Skip to main content

Small-Molecule Receptor Tyrosine Kinase Inhibitors in Targeted Cancer Therapy

  • Chapter
The Oncogenomics Handbook

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 994 Accesses

Abstract

ATP site-directed competitive and irreversible inhibitors of receptor tyrosine kinases have been extensively investigated in the search for new targeted antitumor agents. This chapter provides a comprehensive overview of key results and achievements for three receptor tyrosine kinases, EGFR, c-Kit, and FLT3, in which drug discovery and development activities have advanced with some success. Three additional receptor tyrosine kinases (IGF-IR, c-Met, and RET) have been selected to illustrate new opportunities and challenges in the identification of drugs for tailored cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yarden Y, Slimkowski MX. Untangling the erbB signalling network. Nat Rev 2001; 2:127–137.

    Article  CAS  Google Scholar 

  2. Yarden Y. The EGFR family and its lignad in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37:S3–S8.

    Article  CAS  PubMed  Google Scholar 

  3. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2000; 19: 6550–6565.

    Article  CAS  PubMed  Google Scholar 

  4. Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 1997; 12:1197–1206.

    Article  Google Scholar 

  5. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res 1995; 55:5536–5539.

    CAS  PubMed  Google Scholar 

  6. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth facctor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19:183–232.

    Article  CAS  PubMed  Google Scholar 

  7. Scambia G, Benedetti-Panici P, Ferrandine G, Distefano M, Salerno G, Romanini ME, et al. Epidermal growth factor, estrogen and progesterone receptor expression in primary ovarian cancer: correlation with clinical outcome and response to chemotherapy. Br J Cancer 1995; 72:361–366.

    CAS  PubMed  Google Scholar 

  8. Tang CK, Gong XQ, Moscatello DK, Wong AJ, Lippman ME. Epidermal growth factor receptor vIII enhances tumorogenicity in human breast cancer. Cancer Res 2000; 60:3081–3087.

    CAS  PubMed  Google Scholar 

  9. Sato JD, Kawamoto T, Le AD, Mendelsohn J. Biological effects of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1983; 1:511–529.

    CAS  PubMed  Google Scholar 

  10. Ciardiello F, Tortora G. Anti-epidermal growth factor receptor drugs in cancer therapy. Expert Opin Invest Drugs 2002; 11:755–768.

    Article  CAS  Google Scholar 

  11. Adjei AA. Epidermal growth factor receptor tyorsine kinase inhibitors in cancer therapy. Drugs Future 2001; 21:1087–1092.

    Article  Google Scholar 

  12. Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin Oncol 2001; 28:4–11.

    Article  CAS  PubMed  Google Scholar 

  13. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 2001; 28:13–19.

    Article  CAS  PubMed  Google Scholar 

  14. Noonberg SB, Benz CC. Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs 2000; 59:753–767.

    Article  CAS  PubMed  Google Scholar 

  15. Gibbs JB. Anticancer drug targets: growth factors and growth factor signaling. J Clin Invest 2000; 105: 9–13.

    Article  CAS  PubMed  Google Scholar 

  16. Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 1999; 82:241–250.

    Article  CAS  PubMed  Google Scholar 

  17. Herbst RS. ZD1839: targeting the epidermal growth factor receptor in cancer therapy. Expert Opin Invest Drugs 2002; 11(6):837–849.

    Article  CAS  Google Scholar 

  18. Woodburn JR, Kendrew J, Fennell M, Wakeling AE. ZD1839 (Iressa) a selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI): inhibition of c-fos mRNA, an intermediate marker of EGFR activation, correlates with tumour growth inhibition. Proc Am Assoc Cancer Res 2000; 41: 2552 (abstract).

    Google Scholar 

  19. Woodburn JR, Barker AJ, Wakeling A, Valcaccia BE. 6-Amino-4-(3-methylphenylamino)-quinazoline: an EGF receptor tyrosine kinase inhibitor with activity in a range of human tumour xenografts. Proc Am Assoc Cancer Res 1996; 37:2665 (abstract).

    Google Scholar 

  20. Anderson NG, Ahmad T, Chan KC, Bundred NJ. Effects of ZD1839 (Iressa), a novel EGF receptor tyrosine kinase inhibitor, on breast cancer cell proliferation and invasiveness. Breast Cancer Res Treat 2000; 64:32.

    Google Scholar 

  21. Lavelle F. American Association for Cancer Research 1997: progress and new hope in the fight against cancer, April 12–16, 1997, San Diego, California. Expert Opin Invest Drugs 1997; 6:771–775.

    Article  CAS  Google Scholar 

  22. Woodburn JR, Barker AJ, Gibson KH, Ashton SE, Wakeling AE, Curry BJ, et al. ZD 1839, an epidermal growth factor tyrosine kinase inhibitors selected for clinical development. Proc Am Assoc Cancer Res 1997; 38:633 (abstract).

    Google Scholar 

  23. Hirata A, Ogawa S, Kometani T, Kuwano T, Naito S, Kuwano M, et al. ZD1839 (Iressa) induces anti-angiogenic effects through inhibiiton of epidermal growth factor receptor tyrosine kinase. Cancer Res 2002; 62:2554–2560.

    CAS  PubMed  Google Scholar 

  24. Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, et al. Inhibitionn of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001; 7:1459–1465.

    CAS  PubMed  Google Scholar 

  25. Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2000; 6:2053–2063.

    CAS  PubMed  Google Scholar 

  26. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000; 6:4885–4892.

    CAS  PubMed  Google Scholar 

  27. Williams KJ, Telfer BA, Stratford IJ, Wedge SR. ZD1839 (Iressa), a specific oral epidermal growth factor recepto-tyrosine kinase inhibitors, potentitates radiotherapy in a human colorectal cancer xenograft model. Br J Cancer 2002; 86:1157–1161.

    Article  CAS  PubMed  Google Scholar 

  28. Normanno N, Campiglio M, De L, Somenzi G, Maiello M, Ciardiello F, et al. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol 2002; 13:65–72.

    Article  CAS  PubMed  Google Scholar 

  29. Natale RB, Zaretsky SL. ZD1839 (Iressa): what’s in it for the patient? Oncologist 2002; 7:25–30.

    Article  CAS  PubMed  Google Scholar 

  30. Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997; 57:4838–4848.

    CAS  PubMed  Google Scholar 

  31. Iwata K, Miller PE, Barbacci EG, Arnold L, Doty J, DiOrio CI, et al. CP-358,774: a selective EGFR kinase inhibitor with potent antiproliferative activity against HN5 head and neck tumor cells. Proc Am Assoc Cancer Res 1997; 38:633 (abstract).

    Google Scholar 

  32. Hidalgo M. Erlotinib: preclinical investigations. Oncology 2003; 17:11–16.

    PubMed  Google Scholar 

  33. Akita RW, Sliwkowski MX. Preclinical studies with erlotinib (Tarceva). Semin Oncol 2003; 30:15–24.

    CAS  PubMed  Google Scholar 

  34. Herbst RS. Erlotinib (Tarceva): an update on the clinical program. Semin Oncol 2004; 30:34–46.

    Google Scholar 

  35. Pollack VA, Savage DM, Baker DA, Tsaparikos KE, Sloan DE, Moyer JD, et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in humna carcinomas wiht CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 1999; 291:739–748.

    CAS  PubMed  Google Scholar 

  36. Siu LL, Hidalgo M, Heumanaitis J, et al. Dose and schedule-duration escalation of the epidermal growth factor receptor tyrosine kinase inhibitors CP-358,774: a phase I and pharmacokinetic study. Proc Am Soc Clin Oncol 1999; 18:388 (abstract).

    Google Scholar 

  37. Karp DD, Silberman SL, Csudae R, et al. Phase I dose escalation study of epidermal growth factor receptor tyrosine kinase inhibitor CP-358,774 in patients with advanced solid tumors. Proc Am Soc Clin Oncol 1999; 18:1499 (abstract).

    Google Scholar 

  38. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lav S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16:5276–5287.

    CAS  PubMed  Google Scholar 

  39. Riese DJ, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays 1998; 20:41–48.

    Article  PubMed  Google Scholar 

  40. Simpson BJ, Phillips HA, Lessels AM, Langdon SP, Miller WR. c-erB growth-factor-receptor proteins in ovarian tumours. Int J Cancer 1995; 64:202–206.

    Article  CAS  PubMed  Google Scholar 

  41. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/new oncogene. Science 1987; 235:177–182.

    Article  CAS  PubMed  Google Scholar 

  42. Rusnak DW, Affeck K, Cockerill SG, Stubberfield C, Harris R, Page M, et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res 2001; 61:7196–7203.

    CAS  PubMed  Google Scholar 

  43. Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, et al. The effects of the novel, reversible EGFR/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 2001; 1:85–94.

    CAS  PubMed  Google Scholar 

  44. Mullin RJ, Alligood KJ, Allen PP, Crosby RM, Keith BR, et al. Antitunmor activity of GW2016 in the EGFR positive human head and neck cancer xenograft, HN5. Proc Am Assoc Cancer Res 2001;42:854 (abstract).

    Google Scholar 

  45. Keith BR, Allen PP, Alligood KJ, Crosby RM, Lackey K, et al. Antitumor activity of GW2016 in the ErbB-2 positive human breast cancer xenograft, BT474. Proc Am Assoc Cancer Res 2001; 42:803 (abstract).

    Google Scholar 

  46. Caravatti G, Guido B, Brueggen J, Furet P, Lane H, Mestan J, et al. Preclinical activity of AEE788, a potent inhibitor of the erbB and VEGF receptor tyrosine kinases. Discovery and in vitro profile of AEE788. Proceedings of the AACR-NCI-EORTC International Conference 2003:118 (abstract).

    Google Scholar 

  47. Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Grosios K, et al. Preclinical activity of AEE788, a potent new inhibitor of the erbB and VEGF receptor tyrosine kinases. In vivo profile of AEE788. Proceedings of the AACR-NCI-EORTC International Conference 2003:87 (abstract).

    Google Scholar 

  48. Kim S, Schiff BA, Younes MA, Jasser SA, Doan D, Yigitbasi OG, et al. Treatment with NVP-AEE788—a dual inhibitor of EGFR and VEGFR tyrosine kinase—inhibits anaplastic thyroid carcinioma growth. Proceedings of the AACR-NCI-EORTC International Conference 2003:128 (abstract).

    Google Scholar 

  49. Yigitbasi OG, Younes MN, Schiff BA, Doan D, Jasser SA, Al-Muhtaseb Z, et al. Dual inhibition of EGFR and VEGFR in squamous cell carcinoma of the head and neck: the role of the new EGFR/VEGFR inhibitor NVP-AEE788. Proceedings of the AACR-NCI-EORTC International Conference 2003:102 (abstract).

    Google Scholar 

  50. Nagasawa J, Mizokami A, Asahi H, Iwasa Y, Kosida K, Yoshida S, et al. TAK-165, a selective inhibitor of HER2 tyrosine kinase: antitumor effect of TAK-165 on hormone refractory prostate cancer and bladder cancer in vitro and in vivo. Proc Am Assoc Cancer Res 2003; 44:4690 (abstract).

    Google Scholar 

  51. Denny WA. Irreversible inhibitors of the erbB family of protein tyrosine kinases. Pharmacol Ther 2002; 93:253–261.

    Article  CAS  PubMed  Google Scholar 

  52. Fry DW. Site-directed irreverersible inhibitors of the erbB family of receptor tyrosine kinases as novel chemotherapeutic agents for cancer. Anti-Cancer Drug Des 2000; 15:3–16.

    CAS  Google Scholar 

  53. Smaill JB, Palmer BD, Rewcastle GF, Denny WA, McNamara DJ, Dobrusin EM, et al. Tyrosine kinase inhibitors. 15. 4-(Phenylamino)quinazoline and 4-(phenylamino)pyrido[d]pyrimidine acrylamides as irreversible inhibitors of the ATP binding site of the epidermal growth factor receptor. J Med Chem 1999; 42:1803–1815.

    Article  CAS  PubMed  Google Scholar 

  54. Fry DW, Bridges AJ, Denny WA, Doherty AM, Greis KD, Hicks JL, et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc Natl Acad Sci USA 1998; 95:12,022–12,027.

    Article  CAS  PubMed  Google Scholar 

  55. Allen LF, Eiseman IA, Fry DW, Lenehan PF. CI-1033, an irreversible pan-erbB receptor inhibitor and its potential application for the treatment of breast cancer. Semin Oncol 2003; 5:65–78.

    Article  Google Scholar 

  56. Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol 2001; 28:80–85.

    Article  CAS  PubMed  Google Scholar 

  57. Allen LF, Lenehan PF, Eiseman IA, Elliott WL, Fry DW. Potential benefits of the irreversible pan-erbB inhibitor, CI-1033, in the treatment of breast cancer. Semin Oncol 2002; 30:11–21.

    Google Scholar 

  58. Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, et al. Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor recetpor: 4. (phenylamino)quinazoline-and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions. J Med Chem 2000; 43:1380–1397.

    Article  CAS  PubMed  Google Scholar 

  59. Nelson JM, Fry DW. Akt, MAPK (Erk1/2), and p38 act in concert to promote apoptosis in response to ErbB receptor family inhibition. J Biol Chem 2001; 276:14,842–14,847.

    Article  CAS  PubMed  Google Scholar 

  60. Rao GS, Murray S, Ethier SP. Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor. Int J Radiat Oncol Biol Phys 2000; 48:1519–1528.

    Article  CAS  PubMed  Google Scholar 

  61. Gieseg MA, De Block C, Ferguson LR, Denny WA. Evidence for receptor enhanced chemosensitivity in combinations of cisplatin and the new irreversible tyrosine kinase inhibitor CI-1033. Anti-Cancer Drugs 2001; 12:681–690.

    Article  Google Scholar 

  62. Erlichman C, Boerner SA, Hallgren CG, Spieker R, Wang XY, James CD, et al. The HER tyrosine kinase inhibitor CI1033 enhances cytoxicity of 7-ethyl-10-hydroxycamtothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res 2001; 61:739–748.

    CAS  PubMed  Google Scholar 

  63. Shin DM, Nemunaitis J, Zinner RG, et al. A phase I clinical and biomarker study of CI-1033, a novel pan-ErbB tyrosine inhibitor in patients with solid tumors. Proc Am Soc Clin Oncol 2001; 20:324 (abstract).

    Google Scholar 

  64. Garrison MA, Tolcher A, McCreery H, et al. A phase I and pharmacokinetic study of CI-1033, a pan-ErbB tyrosine kinase inhibitor, given orally on days 1, 8, and 15 every 28 days to patients with solid tumors. Proc Am Soc Clin Oncol 2001; 20:283 (abstract).

    Google Scholar 

  65. Wissner A, Overbeek E, Reich MF, Floyd B, Johnson BD, Namuya N, et al. Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally activa, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J Med Chem 2003; 46:49–63.

    Article  CAS  PubMed  Google Scholar 

  66. Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B, Wissner A, et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med 2000; 6:1024–1028.

    Article  CAS  PubMed  Google Scholar 

  67. Heinrich MC, Blanke CD, Druker BJ, Corless CL. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 2002; 20:1692–1703.

    Article  CAS  PubMed  Google Scholar 

  68. Heinrich MC, Blanke CD, Druker BJ, Corless CL. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 2002; 20:1692–1703.

    Article  CAS  PubMed  Google Scholar 

  69. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355–365.

    Article  CAS  PubMed  Google Scholar 

  70. Blanke CD, Eisenberg BL, Heinrich MC. Gastrointestinal stromal tumors. Curr Treat Options Oncol 2001; 2:485–491.

    Article  CAS  PubMed  Google Scholar 

  71. Chandu de Silva MV, Reid R. Gastrointestinal stromal tumours (GIST): c-Kit mutations, CD117 expression, differential diagnosis and targeted cancer therapy with imatinib. Pathol Oncol Res 2003; 9:13–19.

    Article  CAS  PubMed  Google Scholar 

  72. Joensuu H, Fletcher C, Dimitrijevic S, Silberman S, Roberts P, Demetri G. Management of malignant gastrointestinal stromal tumours. Lancet Oncol 2002; 3:655–664.

    Article  CAS  PubMed  Google Scholar 

  73. Demetri GD. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 2002; 28:19–26.

    Article  Google Scholar 

  74. Savage DG, Antman KH. Imatinib mesylate; a new oral targeted therapy. N Engl J Med 2002; 346: 683–693.

    Article  CAS  PubMed  Google Scholar 

  75. Druker BJ. STI571 (Gleevec™) as a paradigm for cancer therapy. Trends Mol Med 2002; 8:S14–S18.

    Article  CAS  PubMed  Google Scholar 

  76. de Bree F, Sorbera LA, Fernandez R, Castaner J. Imatinib mesylate. Drugs 2001; 26:545–552.

    Google Scholar 

  77. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Potent and selective inhibitors of the ABL-kinase: phenylaminopyridine (PAP) derivatives. Bioorg Med Chem Lett 1997; 7:187–192.

    Article  CAS  Google Scholar 

  78. Frost MJ, Ferrao PT, Hughes TP, Ashman LK. Juxtamebrane mutant V560GKit is more sensitive to imatinib (STI571) compared with wild.type c-kit whereas the kinase domain mutant D816VKit is resistant. Mol Cancer Ther 2002; 1:1115–1124.

    CAS  PubMed  Google Scholar 

  79. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295:139–145.

    CAS  PubMed  Google Scholar 

  80. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000; 96: 925–932.

    CAS  PubMed  Google Scholar 

  81. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472–480.

    Article  CAS  PubMed  Google Scholar 

  82. Drevs J, Medinger M, Schmidt-Gersbach C, Weber R, Unger C. Receptor tyrosine kinases: the main targets for new anticancer therapy. Curr Drug Targets 2003; 4:113–121.

    Article  CAS  PubMed  Google Scholar 

  83. Joensuu H. Treatment of inoperable gastrointestinal stromal tumor (GIST) with imatinib (Glivec, Gleevec). Med Klin 2002; 97:28–30.

    Google Scholar 

  84. Blanke CD, von Mehren M, Joensuu H, Roberts PJ, Eisenberg B. Evaluation of the safety and efficacy of an oral molecularly-targeted therapy, STI571, in patients with unresectable or metastatic gastrointestinal stromal tumors (GISTS) expressing c-Kit. Proc Am Soc Clin Oncol 2001; 20:1a (abstract).

    Google Scholar 

  85. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346:645–652.

    Article  CAS  PubMed  Google Scholar 

  86. van Oosterom AT, Judson I, Verweij J, Stroobants S, Donato di Paola E, Dimitrijevic S, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 2001; 358:1421–1423.

    Article  PubMed  Google Scholar 

  87. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Dührsen U, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102:2763–2767.

    Article  CAS  PubMed  Google Scholar 

  88. Rosnet O, Buhring HJ, deLapeyriere O, Beslu N, Lavagana C, Marchetto S, et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 1996; 95:218–223.

    Article  CAS  PubMed  Google Scholar 

  89. Rosnet O, Marchetto S, de Lapyriere O, Birnbaum D. Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CS1R family. Oncogene 1991; 6:1641–1650.

    CAS  PubMed  Google Scholar 

  90. Redaelli A, Lee JM, Stephens JM, Pashos CL. Epidemiology and clinical burden of acute myeloid leukemia. Expert Rev Anticancer Ther 2003; 3:695–710.

    Article  CAS  PubMed  Google Scholar 

  91. Sawyers CL. Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 2002; 1:413–415.

    Article  CAS  PubMed  Google Scholar 

  92. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99:3885–3891.

    Article  CAS  PubMed  Google Scholar 

  93. Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol 2002; 9:274–281.

    Article  PubMed  Google Scholar 

  94. Kiyoi H, Naoe T. FLT3 in human hematologic malignancies. Leuk Lymphoma 2002; 43:1541–1547.

    Article  CAS  PubMed  Google Scholar 

  95. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97:2434–2439.

    Article  CAS  PubMed  Google Scholar 

  96. Iwai T, Yokota S, Nakao M, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Childen’s Cancer and Leukemia Study Group, Japan. Leukemia 1999; 13:38–43.

    Article  CAS  PubMed  Google Scholar 

  97. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98:1752–1759.

    Article  CAS  PubMed  Google Scholar 

  98. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97:89–94.

    Article  CAS  PubMed  Google Scholar 

  99. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC, et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000;111:190–195.

    Article  CAS  PubMed  Google Scholar 

  100. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitors PKC412. Cancer Cell 2002; 1:433–443.

    Article  CAS  PubMed  Google Scholar 

  101. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99:3885–3891.

    Article  CAS  PubMed  Google Scholar 

  102. O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitors with potent activity in vitro and in vivo. Blood 2003; 101:3597–3605.

    Article  CAS  PubMed  Google Scholar 

  103. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, et al. In vivo antitumor activityof SU11248, a novel tyrosine kianse inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003; 9:327–337.

    CAS  PubMed  Google Scholar 

  104. Abrams TJ, Lee LB, Murray LJ, Mendel DB, Cherrington JM. Inhibition of Kit-positive SCLC growth by SU11248, a novel tyrosine kinase inhibitors. Proceedings of the AACR-NCI-EORTC International Conference 2002:1669 (abstract).

    Google Scholar 

  105. Kelly LM, Yu J-C, Boulton CL, Apatira M, Li J, Sullivan CM, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1:421–432.

    Article  CAS  PubMed  Google Scholar 

  106. Levis M, Small D. Novel FLT3 tyrosine kinase inhibitors. Expert Opin Invest Drugs 2003; 12:1951–1962.

    Article  CAS  Google Scholar 

  107. Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412-a protein kinase inhibitor with a broad therapeutic potential. Anti-Cancer Drug Des 2000; 15:17–28.

    CAS  Google Scholar 

  108. Pinski J, Weeraratna A, Uzgare AR, Arnold JT, Denmeade SR, Isaacs JT. Trk receptor inhibition induces apoptosis of proliferating but not quiescent human osteoblasts. Cancer Res 2002; 62:986–989.

    CAS  PubMed  Google Scholar 

  109. Sawyers CL. Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 2002; 1:413–415.

    Article  CAS  PubMed  Google Scholar 

  110. Yee KWH, O’Farrell AM, Smolich BD, Cherrington JM, McMahon G, et al. SU5416 nad SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine. Blood 2002; 100:2941–2949.

    Article  CAS  PubMed  Google Scholar 

  111. Teller S, Kraemer D, Boehmer S-A, Tse KF, Small D, Mahboobi S, et al. Bis(1H-2-indolyl)-1-methanones as inhibitors of the hematopoietic tyrosine kinase Flt3. Leukemia 2002; 16:1528–1534.

    Article  CAS  PubMed  Google Scholar 

  112. Menezes D, Lee SH, Wiesmann M, Vora J, Peng J, Shephard L, et al. CHIR258: a potent inhibitor of FLT-3 kinase in experimental tumor xenografts models of human acute myelogenous leukemia. Proceedings of the AACR-NCI-EORTC International Conference 2003:C127 (abstract).

    Google Scholar 

  113. Smith BD, Levis M, Beran M, Giles F, Brown P, Russell L, et al. Single agent CEP-701, a novel FLT3 inhibitor, shows initial response in patients with refractory acture myeloid leukemia. Proc Am Assoc Cancer Res 2003; 39:779 (abstract).

    Google Scholar 

  114. Stone RM, Klimek V, Deangelo I, Galinsky I, Fox E, Nimer S, et al. Oral PKC412 has activitiy in patients with mutant FLT3 in acute myeloid leukemia (AML): a phase II trial. Proc Am Assoc Cancer Res 2003; 39:2265 (abstract).

    Google Scholar 

  115. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2002; 344:1038–1042.

    Article  Google Scholar 

  116. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99:3530–3539.

    Article  CAS  PubMed  Google Scholar 

  117. Mauro L, Salerno M, Morelli C, Boterberg T, Bracke ME, Surmacz E. Role of the IGF-I receptor in the regulation of cell-cell adhesion: implications in cancer development and progression. J Cell Physiol 2003; 194:108–116.

    Article  CAS  PubMed  Google Scholar 

  118. Valentinis B, Baserga R. IGF-I receptor signalling in transformation and differentiation. Mol Pathol 2001; 54:133–137.

    Article  CAS  PubMed  Google Scholar 

  119. Baserga R. The contradictions of the insulin-like growth factor 1 receptor Oncogene 2000; 19:5574–5581.

    Article  CAS  PubMed  Google Scholar 

  120. Brodt P, Samani A, Navab R. Inhibition of the type I insulin-like growth factor receptor expression and signaling: novel strategies for antimetastatic therapy. Biochem Pharmacol 2000; 60:1101–1107.

    Article  CAS  PubMed  Google Scholar 

  121. Macaulay VM. Insulin-like growth factors and cancer. Br J Cancer 1992; 65:311–320.

    CAS  PubMed  Google Scholar 

  122. Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 1999; 91:620–625.

    Article  CAS  PubMed  Google Scholar 

  123. Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst 1999; 91:151–156.

    Article  CAS  PubMed  Google Scholar 

  124. Hankinson SE, Willette WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998; 351:1373–1375.

    Article  Google Scholar 

  125. O’Connor R. Survival factors and apoptosis. Adv Biochem Eng Biotechnol 1998; 62:137–166.

    CAS  PubMed  Google Scholar 

  126. Werner H, Le Roith D. The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Crit Rev Oncog 1997; 8:71–92.

    CAS  PubMed  Google Scholar 

  127. Yu D, Watanabe H, Shibuya H, Miura M. Redundancy of radioresistant signaling pathways originating from insulin-like growth factor I receptor. J Biol Chem 2003; 278:6702–6709.

    Article  CAS  PubMed  Google Scholar 

  128. Lu Y, Zi X, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93:1852–1857.

    Article  CAS  PubMed  Google Scholar 

  129. Grothey A, Voigt W, Schober C, Muller T, Dempke W, Schmoll HJ. The role of insulin-like growth factor I and its receptor in cell growth, transformation, apoptosis, and chemoresistance in solid tumors. J Cancer Res Clin Oncol 1999; 125:166–173.

    Article  CAS  PubMed  Google Scholar 

  130. Wen B, Deutsch E, Marangoni E, Frascona V, Maggiorella L, Abdulkarim B, et al. Tyrphostin AG1024 modulates radiosensitivity in human breast cancer cells. Br J Cancer 2001; 85:2017–2021.

    Article  CAS  PubMed  Google Scholar 

  131. Scotlandi K, Avnet S, Benini S, Manara MC, Serra M, Cerisano V, et al. Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorogenesis and enhances chemosensitivity in Ewing’s sarcoma cells. Int J Cancer 2002; 101:11–16.

    Article  CAS  PubMed  Google Scholar 

  132. Beech DJ, Parekh N, Pang Y. Insulin-like growth factor receptor antagonism results in increased cytotoxicity of breast cancer cells to doxorubicin and taxol. Oncol Rep 2001; 8:325–329.

    CAS  PubMed  Google Scholar 

  133. Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS, Yee D. A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 2003; 63:627–635.

    CAS  PubMed  Google Scholar 

  134. Scotlandi K, Maini C, Manara MC, Benini S, Serra M, Cerisano V, et al. Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewing’s sarcoma cells. Cancer Gene Ther 2002; 9: 296–307.

    Article  CAS  PubMed  Google Scholar 

  135. Wang Y, Sun Y. Insulin-like growth factor receptor-1 as an anti-cancer target: blocking transformation and inducing apoptosis. Curr Cancer Drug Targets 2002; 2:191–207.

    Article  CAS  PubMed  Google Scholar 

  136. Nakamura K, Hongo A, Kodama J, Miyagi Y, Yoshinouchi M, Kudo T. Down-regulation of the insulin-like growth factor I receptor by antisense RNA can reverse the transformed phenotype of human cervical cancer cell lines. Cancer Res 2000; 60:760–765.

    CAS  PubMed  Google Scholar 

  137. Wang H, Liu Y, Wei L, Guo Y. Antisense IGF and antisense IGF-IR therapy of malignancy. Adv Exp Med Biol 2000; 465:265–272.

    CAS  PubMed  Google Scholar 

  138. Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor.Cell Mol Life Sci 2000; 57:1050–1093.

    Article  CAS  PubMed  Google Scholar 

  139. Dupont J, LeRoith D. Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction. Horm Res 2001; 55(Suppl 2):22–26.

    Article  CAS  PubMed  Google Scholar 

  140. Parrizas M, Gazit A, Levitzki A, Wertheimer E, LeRotih D. Specific inhibition of insulin-like growth factor-1 and insulin receptor tyrosine kinase activity and biologicyl function by tyrphostins. Endocrinology 1997; 138:1427–1433.

    Article  CAS  PubMed  Google Scholar 

  141. Garcia-Echeverria C, Brueggen J, Capraro H-G, Evans DB, Ferrari S, Fabbro D, et al. Characterization of potent and selective kinase inhibitors of IGF-IR. Proc Am Assoc Cancer Res 2003; 44:1008 (abstract).

    Google Scholar 

  142. Mitsiades C, Kung A, Garcia-Echeverria C, Pearson MA, Hofmann F, Anderson KC. The IGF-I/IGF-IR system is a major therapeutic target for multiple myeloma, other malignancies and solid tumours. Proc Am Assoc Cancer Res 2003; 44:4005 (abstract).

    Google Scholar 

  143. Surmacz E. Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor. Oncogene 2003; 22:6589–6597.

    Article  CAS  PubMed  Google Scholar 

  144. Mitsiades C, Catley LP, Podar K, Akiyama M, Burger R, Shringarpure R, et al. Insulin-like growth factor-1 induces adhesion and migration in multiple myeloma cells via activation of β1-integrin and phosphatidylinositol 3-kinase/Akt signaling. Proc Am Assoc Cancer Res 2003; 44:3967 (abstract).

    Google Scholar 

  145. Qiang Y-W, Yao L, Tosato G, Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 2004; 103:301–308.

    Article  CAS  PubMed  Google Scholar 

  146. Furstenberger G, Morant R, Senn HJ. Insulin-like growth factors and breast cancer. Onkologie 2003;26:290–294.

    Article  CAS  PubMed  Google Scholar 

  147. Byron SA, Yee D. Potential therapeutic strategies to interrupt insulin-like growth factor signaling in breast cancer. Semin Oncol 2003; 30(5 Suppl 16):125–132.

    Article  CAS  PubMed  Google Scholar 

  148. Khalili K, Del Valle L, Wang JY, Darbinian N, Lassak A, Safak M, et al. T-antigen of human polyomavirus JC cooperates withIGF-IR signaling system in cerebellar tumors of the childhood-medulloblastomas. Anticancer Res 2003; 23:2035–2041.

    CAS  PubMed  Google Scholar 

  149. Min Y, Adachi Y, Yamamoto H, Ito H, Itoh F, Lee CT, et al. Genetic blockade of the insulin-like growth factor-I receptor: promising strategy for human pancreatic cancer. Cancer Res 2003; 1:6432–6441.

    Google Scholar 

  150. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, et al. Science 1991; 251: 802–804.

    Article  CAS  PubMed  Google Scholar 

  151. Ma P, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 2003; 22:309–325.

    Article  CAS  PubMed  Google Scholar 

  152. Longati P, Comoglio PM, Bardelli A. Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. Curr Drug Targets 2001; 2:41–55.

    Article  CAS  PubMed  Google Scholar 

  153. Fan S, Wang JA, Yuan RQ, Rockwell S, Andres J, Zlatapolskiy A, et al. Oncogene 1998; 17:131–141.

    Article  CAS  PubMed  Google Scholar 

  154. Bardelli A, Longati P, Gramaglia D, Stella MC, Comoglio PM. Oncogene 1997; 15:3103–3111.

    Article  CAS  PubMed  Google Scholar 

  155. Jeffers M, Rong S, Vande Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med 1996; 74:505–513.

    Article  CAS  PubMed  Google Scholar 

  156. Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, et al. Mechanism of met oncogene activation. Cell 1986; 45:895–904.

    Article  CAS  PubMed  Google Scholar 

  157. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311:29–33.

    Article  CAS  PubMed  Google Scholar 

  158. Yu J, Miehlke S, Ebert MP, Hoffmann J, Breidert M, Alpen B, et al. Frequency of TPR-MET rearrangements in patients with gastric carcinomas and in first-degree relatives. Cancer 2000; 88:1801–1806.

    Article  CAS  PubMed  Google Scholar 

  159. Jeffers M, Rong S, Anver M, Vande Woude GF. Autocrine hepatocyte growth factor/scatter factor signaling induces transformation and the invasive/metastatic phenotype in C127 cells. Oncogene 1996;13:853–861.

    CAS  PubMed  Google Scholar 

  160. Rong S, Jeffers M, Resau JH, Tsarfaty I, Oskarsson M, Vande Woude GF. Met expression and sarcoma tumorigenicity. Cancer Res 1993; 53:5355–5360.

    CAS  PubMed  Google Scholar 

  161. Park WS, Dong SM, Kim SY, et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 1999; 59:307–310.

    CAS  PubMed  Google Scholar 

  162. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Wierich G, Miller M, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 1999; 18:2343–2350.

    Article  CAS  PubMed  Google Scholar 

  163. Schmidt L. Germiline and somatic mutations in the tyrosine kinase domain of the Met proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16:68–73.

    Article  CAS  PubMed  Google Scholar 

  164. Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgai R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 2002; 13:41–59.

    Article  CAS  PubMed  Google Scholar 

  165. Jiang W, Hiscox S, Matsumoto K, Nakamura T. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit Rev Oncol Hematol 1999; 29:209–248.

    Article  CAS  PubMed  Google Scholar 

  166. Tomioka D, Maehara N, Kuba K, Mizumoto K, Tanaka M, Matsumoto K, et al. Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res 2001; 61:7518–7524.

    CAS  PubMed  Google Scholar 

  167. Parr C, Davies G, Nakamura T, Matsumoto K, Mason MD, Jiang WG. The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. Biochem Biophys Res Commun 2001; 285:1330–1337.

    Article  CAS  PubMed  Google Scholar 

  168. Maehara N, Matsumoto K, Kuba K, Mizumoto K, Tanaka M, Nakamura T. NK4, a four-kringle antagonist of HGF, inhibits spreading and invasion of human pancreatic cancer cells. Br J Cancer 2001; 84: 864–873.

    Article  CAS  PubMed  Google Scholar 

  169. Matsumoto K, Nakamura T. Suppression of tumor malignancy by NK4/malignostatin: a new cancer therapy by inhibition of tumor invasion-metastasis and angiogenesis. Saishin Igaku 2000; 55:1960–1968.

    CAS  Google Scholar 

  170. Bardelli A, Longati P, Williams TA, Benvenuti S, Comoglio PM. A peptide representing the carboxyl-terminal tail of the met receptor inhibits kinase activity and invasive growth. J Biol Chem 1999; 274: 29,274–29,281.

    Article  CAS  PubMed  Google Scholar 

  171. Maulik G, Kijima T, Ma PC, Ghosh SK, Lin J, Shapiro GI, et al. Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 2002; 8:620–627.

    CAS  PubMed  Google Scholar 

  172. Webb CP, Hose CD, Koochekpour S, Jeffers M, Oskarsson M, Sausville E, et al. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res 2000; 60:342–349.

    CAS  PubMed  Google Scholar 

  173. Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 2002; 21:4885–4893.

    Article  CAS  PubMed  Google Scholar 

  174. Sattler M, Pride YB, Ma P, Gramlich JL, Chu SC, Quinnan LA, et al. A novel small molecule Met inhibitor induces apoptosis in cells transformed by the oncogenic Tpr-Met tyrosine kinase. Cancer Res 2003; 63:5462–5469.

    CAS  PubMed  Google Scholar 

  175. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, et al. A selective small molecular inhibitors of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003; 63:7345–7355.

    CAS  PubMed  Google Scholar 

  176. Santoro M., Melillo RM, Carlomagno F., Fusco A, Vecchio G. Molecular mechanisms of RET activation in human cancer. Ann NY Acad Sci 2002; 963:116–121.

    Article  CAS  PubMed  Google Scholar 

  177. Pasini B, Ceccherini I, Romeo G. RET mutations in human disease. Trends Genet 1996; 12:138–144.

    Article  CAS  PubMed  Google Scholar 

  178. Santoro M, Carlomagno F, Romano A, Bottaro DP, Datha NA, Grieco M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995; 267: 381–383.

    Article  CAS  PubMed  Google Scholar 

  179. Takahashi M. Oncogenic activation of the ret protooncogene in thyroid cancer. Crit Rev Oncog 1995; 6:35–46.

    CAS  PubMed  Google Scholar 

  180. Takahashi M, Asai N, Iwashita T, Murakami H, Ito S. Molecular mechanisms of development of multiple endocrine neoplasia 2 by RET mutations. J Intern Med 1998; 243:509–513.

    CAS  PubMed  Google Scholar 

  181. Ponder BA. The phenotypes associated with ret mutations in the multiple endocrine neoplasia type 2. Cancer Res 1999; 59:1736–1741.

    Google Scholar 

  182. Tallini G. Molecular pathobiology of thyroid neoplasms. Endocr Pathol 2002; 13(4):271–288.

    Article  CAS  PubMed  Google Scholar 

  183. Santoro M, Papotti M, Chiappetta G, Garcia-Rostan G, Volante M, Johnson C, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 2002; p87:370–379.

    Article  CAS  PubMed  Google Scholar 

  184. Tallini G, Asa SL. RET oncogene activation in papollary thyroid carcinoma. Adv Anat Pathol 2001; 8:345–354.

    Article  CAS  PubMed  Google Scholar 

  185. Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progession to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 1998; 4:287–294.

    CAS  PubMed  Google Scholar 

  186. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60:557–563.

    Article  CAS  PubMed  Google Scholar 

  187. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002; 62:7284–7290.

    CAS  PubMed  Google Scholar 

  188. Xing S, Smanik PA, Oglesbee MJ, Trosko JE, Mazzaferri EL, Jhiang SM. Characterization of ret oncogenic activation in MEN2 inherited cancer syndromes. Endocrinology 1996; 137:1512–1519.

    Article  CAS  PubMed  Google Scholar 

  189. Carniti C, Perego C, Mondellini P, Pierotti MA, Bongarzone I. PP1 inhibitor induces degradation of RETMEN2A and RETMEN2B oncoproteins through proteosomal targeting. Cancer Res 2003; 63: 2234–2243.

    CAS  PubMed  Google Scholar 

  190. Lanzi C, Cassinelli G, Cuccuru G, Zaffaroni N, Supino R, Vignati S, et al. Inactivation of Ret/PTC oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RP1-1. Cell Mol Life Sci 2003; 60:1449–1459.

    Article  CAS  PubMed  Google Scholar 

  191. Carlomagno F, Vitagliano D, Guida T, Napolitano M, Vecchio G, Fusco A, et al. The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res 2002; 62:1077–1082.

    CAS  PubMed  Google Scholar 

  192. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nature Rev 2003; 2:296–313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

García-Echeverría, C. (2005). Small-Molecule Receptor Tyrosine Kinase Inhibitors in Targeted Cancer Therapy. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:531

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:531

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics