Umbilical Cord Stem Cells

  • Kathy E. Mitchell
Part of the Contemporary Endocrinology book series (COE)

Abstract

The two most basic properties of stem cells are the capacities to self-renew and to differentiate into multiple cell or tissue types (1, 2, 3). Generally, stem cells are categorized as one of three types: embryonic stem cells (ES), embryonic germ cells (EG), or adult stem cells. ES cells are derived from the inner cell mass of the blastula (Fig. 1). They proliferate indefinitely and can differentiate spontaneously into all three tissue layers of the embryo (4) and into germ cells as well (5, 6, 7). EG cells are derived from primordial germ cells (see (Fig. 1), a small set of stem cells that reside in the protected environment of the yolk stalk, so that they remain undifferentiated during embryogenesis. As with ES cells, EG cells have the capacity to differentiate into all three tissue layers (8). Adult stem cells are found in most tissues and in the circulation. They may have less replicative capacity than ES or EG cells and, until recently, were thought to have restricted developmental fates (9). This classification system omits a significant source of stem cells derived from the extraembryonic tissues (umbilical cord, placenta and amniotic tissues/fluids), which are derived from neither the adult organism nor the embryo proper. This review will describe studies of stem cells derived from extraembryonic tissues with an emphasis on cells derived from umbilical cord, their developmental origins, and relationships to other types of stem cells and potential in regenerative medicine.

Fig. 1.

Stem cells and origins from inner cell mass (ICM) and extraembryonic mesoderm. ES cells arise from cells derived from the ICM. EG cells, umbilical cord matrix cells, cells from amniotic tissues, and early hematopoietic stem cells (HSC) arise from extraembryonic mesoderm.

Fig. 2.

Human umbilical cord matrix cells. (A) Umbilical cords have two arteries and one vein surrounded by Wharton’s jelly. (B) Pockets of cobblestone-appearing cells between the adventitia and Wharton’s jelly. (C) Umbilical cord matrix cells in culture. (D) Human umbilical cord cells treated by neural induction method of Woodbury et al. (33).

Keywords

Migration Arthritis Tyrosine Heparin Oncol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKay R. Stem cells in the central nervous system. Science 1997;276:66–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Gordon MY, Blackett NM. Reconstruction of the hematopoietic system after stem cell transplantation. Cell Transplant 1998;7:339–344.PubMedCrossRefGoogle Scholar
  3. 3.
    Scheffler B, Horn M, Blumcke I, et al. Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 1999;22:348–357.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith A. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001;17:435–462.PubMedCrossRefGoogle Scholar
  5. 5.
    Hubner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003;300:1251–1256.PubMedCrossRefGoogle Scholar
  6. 6.
    Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. PNAS 2003; 100:11457–11462.PubMedCrossRefGoogle Scholar
  7. 7.
    Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004;13:727–739.PubMedCrossRefGoogle Scholar
  8. 8.
    Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. PNAS 1998;95:13726–13731.PubMedCrossRefGoogle Scholar
  9. 9.
    Paul G, Li JY, Brundin P. Stem cells: hype or hope? Drug Discov Today 2002;7:295–302.PubMedCrossRefGoogle Scholar
  10. 10.
    Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta 1997;18:53–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Takechi K, Kuwabara Y, Mizuno M. Ultrastructural and immunohistochemical studies of Wharton’s jelly umbilical cord cells. Placenta 1993;14:235–245.PubMedCrossRefGoogle Scholar
  12. 12.
    Gardner RL. Cell lineage and cell commitment in the early mammalian embryo. Mead Johnson Symp Perinat Dev Med 1979;16:18–24.PubMedGoogle Scholar
  13. 13.
    Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 1991;113:891–911.PubMedGoogle Scholar
  14. 14.
    Vogler H. Human Blastogenesis. Formation of the Extraembryonic Cavities. Bibliotheca Anatomica 30. Karger, Basel, 1987.Google Scholar
  15. 15.
    Moore MA, Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 1970;18:279–296.PubMedGoogle Scholar
  16. 16.
    Weissman IL, Warnke R, Butcher EC, Rouse R, Levy R. The lymphoid system. Its normal architecture and the potential for understanding the system through the study of lymphoproliferative diseases. Hum Pathol 1978;9: 25–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Mintz B, Russell ES. Gene-induced embryological modifications of primordial germ cells in the mouse. J Exp Zool 1957;134:207–237.PubMedCrossRefGoogle Scholar
  18. 18.
    Tres, LL, Rosselot C, Kierszenbaum AL Primordial germ cells: what does it take to be alive? Mol Reprod Dev 2004;68:1–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Schneider DT, Schuster AE, Fritsch MK, et al. Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Cancer Res 2001;61:7268–7276.PubMedGoogle Scholar
  20. 20.
    Ende, N. History of umbilical cord blood transplantation. Lancet 1995;346:1161.PubMedCrossRefGoogle Scholar
  21. 21.
    Ende N. Berashis cells in human umbilical cord blood vs. embryonic stem cells. J Med 2002;33: 167–171.PubMedGoogle Scholar
  22. 22.
    von Drygalski A, Adamson J. Placental/umbilical cord blood (PCB) stem cells for transplantation: early clinical outcomes and the status of ex vivo expansion strategies. Keio J Med 2000;49:141–151.Google Scholar
  23. 23.
    Traas J, Kaptur R, Schermerhorn T, Chun R, Mitchell KE Stem cell gene array analysis of Oct-4 positive human umbilical cord matrix cells. Mol Cell Biol 2003;14:115a.Google Scholar
  24. 24.
    Weiss ML, Mitchell KE, Hix JE, et al. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 2003;182:288–299.PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki N, Rohdewohld H, Neuman T, Gruss P, Scholer HR. Oct-6: a POU transcription factor expressed in embryonal stem cells and in the developing brain. EMBO J 1990;9:3723–3732.PubMedGoogle Scholar
  26. 26.
    Pesce M, Scholer HR. Oct-4: control of totipotency and germline determination. Mol Reprod Dev 2000; 55:452–457.PubMedCrossRefGoogle Scholar
  27. 27.
    Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372–376.PubMedCrossRefGoogle Scholar
  28. 28.
    Pochampally RR, Smith JR, Ylostalo J, Prockop DJ. Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 2004;103:1647–1652.PubMedCrossRefGoogle Scholar
  29. 29.
    Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 2003;18:1489–1493.PubMedCrossRefGoogle Scholar
  30. 30.
    Shamblott MJ, Axelman J, Littlefield JW, et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 2001;98: 113–118.PubMedCrossRefGoogle Scholar
  31. 31.
    Mitchell KE, Weiss ML, Mitchell BM, et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 2003;21:50–60.PubMedGoogle Scholar
  32. 32.
    Helwig B, Van Wye T, Hoynowski S, Mitchell KE. Defining key proteins in stem cell based neuronal development using proteomics. Mol Cell Biol 2003;14:115a.Google Scholar
  33. 33.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364–370.PubMedCrossRefGoogle Scholar
  34. 34.
    Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989;86:3828–3832.PubMedCrossRefGoogle Scholar
  35. 35.
    Sirchia G, Rebulla P. Placental/umbilical cord blood transplantation. Haematologica 1999;84: 738–747.PubMedGoogle Scholar
  36. 36.
    Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997; 337:373–381.PubMedCrossRefGoogle Scholar
  37. 37.
    Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000;105:1527–1536.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu AG, Michejda M, Mazumder A, et al. Analysis and characterization of hematopoietic progenitor cells from fetal bone marrow, adult bone marrow, peripheral blood, and cord blood. Pediatr Res 1999;46:163–169.PubMedCrossRefGoogle Scholar
  39. 39.
    Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998;16:153–165.PubMedCrossRefGoogle Scholar
  40. 40.
    Lansdorp PM, Poon S, Chavez E, et al. Telomeres in the haemopoietic system. Ciba Found Symp 1997; 211:209–218; discussion 219–222.PubMedGoogle Scholar
  41. 41.
    Globerson A. Hematopoietic stem cells and aging. Exp Gerontol 1999;34:137–146.PubMedCrossRefGoogle Scholar
  42. 42.
    Kashiwakura I, Takahashi TA. Basic fibroblast growth factor-stimulated ex vivo expansion of haematopoietic progenitor cells from human placental and umbilical cord blood. Br J Haematol 2003;122:479–488.PubMedCrossRefGoogle Scholar
  43. 43.
    Pesce M, Orlandi A, Iachininoto MG, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 2003;93:e51–e62.PubMedCrossRefGoogle Scholar
  44. 44.
    Hows JM. Status of umbilical cord blood transplantation in the year 2001. J Clin Pathol 2001;54: 428–434.PubMedCrossRefGoogle Scholar
  45. 45.
    Benito AI, Diaz MA, Gonzalez-Vicent M, Sevilla J, Madero L. Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant 2004;33: 675–690.PubMedCrossRefGoogle Scholar
  46. 46.
    Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 2001;86:1099–1100.PubMedGoogle Scholar
  47. 47.
    Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. 2003;Stem Cells 21:105–110.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004;103:1669–1675.PubMedCrossRefGoogle Scholar
  49. 49.
    Hou L, Cao H, Wang D, et al. Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int J Hematol 2003;78:256–261.PubMedGoogle Scholar
  50. 50.
    Ha Y, Lee JE, Kim KN, Cho YE, Yoon DH. Intermediate filament nestin expressions in human cord blood monocytes (HCMNCs). Acta Neurochir (Wien) 2003;145:483–487.Google Scholar
  51. 51.
    Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002;115:2131–2138.PubMedGoogle Scholar
  52. 52.
    Bicknese AR, Goodwin HS, Quinn CO, Henderson VC, Chien SN, Wall DA. Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplant 2002;11:261–264.PubMedGoogle Scholar
  53. 53.
    Sanchez-Ramos JR, Song S, Kamath SG, et al. Expression of neural markers in human umbilical cord blood. Exp Neurol 2001;171:109–115.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 2001;36:1662–1665.PubMedCrossRefGoogle Scholar
  55. 55.
    Mosquera A, Fernandez JL, Campos A, Goyanes VJ, Ramiro-Diaz J, Gosalvez J. Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells. J Med Genet 1999;36:494–496.PubMedGoogle Scholar
  56. 56.
    Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 1996;209:9–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 2000;62:585–590.PubMedCrossRefGoogle Scholar
  58. 58.
    Zinsmeyer J, Marangos PJ, Issel EP, Gross J. Neuron specific enolase in amniotic fluid—a possible indicator for fetal distress and brain implication. J Perinat Med 1987;15:199–202.PubMedCrossRefGoogle Scholar
  59. 59.
    Elimian A, Figueroa R, Verma U, Visintainer P, Sehgal PB, Tejani N. Amniotic fluid neuron-specific enolase: a role in predicting neonatal neurologic injury? Obstet Gynecol 1998;92:546–550.PubMedCrossRefGoogle Scholar
  60. 60.
    Kintzel K, Sonntag J, Strauss E, Obladen M. Neuron-specific enolase: reference values in cord blood. Clin Chem Lab Med 1998;36:245–247.PubMedCrossRefGoogle Scholar
  61. 61.
    Gazzolo D, Vinesi P, Marinoni E, et al. S100B protein concentrations in cord blood: correlations with gestational age in term and preterm deliveries. Clin Chem 2000;46:998–1000.PubMedGoogle Scholar
  62. 62.
    Amer-Wahlin I, Herbst A, Lindoff C, Thorngren-Jerneck K, Marsal K, Alling C. Brain-specific NSE and S-100 proteins in umbilical blood after normal delivery. Clin Chim Acta 2001;304:57–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Wijnberger LD, Nikkels PG, van Dongen AJ, et al. Expression in the placenta of neuronal markers for perinatal brain damage. Pediatr Res 2002;51:492–496.PubMedCrossRefGoogle Scholar
  64. 64.
    Marinoni E, Di Iorio R, Gazzolo D, et al. Ontogenetic localization and distribution of S-100beta protein in human placental tissues. Obstet Gynecol 2002;99:1093–1099.PubMedCrossRefGoogle Scholar
  65. 65.
    Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.PubMedCrossRefGoogle Scholar
  66. 66.
    Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001;3:778–784.PubMedCrossRefGoogle Scholar
  67. 67.
    Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 2000;97:13883–13888.PubMedCrossRefGoogle Scholar
  68. 68.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44:1928–1942.PubMedCrossRefGoogle Scholar
  69. 69.
    Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–4295.PubMedCrossRefGoogle Scholar
  70. 70.
    Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003;100:5807–5812.PubMedCrossRefGoogle Scholar
  71. 71.
    Powell, DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999;277:C1–C9.PubMedGoogle Scholar
  72. 72.
    Labat ML. Stem cells and the promise of eternal youth: embryonic versus adult stem cells. Biomed Pharmacother 2001;55:179–185.PubMedCrossRefGoogle Scholar
  73. 73.
    Moulin V, Tam BY, Castilloux G, et al. Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. J Cell Physiol 2001;188:211–222.PubMedCrossRefGoogle Scholar
  74. 74.
    Bradley JA, Bolton EM, Pedersen RA. Stem cell medicine encounters the immune system. Nat Rev Immunol 2002;2:859–871.PubMedCrossRefGoogle Scholar
  75. 75.
    Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890–896.PubMedCrossRefGoogle Scholar
  76. 76.
    Rouas-Freiss N, Kirszenbaum M, Dausset J, Carosella ED. Fetomaternal tolerance: role of HLA-G molecule in the protection of the fetus against maternal natural killer activity). C R Acad Sci III 1997;320:385–392.PubMedGoogle Scholar
  77. 77.
    Wiendl H, Mitsdoerffer M, Hofmeister V, et al. The non-classical MHC molecule HLA-G protects human muscle cells from immune-mediated lysis: implications for myoblast transplantation and gene therapy. Brain 2003;126: 176–185.PubMedCrossRefGoogle Scholar
  78. 78.
    Barker JN, Wagner JE. Umbilical cord blood transplantation: current practice and future innovations. Crit Rev Oncol Hematol 2003;48:35–43.PubMedCrossRefGoogle Scholar
  79. 79.
    Beerheide W, von Mach MA, Ringel M, et al. Downregulation of beta2-microglobulin in human cord blood somatic stem cells after transplantation into livers of SCID-mice: an escape mechanism of stem cells? Biochem Biophys Res Commun 2002;294:1052–1063.PubMedCrossRefGoogle Scholar
  80. 80.
    Hoglund P, Glas R, Menard C, et al. Beta2-microglobulin-deficient NK cells show increased sensitivity to MHC class I-mediated inhibition, but self tolerance does not depend upon target cell expression of H-2Kb and Db heavy chains. Eur J Immunol 1998;28:370–378.PubMedCrossRefGoogle Scholar
  81. 81.
    Knutsen AP, Steffen M, Wassmer K, Wall DA. Umbilical cord blood transplantation in Wiskott Aldrich syndrome. J Pediatr 2003;142:519–523.PubMedCrossRefGoogle Scholar
  82. 82.
    Staba SL, Escolar ML, Poe M, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med 2004;350:1960–1969.PubMedCrossRefGoogle Scholar
  83. 83.
    Hall JG, Martin PL, Wood S, Kurtzberg J. Unrelated umbilical cord blood transplantation for an infant with beta-thalassemia major. J Pediatr Hematol Oncol 2004;26:382–385.PubMedCrossRefGoogle Scholar
  84. 84.
    Garbuzova-Davis S, Willing AE, Zigova T, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 2003;12:255–270.PubMedCrossRefGoogle Scholar
  85. 85.
    Ende N, Weinstein F, Chen R, Ende M. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci 2000;67:53–59.PubMedCrossRefGoogle Scholar
  86. 86.
    Ende N, Chen R. Human umbilical cord blood cells ameliorate Huntington’s disease in transgenic mice. J Med 2001;32:231–240.PubMedGoogle Scholar
  87. 87.
    Ende N, Chen R. Parkinson’s disease mice and human umbilical cord blood. J Med 2002;33: 173–180.PubMedGoogle Scholar
  88. 88.
    Ende N, Chen R, Mack R. NOD/LtJ type I diabetes in mice and the effect of stem cells (Berashis) derived from human umbilical cord blood. J Med 2002;33:181–187.PubMedGoogle Scholar
  89. 89.
    Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003;12: 271–278.PubMedCrossRefGoogle Scholar
  90. 90.
    Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001;32:2682–2688.PubMedCrossRefGoogle Scholar
  91. 91.
    Medicetty S, Bledsoe AR, Mitchell KE, Troyer D, Weiss ML. Transplantation of human umbilical cord matrix stem cells alleviates apomorphine-induced rotations in Parkinsonian rats. Neuroscience Meeting Abstract, 2003.Google Scholar
  92. 92.
    Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 2003;118:11–17.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Kathy E. Mitchell
    • 1
  1. 1.Department of Pharmacology and ToxicologyUniversity of KansasLawrence

Personalised recommendations