Skip to main content

From FISH to Proteomics

A Molecular Brush to Define Antitumor Drug Action

  • Chapter
  • 975 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Technological milestones in genomics have initiated a new approach in the development of novel anticancer drugs to specific genes. However, the heterogeneity of cancer involving multigene complexity calls upon a complementary approach to effectively develop novel anticancer drugs either to specific tumors or with broad range of anti-tumor activity. Among various techniques, fluorescence in situ hybridization (FISH) provides the opportunity to identify mRNA sequences at the subcellular level and has, therefore, become an important tool in gene expression studies. In our drug discovery and development program, we adopt a new hypothesis focusing on the whole cancer cell as a single target. A component of our unique developmental paradigm includes a drug-action profile paradigm defining the drug-specific antiproliferative effects of newly discovered investigational agents, at the molecular level using a genomic-proteomic interface. Such an approach using multicolor fluorescence hybridization on cDNA microarray and two-dimensional gel electrophoresis called, Painting with a Molecular Brush, has been successfully adopted to unravel the mechanism of action of a new anticancer agent, XK469.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pegram M, Hsu S, Lewis G, Pietras R, et al. Inhibitory effects of combinations of HER-2/new antibody and chemotherapeutic agents used for treatment of human breast cancer. Oncogene 1999; 18:2241–2251.

    Article  PubMed  CAS  Google Scholar 

  2. Singer RH, Lawrence JB, Villanave CA. Optimization of in situ hybridization using isotopic and nonisotopic detection methods. Biotechniques 1986; 4:230–250.

    CAS  Google Scholar 

  3. Going JJ, Gusterson BA. Molecular pathology and future developments. Eur J Cancer 1999; 35: 1895–1904.

    Article  PubMed  CAS  Google Scholar 

  4. Carter NP. Fluorescence in situ hybridization—state of the art. Bioimaging 1996; 4: 41–51.

    Article  CAS  Google Scholar 

  5. Dirks RW, van Gijlswijk RPM, Vooijs MA, et al. 3-End fluorochromized and haptenized oligonucleotides as in situ hybridization probes for multiple, simultaneous RNA detection. Exp Cell Res 1991; 194:310–315.

    Article  PubMed  CAS  Google Scholar 

  6. Wiegant J, Ried T, Nederlof PM, van der Ploeg M, Tanke HJ, Raap AK. In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 1991; 19:3237–3241.

    Article  PubMed  CAS  Google Scholar 

  7. Dirks RW, van Gijlswijk RP, Tullis RH, et al. Simultaneous detection of different mRNA sequences coding for neuropeptide hormones by double in situ hybridization using FITC-and biotin-labeled oligonucleotides J Histochem Cytochem 1990; 38:467–473.

    PubMed  CAS  Google Scholar 

  8. Lichter P, Tang CC, Call K, Hermanson G, Evans GA, Housman D, et al. High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 1990; 247:64–69.

    Article  PubMed  CAS  Google Scholar 

  9. Bauman JG, Wiegant J, Borst P, van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res 1980;128: 485–490.

    Article  PubMed  CAS  Google Scholar 

  10. Raap AK. Advances in fluorescence in situ hybridization. Mutat Res 1998; 400:287–298.

    PubMed  CAS  Google Scholar 

  11. Boulon S, Basyuk E, Blanchard JM, Bertrand E, Verheggen C. Intra-nuclear RNA trafficking: insights from live cell imaging. Biochimie 2002; 84:805–813.

    Article  PubMed  CAS  Google Scholar 

  12. Gygi MP, Ferguson M, Mefford HC, et al. Use of fluorescent sequence-specific polyamides to discriminate human chromosomes by microscopy and flow cytometry. Nucleic Acids Res 2002; 31:2790–2799.

    Article  Google Scholar 

  13. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990; 56:1919–1925.

    PubMed  CAS  Google Scholar 

  14. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR. Phylogenetic group-specific oligonucleotide probes for identification of single microbial cells. J Bacteriol 1988; 170:720–726.

    PubMed  CAS  Google Scholar 

  15. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci 2003; 116:2833–2838.

    Article  PubMed  CAS  Google Scholar 

  16. Trask BJ. Human genetics and disease: human cytogenetics: 46 chromosomes, 46 years and counting. Nature Rev Genet 2002; 3:769–778.

    Article  CAS  PubMed  Google Scholar 

  17. Blancato JK. Fluorescence in situ hybridization. In: Gersen S, Keagle M, eds. The principles of clinical cytogenetics. Totowa, NJ: Humana, 1999;443–471.

    Google Scholar 

  18. Abdel-Rahman WM, Katsura K, Rens W, et al. Spectral karyotyping suggests new subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc Natl Acad Sci USA 2001; 98:2538–2543.

    Article  PubMed  CAS  Google Scholar 

  19. Courtay-Cahen C, Morris JS, Edwards PAW. Chromosome translocations in breast cancer with break-points at 8p12. Genomics 2000; 66:15–25.

    Article  PubMed  CAS  Google Scholar 

  20. Ried T, Schrock E, Ning Y, Wienberg J. Chromosome painting: a useful art. Hum Mol Genet 1998; 7: 1619–1626.

    Article  PubMed  CAS  Google Scholar 

  21. Morris JS, Carter NP, Ferguson-Smith MA, Edwards PAW. Cytogenetic analysis of three breast carcinoma cell lines using reverse chromosome painting. Genes Chromosome Cancer 1997; 20:120–139.

    Article  CAS  Google Scholar 

  22. Arkesteijn G, Jumelet E, Hagenbeek A, Smit E, Slater R, Martens A. Reverse chromosome painting of the identification of marker chromosomes and complex translocations in leukaemia. Cytometry 1999; 35: 117–124.

    Article  PubMed  CAS  Google Scholar 

  23. Hedley DW, Friedlander ML, Taylor IW, et al. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 1983; 31:1333–1335.

    PubMed  CAS  Google Scholar 

  24. Thompson CT, LeBoit PE, Nederlof PM, et al. Thick section fluorescence in situ hybridization on formalin-fixed paraffin-embedded archival tissue provides a histogenic profile. Am J Pathol 1994; 144: 237–243.

    PubMed  CAS  Google Scholar 

  25. Hyytinen E, Visakorpi T, Kallioniemi A, et al. Improved technique for analysis of formalin-fixed, paraffin-embedded tumours by fluorescence in situ hybridization. Cytometry 1994; 16:93–99.

    Article  PubMed  CAS  Google Scholar 

  26. DiFrancesco LM, Murthy SK, Luider J, et al. Laser-capture microdissection-guided fluorescence in situ hybridization and flow cytometric cell cycle analysis of purified nuclei from paraffin sections. Mod Pathol 2000; 13:705–711.

    Article  PubMed  CAS  Google Scholar 

  27. McKay JA, Murray GI, Keith WN, et al. Amplification of fluorescent in situ hybridisation signals in formalin fixed paraffin wax embedded sections of colon tumor using biotinylated tyramide. J Clin Pathol Mol Pathol 1997; 50:322–325.

    CAS  Google Scholar 

  28. Chin SF, Daigo Y, Huang HE, et al. A simple and reliable pretreatment protocol facilitates fluorescence in situ hybridization on tissue microarrays of paraffin wax embedded tumour samples. J Clin Pathol Mol Pathol 2003; 56:275–279.

    CAS  Google Scholar 

  29. Schurter MK, LeBrun DP, Harrison KJ. Improved technique for fluorescence in situ hybridization analysis of isolated nuclei from archival, B5 or formalin fixed, paraffin wax embedded tissue. J Clin Pathol Mol Pathol 2002; 55:121–124.

    Article  CAS  Google Scholar 

  30. Coco-Martin JM, Lolkus M, Ottenheim CPE, Oomen LCJM, Blommestijn GJF, Begg AC. Automatic detection of stable and unstable chromosome aberrations visualized by three color imaging after fluorescence in situ hybridization with a painting and a pancentromeric DNA probe. Cytometry 1998; 32:327–336.

    Article  PubMed  CAS  Google Scholar 

  31. Speicher MR, Ballard SG, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor-FISH. Nature Genet 1996; 12:368–375.

    Article  PubMed  CAS  Google Scholar 

  32. König K, Göhlert A, Liehr T, Loncarevic IF, Riemann I. Two-photon multicolor FISH: a versatile technique to detect specific sequences within single DNA molecules in cells and tissues. Single Mol 2000;1: 41–51.

    Article  Google Scholar 

  33. Van de Corput MPC, Dirks RW, van Gijlswijk RPM, et al. Sensitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification. J Histochem Cytochem 1998; 46:1249–1259.

    PubMed  Google Scholar 

  34. Kerstens HMJ, Poddighe PJ, Hanselaar AGJM. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J Hitochem Cytochem 1995; 43:347–350.

    CAS  Google Scholar 

  35. van Gijlswijk RPM, Zijlmans HJMAA, Wiegant J, et al. Fluorochrome-labeled tyramides: use in immunohistochemsitry and fluorescence in situ hybridization. J Histochem Cytochem 1997; 45:375–382.

    PubMed  Google Scholar 

  36. Wan TSK, Ma SK, Au WY, Chan LC. Derivative chromosome 9 deletions in chronic myeloid leukemia: interpretation of atypical D-FISH pattern. J Clin Pathol 2003; 56:471–474.

    Article  PubMed  CAS  Google Scholar 

  37. Buno I, Wyatt W, Zinsmeister AR, et al. A special fluorescent in situ hybridization technique to study peripheral blood and assess the effectiveness of interferon therapy in chronic myeloid leukemia. Blood 1998; 92:2315–2321.

    PubMed  CAS  Google Scholar 

  38. Forus A, Hoifodt HK, Overli GET, Myklebost O, Fodstad O. Sensitive fluorescent in situ hybridization method for the characterization of breast cancer cells in bone marrow aspirates. Br Med J 1999; 52: 68–74.

    CAS  Google Scholar 

  39. Blough RI, Heerema NA, Ulbricht TM, Smolarek TA, Roth LM, Einhorn LH. Interphase chromosome painting of paraffin-embedded tissue in the differential diagnosis of possible germ-cell tumors. Mod Pathol 1998; 11: 634–641.

    PubMed  CAS  Google Scholar 

  40. Janocko LE, Brown KA, Smith CA, et al. Distinctive patterns of Her2/neu, c-myc and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry 2001; 46:136–149.

    Article  PubMed  CAS  Google Scholar 

  41. Horelli-Kuitunen N, Aaltonen J, Yaspo ML, et al. Mapping ESTs by fiber-FISH. Genomic Res 1999;9: 62–71.

    CAS  Google Scholar 

  42. Fan YS, Davis LM, Shiws TB. Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Proc Natl Acad Sci USA 1990; 87:6223–6227.

    Article  PubMed  CAS  Google Scholar 

  43. Florijn RJ, van de Rijke FM, Vrolijk H, et al. Exon mapping by fiber-FISH or LR-PCR. Genomics 1996;38:277–282.

    Article  PubMed  CAS  Google Scholar 

  44. Castro LFC, Holland PWH. Fluorescence in situ hybridization to amphioxus chromosome. Zool Sci 2002; 19:1349–1353.

    Article  PubMed  CAS  Google Scholar 

  45. Schulze A, Downward J. Navigating gene expression using microarrays—a technology review. Nature Cell Biol 2001; 3:E190–E195.

    Article  PubMed  CAS  Google Scholar 

  46. Bertucci F, Viens P, Rebecca T, Catherine Nguyen, Houlgatte R, Birnbaum D. DNA arrays in clinical oncology: promises and challenges. Lab Invest 2003; 83:305–316.

    PubMed  Google Scholar 

  47. Debouck C, Goodfellow PN. DNA microarrays in drug discovery and development. Nature Genet 1999; 21(Suppl):48–50.

    Article  PubMed  CAS  Google Scholar 

  48. Marton MJ, DeRisi JL, Bennet HA, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med 1998; 11:1293–1301.

    Google Scholar 

  49. Nakeff A, Sahay N, Pisano M, Subramanian B. Painting with a molecular brush: genomic/proteomic interfacing to define the drug action profile of novel solid-tumor selective anticancer agents. Cytometry 2002; 47: 72–79.

    Article  PubMed  CAS  Google Scholar 

  50. Lin H, Subramanian B, Nakeff A, Chen B. XK469, a novel antitumor agent, inhibits signaling by the MEK/MAPK signaling pathway. Cancer Chemother Pharmacol 2002; 49:281–286.

    Article  PubMed  CAS  Google Scholar 

  51. Lin H, Liu XY, Subramanian B, Nakeff A, Valeriote F, Chen B. Mitotic arrest induced by XK469, a novel antitumor agent, is correlated with the inhibition of cyclin B1 ubiquitination. Int J Cancer 2002;97: 121–128.

    Article  PubMed  CAS  Google Scholar 

  52. Yan F, Subramanian B, Nakeff A, et al. A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2D liquid separation mapping method based upon chromatofocusing pI fractionation. Anal Chem 2003; 75:2299–2308.

    Article  PubMed  CAS  Google Scholar 

  53. Corbett TH, LoRusso P, Demchick I, et al. Preclinical antitumor efficacy of analogs of XK469: sodium-(2[4-(7-chloro-2-quinoxalinoxyl)phenoxy]propionate. Invest New Drugs 1998; 16:129–139.

    Article  PubMed  CAS  Google Scholar 

  54. LoRusso PM, Parchment R, Demchik I, et al. Preclinical antitumor activity of XK469 (NSC 656889). Invest New Drugs 1999; 16:287–296.

    CAS  Google Scholar 

  55. Gao H, Huang KC, Yamasaki EF, Chan KK, Chohan I, Snapka RM. XK469, a selective toposiomerase IIβ poison. Proc Natl Acad Sci USA 1999; 96:12,168–12,173.

    Article  PubMed  CAS  Google Scholar 

  56. Subramanian B, Nakeff A, Media J, Wentland M, Valeriote FA. Cellular drug action profile paradigm applied to XK469. J Exp Ther Oncol 2001; 2:253–263.

    Article  Google Scholar 

  57. Gutkind JS. The pathways connecting G protein coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998; 273:1839–1842.

    Article  PubMed  CAS  Google Scholar 

  58. Hoshino R, Chatani Y, Yamori T, et al. Constitute activation of the 41-/43-kDa mitogen activated kinase signaling pathway in human tumors. Oncogene 1999; 21:813–822.

    Article  CAS  Google Scholar 

  59. Tibbles LA, Ing YL, Kiefer F, et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 1996; 15:7026–7035.

    PubMed  CAS  Google Scholar 

  60. Li Y, White R. Suppression of a human colon cancer cell line by introduction of an exogenous NF1 gene. Cancer Res 1996; 56:2872–2876.

    PubMed  CAS  Google Scholar 

  61. Reszka AA, Serger R, Diltz CD, Krebs EG, Fischer EH. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 1995; 92:8881–8885.

    Article  PubMed  CAS  Google Scholar 

  62. Riabowol K, Draaetta G, Brizuela L, Vandre D, Beach D. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 1989; 57:393–401.

    Article  PubMed  CAS  Google Scholar 

  63. Wright JH, Munar E, Jameson D, et al. Mitogen activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Sci USA 1996; 96:11,335–11,340.

    Article  Google Scholar 

  64. Morgon DO. Principles of CDK regulation. Nature 1995; 374:131–134.

    Article  Google Scholar 

  65. Tanaka H, Arakawa H, Yamaguchi T, et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000; 404:42–49.

    Article  PubMed  CAS  Google Scholar 

  66. Yu J, Zhang L, Hwang PM, et al. Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 1999; 96:14,517–14,522.

    Article  PubMed  CAS  Google Scholar 

  67. Harkin DP. Uncovering functionally relevant signaling pathways using microarray-based expression profiling. Oncologist 2000; 5:501–507.

    Article  PubMed  CAS  Google Scholar 

  68. Macgregor PF, Squire JA. Application of microarrays to the analysis of gene expression in cancer. Clin Chem 2002; 48:1170–1177.

    PubMed  CAS  Google Scholar 

  69. Clarke PA, George NL, Easdale S, et al. Molecular pharmacology of cancer therapy in human colorectal cancer by gene expression profiling. Cancer Res 2003; 63:6855–6863.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Subramanian, B., Nakeff, A., Valeriote, F. (2005). From FISH to Proteomics. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:53

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:53

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics