393.

    Article  CAS  Google Scholar 

  84. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 2000;1: 40–47.

    Article  PubMed  CAS  Google Scholar 

  85. Crow JF. There’s something curious about paternal-age effects. Science 2003;301:606–607.

    Article  PubMed  CAS  Google Scholar 

  86. Goriely A, McVean GA, Rojmyr M, Ingemarsson B, Wilkie AO. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 2003;301:643–646.

    Article  PubMed  CAS  Google Scholar 

  87. Tiemann-Boege I, Navidi W, Grewal R, et al. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci USA 2002;99: 14952–14957.

    Article  PubMed  CAS  Google Scholar 

  88. Oldridge M, Lunt PW, Zackai EH, et al. Genotype-phenotype correlation for nucleotide substitutions in the IgII-IgIII linker of FGFR2. Hum Mol Genet 1997;6:137–143.

    Article  PubMed  CAS  Google Scholar 

  89. Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev 2000;21:23–39.

    Article  PubMed  CAS  Google Scholar 

  90. Santoro M, Carlomagno F, Romano A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381–383.

    Article  PubMed  CAS  Google Scholar 

  91. Santoro M, Melillo RM, Carlomagno F, Fusco A, Vecchio G. Molecular mechanisms of RET activation in human cancer. Ann N Y Acad Sci 2002;963:116–121.

    Article  PubMed  CAS  Google Scholar 

  92. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 2001;12: 361–373.

    Article  PubMed  CAS  Google Scholar 

  93. Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 2001;98:13090–13095.

    Article  PubMed  CAS  Google Scholar 

  94. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL. Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 2002;99: 14931–14936.

    Article  PubMed  CAS  Google Scholar 

  95. Donovan PJ. Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 1994; 19:189–225.

    Article  Google Scholar 

  96. Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod 1999;60:1429–1436.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Nagano, M.C. (2005). Germ Line Stem Cells. In: Lester, L.B. (eds) Stem Cells in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1385/1-59259-900-1:023

Download citation

  • DOI: https://doi.org/10.1385/1-59259-900-1:023

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-407-4

  • Online ISBN: 978-1-59259-900-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics