Skip to main content

Monoclonal Antibody Strategies for Targeting HER2

  • Chapter
The Oncogenomics Handbook

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 978 Accesses

Abstract

The HER family is composed of four receptors, HER1 to HER4, is dysregulated, and/or shows abnormal signaling activity in a broad range of human tumors. The essential role of HER2 in the HER signaling network led to the development of anti-HER2 monoclonal antibodies (mAb) for cancer therapy. In particular, the humanized antibody trastuzumab (Herceptin™) has antitumor activity against HER2-overexpressing breast tumors and is widely used for the treatment of women with HER2-overexpressing breast cancers. However, trastuzumab activity relies on the presence of HER2 overexpression and it is not active against tumors that express moderate or normal levels of HER2.

Importantly, there is a large population of breast cancers and many other tumors that have normal (nonoverexpressed) HER2 expression yet show abnormal HER signaling activity. In such tumors, HER2 functions as a preferred coreceptor to form heterodimers with HER1 (EGFR), HER3, or HER4. For this reason, a humanized mAb, called pertuzumab (2C4; Omnitarg™), that targets HER2—the preferred pairing partner—was developed and is now in clinical development. Importantly, pertuzumab is directed at an extracellular region of HER2—the dimerization domain—and blocks HER2 from dimerizing with other receptors and prevents the activation of HER signaling cascades. Pertuzumab represents the first in a new class of targeted therapeutics known as HER dimerization inhibitors (HDIs). Given the good preclinical activity of pertuzumab and its potential to target a broad range of human tumors, including those with low HER2 expression, the antibody was recently moved to the clinic. Phase I trials with pertuzumab have shown promising results and phase Ib and II trials are ongoing against a variety of tumor types. Current results and ongoing strategies with these anti-HER2 antibodies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2): 127–137.

    Article  PubMed  CAS  Google Scholar 

  2. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 1990; 50:1550–1558.

    PubMed  CAS  Google Scholar 

  3. Ross J, Fletcher J, Linette G, et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 2003; 8(4):307–325.

    Article  PubMed  CAS  Google Scholar 

  4. Shepard HM, Lewis GD, Sarup JC, et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 1991; 11(3):117–127.

    Article  PubMed  CAS  Google Scholar 

  5. Albanell J, Baselga J. The ErbB receptors as targets for breast cancer therapy. J Mamm Gland Biol Neoplasia 1999; 4(4):337–351.

    Article  CAS  Google Scholar 

  6. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992; 89:4285–4289.

    Article  PubMed  CAS  Google Scholar 

  7. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the eficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 2000; 17(9):2639–2648.

    Google Scholar 

  8. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11):783–792.

    Article  PubMed  CAS  Google Scholar 

  9. Sliwkowski MX, Schaefer G, Akita RW, et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 1994; 269(20):14,661–14,665.

    PubMed  CAS  Google Scholar 

  10. Lewis GD, Lofgren JA, McMurtrey AE, et al. Growth regulation of human breast and ovarian tumor cells by heregulin: evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res 1996; 56(6):1457–1465.

    PubMed  CAS  Google Scholar 

  11. Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15(10):2452–2467.

    PubMed  CAS  Google Scholar 

  12. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16(7):1647–1655.

    Article  PubMed  CAS  Google Scholar 

  13. Agus D, Akita R, Fox W, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2(2):127.

    Article  PubMed  CAS  Google Scholar 

  14. Agus D, Gordon M, Taylor C, et al. Clinical activity in a phase I trial of HER-2-targeted rhuMAb 2C4 (pertuzumab) in patients with advanced solid malignancies (AST). Proc ASCO 2003; 22 (abstract 771).

    Google Scholar 

  15. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001; 1(2): 118–129.

    Article  PubMed  CAS  Google Scholar 

  16. Lemmon MA, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci 1994; 19:459–463.

    Article  PubMed  CAS  Google Scholar 

  17. Thor AD, Liu S, Edgerton S, et al. Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J Clin Oncol 2000; 18(18):3230–3239.

    PubMed  CAS  Google Scholar 

  18. Samanta A, LeVea CM, Dougall WC, Qian X, Greene MI. Ligand and p185c-neu density govern receptor interactions and tyrosine kinase activation. Proc Natl Acad Sci USA 1994; 91(5):1711–1715.

    Article  PubMed  CAS  Google Scholar 

  19. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH3T3 cell. Proc Natl Acad Sci USA 1987;84:7159–7163.

    Article  PubMed  CAS  Google Scholar 

  20. Katsumata M, Okudaira T, Samanta A, et al. Prevention of breast tumour development in vivo by downregulation of the p185neu receptor. Nat Med 1995; 1(7):644–648.

    Article  PubMed  CAS  Google Scholar 

  21. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  22. Ross J, Linette G, Stec J, et al. Breast cancer biomarkers and molecular medicine. Expert Rev Mol Diagn 2003; 3(5):573–585.

    Article  PubMed  CAS  Google Scholar 

  23. Salomon D, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19(3):183–232.

    Article  PubMed  CAS  Google Scholar 

  24. Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996; 15(2):254–264.

    PubMed  CAS  Google Scholar 

  25. Tzahar E, Pinkas-Kramarski R, Moyer JD, et al. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J 1997; 16(16):4938–4950.

    Article  PubMed  CAS  Google Scholar 

  26. Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 1999; 96:4995–5000.

    Article  PubMed  CAS  Google Scholar 

  27. Klapper LN, Kirschbaum MH, Sela M, Yarden Y. Biochemical and clinical implications of ErbB/HR signaling network of growth factor receptors. Adv Cancer Res 1999:25–79.

    Google Scholar 

  28. Pinkas-Kramarski R, Alroy I, Yarden Y. ErbB receptors and EGF-like ligands: cell lineage determination through combinatorial signaling. J Mamm Gland Biol Neoplasia 1997; 2(2):97–108.

    Article  CAS  Google Scholar 

  29. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, et al. Differential endocytic routing of homo-and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 1998; 17(12):3385–3397.

    Article  PubMed  CAS  Google Scholar 

  30. Alimandi M, Romano A, Curia MC, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 1995; 10(9):1813–1821.

    PubMed  CAS  Google Scholar 

  31. Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003; 284(1):54–65.

    Article  PubMed  CAS  Google Scholar 

  32. Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001; 61(Suppl 2):1–13.

    Article  PubMed  CAS  Google Scholar 

  33. Gee JM, Robertson JF, Ellis IO, Nicholson RI. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 2001; 95(4):247–254.

    Article  PubMed  CAS  Google Scholar 

  34. Albanell J, Codony-Servat J, Rojo F, et al. Activated extracellular signal-regulated kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments. Cancer Res 2001; 61(17):6500–6510.

    PubMed  CAS  Google Scholar 

  35. Cho HS, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003; 421(6924):756–760.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis GD, Figari I, Fendly B, et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother 1993; 37(4):255–263.

    Article  PubMed  CAS  Google Scholar 

  37. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58(13):2825–2831.

    PubMed  CAS  Google Scholar 

  38. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002; 62(14):4132–4141.

    PubMed  CAS  Google Scholar 

  39. Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 1985; 41:695–706.

    Article  Google Scholar 

  40. Klapper LN, Vaisman N, Hurwitz E, Pinkas-Kramarski R, Yarden Y, Sela M. A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 1997; 14(17): 2099–2109.

    Article  PubMed  CAS  Google Scholar 

  41. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox J. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin®). Semin Oncol 1999; 26(Suppl 12):60–70.

    PubMed  CAS  Google Scholar 

  42. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001; 61(12):4744–4749.

    PubMed  CAS  Google Scholar 

  43. Albanell J, Codony J, Rovira A, Mellado B, Gascon P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 2003; 532:253–268.

    PubMed  CAS  Google Scholar 

  44. Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J. Cleavage of the HER2 ectodomain is a pervanadate activable process that is inhibited by the tissue inhibitor of metalloproteases TIMP-1 in breast cancer cells. Cancer Res 1999; 59:1196–1201.

    PubMed  CAS  Google Scholar 

  45. Christianson TA, Doherty JK, Lin YJ, et al. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 1998; 15(58(22)):5123–5129.

    Google Scholar 

  46. Molina MA, Saez R, Ramsey EE, et al. NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin Cancer Res 2002; 8(2):347–353.

    PubMed  CAS  Google Scholar 

  47. Anido J, Albanell J, Rojo F, Codony-Servat J, Arribas J, Baselga J. Inhibition by ZD1839 (Iressa) of epidermal growth factor (EGF) and heregulin Induced signaling pathways in human breast cancer cells. Proc Am Soc Clin Oncol 2001; 20:1712A.

    Google Scholar 

  48. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416(6878):279–280.

    Article  PubMed  CAS  Google Scholar 

  49. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6(4):443–446.

    Article  PubMed  CAS  Google Scholar 

  50. Pegram MD, Lopez A, Konecny G, Slamon DJ. Trastuzumab and chemotherapeutics: drug interactions and synergies. Semin Oncol 2000; 27(6 Suppl 11):21–25; discussion 92-100.

    PubMed  CAS  Google Scholar 

  51. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for the treatment of human breast cancers. Oncogene 1999; 18(13):2241–2251.

    Article  PubMed  CAS  Google Scholar 

  52. Yu D, Jing T, Liu B, et al. Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21cip1, which inhibits p34cdc2 kinase. Mol Cell 1998; 2:581–591.

    Article  PubMed  CAS  Google Scholar 

  53. Lee S, Yang W, Lan KH, et al. Enhanced Sensitization to taxol-induced apoptosis by Herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res 2002; 62(20):5703–5710.

    PubMed  CAS  Google Scholar 

  54. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20(3):719–726.

    Article  PubMed  CAS  Google Scholar 

  55. Vogel CL, Franco SX. Clinical experience with trastuzumab (herceptin). Breast J 2003; 9(6): 452–462.

    Article  PubMed  CAS  Google Scholar 

  56. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14:737–744.

    PubMed  CAS  Google Scholar 

  57. Perez EA, Rodeheffer R. Clinical cardiac tolerability of trastuzumab. J Clin Oncol 2004; 22(2): 322–329.

    Article  PubMed  CAS  Google Scholar 

  58. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002; 20(5):1215–1221.

    Article  PubMed  CAS  Google Scholar 

  59. Ozcelik C, Erdmann B, Pilz B, et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA 2002; 99(13):8880–8885.

    Article  PubMed  CAS  Google Scholar 

  60. Negro A, Brar BK, Lee KF. Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog Horm Res 2004; 59:1–12.

    Article  PubMed  CAS  Google Scholar 

  61. Pegram MD. Docetaxel and Herceptin: foundation for future strategies. Oncologist 2001; 6(Suppl 3): 22–25.

    Article  PubMed  CAS  Google Scholar 

  62. Montemurro F, Choa G, Faggiuolo R, et al. A phase II study of three-weekly docetaxel and weekly trastuzumab in HER2-overexpressing advanced breast cancer. Oncology 2004; 66(1):38–45.

    Article  PubMed  CAS  Google Scholar 

  63. Raff JP, Rajdev L, Malik U, et al. Phase II study of weekly docetaxel alone or in combination with trastuzumab in patients with metastatic breast cancer. Clin Breast Cancer 2004; 4(6):420–427.

    PubMed  CAS  Google Scholar 

  64. Tedesco KL, Thor AD, Johnson DH, et al. Docetaxel combined with trastuzumab is an active regimen in HER-2 3+ overexpressing and fluorescent in situ hybridization-positive metastatic breast cancer: a multi-institutional phase II trial. J Clin Oncol 2004; 22(6):1071–1077.

    Article  PubMed  CAS  Google Scholar 

  65. Montemurro F, Valabrega G, Aglietta M. Trastuzumab-based combination therapy for breast cancer. Expert Opin Pharmacother 2004; 5(1):81–96.

    Article  PubMed  CAS  Google Scholar 

  66. Extra J, Cognetti F, Maraninchi D, et al. Trastuzumab (Herceptin) plus docetaxel versus docetaxel alone as first-line treatment of HER2-positive metastatic breast cancer (MBC): results of a randomised multicenter trial. Eur J Cancer 2004; 2(Suppl):125 (abstract).

    Google Scholar 

  67. Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003; 9(14):5078–5084.

    PubMed  CAS  Google Scholar 

  68. Albanell J, Baselga J. Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc) 1999; 35(12):931–946.

    CAS  Google Scholar 

  69. Mass R, Sanders C, Charlene K, Johnson L, Everett T, Anderson S. The concordance between the clinial trials assay and fluorescence in situ hybridization in the Herceptin pivotal trials. Proc Am Soc Clin Oncol 2000; 19: 291 (abstract).

    Google Scholar 

  70. Mass R, Press M, Anderson S, Murphy M, Slamon D. Improved survival benefit from herceptin (trastuzumab) in patients selected by fluorescence in situ hybridization (FISH). Proc Am Soc Clin Oncol 2001: 85 (abstract).

    Google Scholar 

  71. Vogel C, Cobleigh M, Tripathy D, Mass R, Murphy M, Stewart SJ. Superior outcomes with Herceptin (trastuzumab) (H) in fluorescence in situ hybridization (FISH)-selected patients. Proc Am Soc Clin Oncol 2001: 86 (abstract).

    Google Scholar 

  72. Elkin EB, Weinstein MC, Winer EP, Kuntz KM, Schnitt SJ, Weeks JC. HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis. J Clin Oncol 2004; 22(5):854–863.

    Article  PubMed  Google Scholar 

  73. Carbonell X, Castaneda-Soto N, Clemens M, et al. Efficacy and safety of 3-weekly herceptin (H) monotherapy in women with HER2-positive metastatic breast cancer (MBC): preliminary data from a phase II study. Proc Am Soc Clin Oncol 2002 (abstract).

    Google Scholar 

  74. Cobleigh M, Frame D. Is trastuzumab every three weeks ready for prime time? J Clin Oncol 2003; 21(21):3900–3901.

    Article  PubMed  CAS  Google Scholar 

  75. Leyland-Jones B, Gelmon K, Ayoub JP, et al. Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol 2003; 21(21):3965–3971.

    Article  PubMed  CAS  Google Scholar 

  76. Bell R. Ongoing trials with trastuzumab in metastatic breast cancer. Ann Oncol 2001; 12(Suppl 1): S69–S73.

    Article  PubMed  Google Scholar 

  77. Burris HA, 3rd. Docetaxel (Taxotere) plus trastuzumab (Herceptin) in breast cancer. Semin Oncol 2001;28(1 Suppl 3):38–44.

    Article  PubMed  CAS  Google Scholar 

  78. Burstein HJ, Kuter I, Campos SM, et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 2001; 19(10):2722–2730.

    PubMed  CAS  Google Scholar 

  79. Fountzilas G, Tsavdaridis D, Kalogera-Fountzila A, et al. Weekly paclitaxel as first-line chemotherapy and trastuzumab in patients with advanced breast cancer. A Hellenic Cooperative Oncology Group phase II study. Ann Oncol 2001; 12(11):1545–1551.

    Article  PubMed  CAS  Google Scholar 

  80. Fujimoto-Ouchi K, Sekiguchi F, Tanaka Y. Antitumor activity of combinations of anti-HER-2 antibody trastuzumab and oral fluoropyrimidines capecitabine/5′-dFUrd in human breast cancer models. Cancer Chemother Pharmacol 2002; 49(3):211–216.

    Article  PubMed  CAS  Google Scholar 

  81. Hortobagyi GN. Overview of treatment results with trastuzumab (Herceptin) in metastatic breast cancer. Semin Oncol 2001; 28(6 Suppl 18):43–47.

    Article  PubMed  CAS  Google Scholar 

  82. Jahanzeb M, Mortimer JE, Yunus F, et al. Phase II trial of weekly vinorelbine and trastuzumab as firstline therapy in patients with HER2(+) metastatic breast cancer. Oncologist 2002; 7(5):410–417.

    Article  PubMed  CAS  Google Scholar 

  83. Crown J, Pegram M. Platinum-taxane combinations in metastatic breast cancer: an evolving role in the era of molecularly targeted therapy. Breast Cancer Res Treat 2003; 79(Suppl 1):S11–S18.

    Article  PubMed  CAS  Google Scholar 

  84. Miller KD, Sisk J, Ansari R, et al. Gemcitabine, paclitaxel, and trastuzumab in metastatic breast cancer. Oncology (Huntingt) 2001; 15(2 Suppl 3):38–40.

    CAS  Google Scholar 

  85. Bianchi G, Albanell J, Eiermann W, et al. Pilot trial of trastuzumab starting with or after the doxorubicin component of a doxorubicin plus paclitaxel regimen for women with HER2-positive advanced breast cancer. Clin Cancer Res 2003; 9(16 Pt 1):5944–5951.

    PubMed  CAS  Google Scholar 

  86. Spigel DR, Burstein HJ. Trastuzumab regimens for HER2-overexpressing metastatic breast cancer. Clin Breast Cancer 2003; 4(5):329–337; discussion 38-39.

    Article  PubMed  CAS  Google Scholar 

  87. Tan AR, Swain SM. Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol 2003; 30(5 Suppl 16):54–64.

    Article  PubMed  CAS  Google Scholar 

  88. Jones A. Combining trastuzumab (Herceptin) with hormonal therapy in breast cancer: what can be expected and why? Ann Oncol 2003; 14(12):1697–1704.

    Article  PubMed  CAS  Google Scholar 

  89. Argiris A, Wang CX, Whalen SG, DiGiovanna MP. Synergistic interactions between tamoxifen and trastuzumab (Herceptin). Clin Cancer Res 2004; 10(4):1409–1420.

    Article  PubMed  CAS  Google Scholar 

  90. Mann M, Sheng H, Shao J, et al. Targeting cyclooxygenase 2 and HER-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 2001; 120(7):1713–1719.

    Article  PubMed  CAS  Google Scholar 

  91. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10(2):145–147.

    Article  PubMed  CAS  Google Scholar 

  92. Moulder SL, Arteaga CL. A phase I/II trial of trastuzumab and gefitinib in patients with metastatic breast cancer that overexpresses HER2/neu (ErbB-2). Clin Breast Cancer 2003; 4(2):142–145.

    PubMed  CAS  Google Scholar 

  93. Repka T, Chiorean EG, Gay J, et al. Trastuzumab and interleukin-2 in HER2-positive metastatic breast cancer: a pilot study. Clin Cancer Res 2003; 9(7):2440–2446.

    PubMed  CAS  Google Scholar 

  94. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59(11):2615–2622.

    PubMed  CAS  Google Scholar 

  95. Tripathy D, Slamon DJ, Cobleigh M, et al. Safety of treatment of metastatic breast cancer with trastuzumab beyond disease progression. J Clin Oncol 2004; 22(6):1063–1070.

    Article  PubMed  CAS  Google Scholar 

  96. Langer CJ, Stephenson P, Thor A, Vangel M, Johnson DH. Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern Cooperative Oncology Group Study 2598. J Clin Oncol 2004; 22: 1180–1187.

    Article  PubMed  CAS  Google Scholar 

  97. Rosell R. Toward customized trastuzumab in HER-2/neu-overexpressing non-small-cell lung cancers. J Clin Oncol 2004; 22:1171–1173.

    Article  PubMed  Google Scholar 

  98. Albanell J, Baselga J. Unraveling resistance to trastuzumab (Herceptin): insulin-like growth factor-I receptor, a new suspect. J Natl Cancer Inst 2001; 93(24):1830–1832.

    Article  PubMed  CAS  Google Scholar 

  99. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM, Pathol J. Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003; 200(3):290–297.

    Article  PubMed  CAS  Google Scholar 

  100. Lee H, Akita RW, Sliwkowski MX, Maihle NJ. A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res 2001; 61(11): 4467–4473.

    PubMed  CAS  Google Scholar 

  101. Mendoza N, Phillips GL, Silva J, Schwall R, Wickramasinghe D. Inhibition of ligand-mediated HER2 activation in androgen-independent prostate cancer. Cancer Res 2002; 62(19):5485–5488.

    PubMed  CAS  Google Scholar 

  102. Toptal K, Balter I, Akita R, Bargiacchi F, Lewis G, Sliwkowski M. Targeting ErbB2/HER2’s role as a coreceptor with rhuMAb2C4 inhibits ErbB/HER ligand-dependent signaling and proliferation of ovarian tumor cell lines. Proc Am Assoc Cancer Res 2003; 44 (abstract).

    Google Scholar 

  103. Jackson J, St Clair P, Sliwkowski M, Brattain M. Blockade of ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects following stimulation by epidermal growth factor or heregulin. Proc Am Assoc Cancer Res 2002; 43:4123a.

    Google Scholar 

  104. Liu J, Kern JA. Neuregulin-1 activates the JAK-STAT pathway and regulates lung epithelial cell proliferation. Am J Respir Cell Mol Biol 2002; 27(3):306–313.

    PubMed  CAS  Google Scholar 

  105. Lewis-Phillips G, Totpal K, Kang K, Crocker L, Schwall R, Sliwkowski M. In vitro and in vivo efficacy of a novel HER2 antibody, rhuMAb 2C4, on human breast and lung tumor cells. Proc Am Assoc Cancer Res 2002; 43: 3556a.

    Google Scholar 

  106. Friess T, Bauer S, Burger A, Fiebig H, Allison D, Müller H-J. In vivo activity of recombinant humanized monoclonal antibody 2C4 in xenografts is independent of tumor type and degree of HER2 overexpression. In: AACR-NCI-EORTC Meeting, 2002.

    Google Scholar 

  107. Totpal K, Lewis G, Balter I, Sliwkowski M. Augmentation of rhuMAb2C4 induced growth inhibition by TARCEVA™ the EGFR tyrosine kinase inhibitor on human breast cancer cell line. Proc Am Assoc Cancer Res 2002; 43:3889a.

    Google Scholar 

  108. Friess T, Scheuer W, Hasmann M. Combination treatment with erlotinib (Tarceva) and pertuzumab (Omnitarg) against different human xenografts is superior to monotherapy as measured by tumor growth and tumor serum markers. In: AACR-NCI-EORTC meeting, 2003: (abstract).

    Google Scholar 

  109. Friess T, Juchem R, Scheuer W, Hasmann M. Additive antitumor activity by combined treatment with recombinant humanized monoclonal antibody 2C4 and standard chemotherapeutic agents in NSCLC xenografts is independent of HER2 overexpression. Proc Am Soc Clin Oncol 2003; 22:238 (abstract).

    Google Scholar 

  110. Allison D, Malik M, Qureshi F, et al. Pharmacokinetics of HER2-targeted rhuMAb 2C4 (pertuzumab) in patients with advanced solid malignancies: phase Ia results. Proc Am Soc Clin Oncol 2003; 22:197 (abstract).

    Google Scholar 

  111. Bossenmaier B, Hasmann M, Koll H, Fiebig H, Akita R, Sliwkowski M. Presence of HER2/HER3 heterodimers predicts antitumor effects of pertuzumab (Omnitarg) in different human xenograft models. Proc Am Assoc Cancer Res 2004; 45:1232–1233 (abstract).

    Google Scholar 

  112. Palm S, Enmon RM Jr, Matei C, et al. Pharmacokinetics and biodistribution of (86)Y-trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. J Nucl Med 2003;44(7):1148–1155.

    PubMed  CAS  Google Scholar 

  113. Schwall R, Dugger D, Erickson. SL, et al. Potent preclinical efficacy of Herceptin-DM1 against HER-2-overexpressing breast tumors in vivo. Clin Cancer Res 2001; 7:3784s (abstract).

    Google Scholar 

  114. Pullarkat V, Deo Y, Link J, et al. A phase I study of a HER2/neu bispecific antibody with granulocytecolony-stimulating factor in patients with metastatic breast cancer that overexpresses HER2/neu. Cancer Immunol Immunother 1999; 48(1):9–21.

    Article  PubMed  CAS  Google Scholar 

  115. Keler T, Graziano RF, Mandal A, et al. Bispecific antibody-dependent cellular cytotoxicity of HER2/neu-overexpressing tumor cells by Fc gamma receptor type I-expressing effector cells. Cancer Res 1997; 57(18):4008–4014.

    PubMed  CAS  Google Scholar 

  116. Posey JA, Raspet R, Verma U, et al. A pilot trial of GM-CSF and MDX-H210 in patients with erbB-2-positive advanced malignancies. J Immunother 1999; 22(4):371–339.

    Article  PubMed  CAS  Google Scholar 

  117. Schwaab T, Lewis LD, Cole BF, et al. Phase I pilot trial of the bispecific antibody MDXH210 (anti-Fc gamma RI X anti-HER-2/neu) in patients whose prostate cancer overexpresses HER-2/neu. J Immunother 2001; 24(1): 79–87.

    Article  PubMed  CAS  Google Scholar 

  118. Wallace PK, Kaufman PA, Lewis LD, et al. Bispecific antibody-targeted phagocytosis of HER-2/neu expressing tumor cells by myeloid cells activated in vivo. J Immunol Methods 2001; 248(1-2):167–182.

    Article  PubMed  CAS  Google Scholar 

  119. James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S, Curnow RT. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 ↔ CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer 2001; 85(2):152–156.

    Article  PubMed  CAS  Google Scholar 

  120. Lewis LD, Beelen AP, Cole BF, et al. The pharmacokinetics of the bispecific antibody MDX-H210 when combined with interferon gamma-1b in a multiple-dose phase I study in patients with advanced cancer. Cancer Chemother Pharmacol 2002; 49(5):375–384.

    Article  PubMed  CAS  Google Scholar 

  121. Repp R, van Ojik HH, Valerius T, et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 2003; 89(12):2234–2243.

    Article  PubMed  CAS  Google Scholar 

  122. Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002; 8(4):1172–1181.

    PubMed  CAS  Google Scholar 

  123. Park JW, Kirpotin DB, Hong K, et al. Tumor targeting using anti-HER2 immunoliposomes. J Control Release 2001; 74(1-3):95–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Albanell, J., Ross, J.S., Pronk, L., Gascon, P. (2005). Monoclonal Antibody Strategies for Targeting HER2. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:627

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:627

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics