Skip to main content

Gene-Based and Viral-Based Therapies

  • Chapter
Minimally Invasive Neurosurgery

Abstract

Disappointing results in the treatment of aggressive central nervous system (CNS) neoplasms such as glioblastoma multiforme have fueled a search for novel treatment modalities. New drugs and new radiation modalities have and are being tested. Biological materials have also been explored as potential anticancer agents. Such biological materials include immunotoxins, engineered cells that release diffusible anticancer factors, proteins, stem cells, immune- or vaccine-based modalities, and gene-based and virus-based therapies. The latter type of experimental treatment is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Southam CM. Present status of oncolytic virus studies. NY Acad Sci 1960;22:656–673.

    Google Scholar 

  2. Martuza RL, Malick A, Markert JM, et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991;252:854–856.

    Article  PubMed  CAS  Google Scholar 

  3. On-line database found at the website for The Journal of Gene Medicine. Updated September 2001. http://www.wiley.co.uk/genetherapy/clinical/.

  4. Mulligan RC, Berg P. Selection for animal cells that express the Escherichia coli gene coding for xanthineguanine phosphoribosyltransferase. Proc Natl Acad Sci USA 1981;78:2072–2076.

    Article  PubMed  CAS  Google Scholar 

  5. Boviatsis EJ, Scharf JM, Chase M, et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Therapy 1994;1:323–331.

    PubMed  CAS  Google Scholar 

  6. Boviatsis EJ, Park JS, Sena-Esteves M, Kramm CM, Chase M, Efird JT, et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res 1994;54:5745–5751.

    PubMed  CAS  Google Scholar 

  7. Brown SM, MacLean AR, McKie EA, et al. The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with the proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J Virol 1997;71:9442–9449.

    PubMed  CAS  Google Scholar 

  8. Wang Q, Guo J, Jia W. Intracerebral recombinant HSV-1 vector does not reactivate latent HSV-1. Gene Ther 1997;4:1300–1304.

    Article  PubMed  CAS  Google Scholar 

  9. Mohr I, Gluzman Y. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J 1996;15:4759–4766.

    PubMed  CAS  Google Scholar 

  10. Pyles RB, Warnick RE, Chalk CL, et al. A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther 1997;8:533–544.

    PubMed  CAS  Google Scholar 

  11. Kramm CM, Chase M, Herrlinger U, et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997;8:2057–2068.

    PubMed  CAS  Google Scholar 

  12. Chung RY, Saeki Y, Chiocca EA. B-myb promoter retargeting of herpes simplex virus γ34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 1999;73:7556–7564.

    PubMed  CAS  Google Scholar 

  13. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373–376.

    Article  PubMed  CAS  Google Scholar 

  14. Hollstein M, Rice K, Greenblatt MS, et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994;22:3551–3555.

    PubMed  CAS  Google Scholar 

  15. Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated ras pathway. Science 1998;282:1332–1334.

    Article  PubMed  CAS  Google Scholar 

  16. Von Deimling A, Louis DN, Schramm J, Wiestler OD. Astrocytic gliomas: characterization on a molecular genetic basis, in Molecular Neuro-oncology and Its Impact on the Clinical Management of Brain Tumors (Wiestler OD, Schlegel U, Schramm J, eds.), Springer-Verlag, Berlin, 1994, pp. 33–42.

    Google Scholar 

  17. Mercer WE, Shields MT, Amin M, et al. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 1990;87:6166–6170.

    Article  PubMed  CAS  Google Scholar 

  18. Asai A, Miyagi Y, Sugiyama A, et al. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenecity of glioma cells. J Neurooncol 1994;19:259–268.

    Article  PubMed  CAS  Google Scholar 

  19. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996;2:985–991.

    Article  PubMed  CAS  Google Scholar 

  20. Collins, V.P. Epidermal growth factor receptor gene and its transcripts in glioblastomas, in Molecular Neuro-oncology and Its Impact on the Clinical Management of Brain Tumors (Wiestler OD, Schlegel U, Schramm J, eds.), Springer-Verlag, Berlin, 1994, pp. 17–24.

    Google Scholar 

  21. Redemann N, Holzmann B, von Ruden T, Wagner EF, Schlessinger J, Ullrich A. Anti-oncogenic activity of signaling-defective epidermal growth receptor mutants. Mol Cell Biol 1992;12:491–498.

    PubMed  CAS  Google Scholar 

  22. Van Meir EG, Polverini PJ, Chazin VR, Huang HJS, de Tribolet N, Cavenee WK. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 1994;8:171–176.

    Article  PubMed  Google Scholar 

  23. Millauer B, Shawver LK, Plate KH, Risau W, Ulrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994;367:576–578.

    Article  PubMed  CAS  Google Scholar 

  24. Ma H-I, Guo P, Li J, et al. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res 2002;62:756–763.

    PubMed  CAS  Google Scholar 

  25. Fearon ER, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990;60:397–403.

    Article  PubMed  CAS  Google Scholar 

  26. Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa, E. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 1990;50:7820–7825.

    PubMed  CAS  Google Scholar 

  27. Tjuvajev J, Gansbacher B, Desai R, et al. RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-2. Cancer Res 1995;55:1902–1910.

    PubMed  CAS  Google Scholar 

  28. Yu JS, Wei MX, Chiocca EA, Martuza RL, Tepper RI. Treatment of glioma by engineered interleukin 4-secreting cells. Cancer Res 1993;53:3125–3128.

    PubMed  CAS  Google Scholar 

  29. Tahara H, Lotze MT. Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther 1994;2:96–106.

    Google Scholar 

  30. Qin X-Q, Tao N, Dergay A, et al. Interferon-β gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci USA 1998;95:14411–14416.

    Article  PubMed  CAS  Google Scholar 

  31. Herrlinger U, Kramm CM, Johnston KM, et al. Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 1997;4:345–352.

    PubMed  CAS  Google Scholar 

  32. Dranoff GE, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993;90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  33. Saito S, Bannerji R, Gansbacher B, et al. Immunotherapy of bladder cancer with cytokine gene-modified tumor vaccines. Cancer Res 1994;54:3516–3520.

    PubMed  CAS  Google Scholar 

  34. Vieweg J, Rosenthal FM, Banerji R, et al. Imunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res 1994;54:1760–1765.

    PubMed  CAS  Google Scholar 

  35. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of the human MDR1. Science 1992;257:99–103.

    Article  PubMed  CAS  Google Scholar 

  36. Faulds D, Heel RC. Ganciclovir: a review of its antiviral activity, pharmacokinetic properties, and therapeutic effciacy in cytomegalovirus infections. Drugs 1990;39:597–638.

    PubMed  CAS  Google Scholar 

  37. Shewach DS, Zerbe LK, Hughes TL, Roessler BJ, Breakefield XO, Davidson, B.L. Enhanced cytotoxicity of antiviral drugs mediated by adenovirus directed transfer of the herpes simplex virus thymidine kinase gene in rat glioma cells. Cancer Gene Ther 1994;1:107–112.

    PubMed  CAS  Google Scholar 

  38. Rainov NG, Kramm CM, Aboody-Guterman K, et al. Retrovirus-mediated gene therapy of experimental brain neoplasms using the herpes-simplex virus-thymidine kinase/ganciclovir paradigm. Cancer Gene Ther 1996;3:99–106.

    PubMed  CAS  Google Scholar 

  39. Freeman SM, Abboud CN, Whartenby KA, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993;53:5274–5283.

    PubMed  CAS  Google Scholar 

  40. Ishii-Morita H, Agbaria R, Mullen CA, et al. Mechanism of ‘bystander effect’ killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment. Gene Therapy 1997;4:244–251.

    Article  PubMed  CAS  Google Scholar 

  41. Fick J, Barker FG, Dazin P, Westphale EM, Beyer EC, Israel MA. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci USA 1995;92:11071–11075.

    Article  PubMed  CAS  Google Scholar 

  42. Ram Z, Walbridge S, Shawker T, Culver KW, Blaese RM, Oldfield, E.H. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats. J Neurosurg 1994;81:256–260.

    PubMed  CAS  Google Scholar 

  43. Barba, D., Hardin, J., Sadelain, M., Gage, F.H. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci USA 1994;91:4348–4352.

    Article  PubMed  CAS  Google Scholar 

  44. Gagandeep S, Brew R, Green B, et al. Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect.” Cancer Gene Ther 1996;3:83–88.

    PubMed  CAS  Google Scholar 

  45. Kianmanesh AR, Perrin H, Panis Y, et al. A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumor together with a distant transduced tumor. Hum Gene Ther 1997;8:1807–1814.

    PubMed  CAS  Google Scholar 

  46. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann JL, Klatzmann, D. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 1993;90:7024–7028.

    Article  PubMed  CAS  Google Scholar 

  47. Black ME, Newcomb TG, Wilson HP, Loeb LA. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA 1996;93:3525–3529.

    Article  PubMed  CAS  Google Scholar 

  48. Kim JH, Kim SH, Kolozsvarky A, Brown SL, Kim OB, Freytag SO. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents. Int J Radiat Oncol 1995;33:861–868.

    Article  CAS  Google Scholar 

  49. Tjuvajev JG, Finn R, Watanabe K, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–4095.

    PubMed  CAS  Google Scholar 

  50. Boviatsis EJ, Park JS, Sena-Esteves M, et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res 1994;54:5745–5751.

    PubMed  CAS  Google Scholar 

  51. Carroll NM, Chase M, Chiocca EA, Tanabe KK. The effect of ganciclovir on herpes simplex virus-mediated oncolysis. J Surg Res 1997;69:413–417.

    Article  PubMed  CAS  Google Scholar 

  52. Grem JL. 5-fluoropyrimidines, in Cancer Chemotherapy and Biotherapy: Principles and Practice, 2nd ed. (Chabner BA, Longo DL, eds.), Lipincott, Philadelphia, 1996, pp. 149–212.

    Google Scholar 

  53. Hoshino T, Wilson CB, Rosenblum ML, Barker M. Chemotherapeutic implications of growth fraction and cell cycle time in glioblastomas. J Neurosurg 1975;43:127–135.

    Article  PubMed  CAS  Google Scholar 

  54. Aghi M, Kramm CM, Chou TC, Breakefield XO Chiocca, E.A. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst 1998;90:370–380.

    Article  PubMed  CAS  Google Scholar 

  55. Mullen CA, Coale MM, Lowe RM, Blaese RM. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 1994;54:1503–1506.

    PubMed  CAS  Google Scholar 

  56. Mullen CA, Petropoulous D, Lowe RM. Treatment of microscopic pulmonary metastases with recombinant autologous tumor vaccine expressing interleukin 6 and Escherichia coli cytosine deaminase suicide genes. Cancer Res 1996;56:1361–1366.

    PubMed  CAS  Google Scholar 

  57. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994;91:8302–8306.

    Article  PubMed  CAS  Google Scholar 

  58. Holder JW, Elmore E, Barrett JC. Gap junction function and cancer. Cancer Res 1993;53:3475–3485.

    PubMed  CAS  Google Scholar 

  59. Dong, Y, Wen, P, Manome, Y, Parr, M, Hirshowitz, Chen, L, et al. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum Gene Ther 1996;7:713–720.

    PubMed  CAS  Google Scholar 

  60. Miller CR, Williams CR, Buchsbaum DJ, Gillespie GY. Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Res 2002;62:773–780.

    PubMed  CAS  Google Scholar 

  61. Tew KD, Colvin M, Chabner BA. Alkylating agents, in Cancer Chemotherapy and Biotherapy: Principles and Practice, 2nd ed. (Chabner BA, Longo DL, eds.), Lippincott, Philadelphia, 1996, pp. 297–332.

    Google Scholar 

  62. Wei MX, Tamiya T, Chase M, et al. Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum Gene Ther 1994;5:969–978.

    PubMed  CAS  Google Scholar 

  63. Gopferich A, Alonso MJ, Langer R. Development and characterization of microencapsulated microspheres. Pharmacol Res 1994;11:1568–1574.

    Article  CAS  Google Scholar 

  64. Wei MX, Tamiya T, Rhee RJ, Breakefield XO, Chiocca EA. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res 1995;1:1171–1177.

    PubMed  CAS  Google Scholar 

  65. Chen L, Waxman D. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res 1995;55:581–589.

    PubMed  CAS  Google Scholar 

  66. Chen L, Yu LJ, Waxman DJ. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res 1997;57:4830–4837.

    PubMed  CAS  Google Scholar 

  67. Aghi M, Chou TC, Suling K, et al. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and gancliovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 59:3861–3865;1999.

    PubMed  CAS  Google Scholar 

  68. Ram Z, Culver K, Oshiro E, et al. Summary of results and conclusions of the gene therapy of malignant brain tumors: clinical study. J Neurosurg 1995;82:343A.

    Google Scholar 

  69. Klatzmann D, Valery CA, Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Hum Gene Ther 1998;9:2595–2604.

    Article  PubMed  CAS  Google Scholar 

  70. Packer RJ, Raffel C, Villablanca JG, et al. Treatment of progressive or recurrent pediatric malignant supratentorial brain tumors with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration. J Neurosurg 2000;92:249–254.

    PubMed  CAS  Google Scholar 

  71. Shand N, Weber F, Mariani L, et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum Gene Ther 1999;10:2325–2335.

    Article  PubMed  CAS  Google Scholar 

  72. Harsh GR, Deisboeck TS, Louis DN, Hilton J, Colvin M, et al. J Neurosurg 2000;92:804–811.

    PubMed  CAS  Google Scholar 

  73. Rainov NG. A phase III CLinical Evaluation of Herpes Simplex Virus Type 1 Thymidine Kinase and Ganciclovir Gene Therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000;11:2389–2401.

    Article  PubMed  CAS  Google Scholar 

  74. Trask TW, Trask RP, Aguilar-Cordova E, et al. Phase I study of adenoviral delivery of the HSV-TK gene and ganciclovir administration in patients with recurrent malignant brain tumors. Mol Ther 2000;1:195–203.

    Article  PubMed  CAS  Google Scholar 

  75. Sandmair A-M, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000;11:2197–2205.

    Article  PubMed  CAS  Google Scholar 

  76. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000;7:859–866.

    Article  PubMed  CAS  Google Scholar 

  77. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000;7:867–874.

    Article  PubMed  CAS  Google Scholar 

  78. Herrlinger U, Woiciechowski C, Sena-Esteves M, et al. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 2000;1:347–357.

    Article  PubMed  CAS  Google Scholar 

  79. Rutka JT, Taylor M, Mainprize T, et al. Molecular biology and neurosurgery in the third millennium. Neurosurgery 2000;46:1034–1051.

    Article  PubMed  CAS  Google Scholar 

  80. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 1995;82:1021–1029.

    PubMed  CAS  Google Scholar 

  81. Eck SL, Alavi JB, Judy K, et al. Treatment of recurrent or progressive malignant glioma with a recombinant adenovirus expressing human interferon-beta (H5.010CMVhIFN-β): a phase I trial. Hum Gene Ther 2001;12:97–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Aghi, M., Antonio Chiocca, E. (2005). Gene-Based and Viral-Based Therapies. In: Proctor, M.R., Black, P.M. (eds) Minimally Invasive Neurosurgery. Humana Press. https://doi.org/10.1385/1-59259-899-4:269

Download citation

  • DOI: https://doi.org/10.1385/1-59259-899-4:269

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-147-9

  • Online ISBN: 978-1-59259-899-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics