Skip to main content

Proteasome Inhibition and Its Clinical Application in Solid Tumors

  • Chapter
The Oncogenomics Handbook

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 967 Accesses

Abstract

The proteasome is a multicatalytic protein complex whose principal function is the degradation of vital proteins many of which are involved in cell cycle regulation, tumor suppression, apoptosis, transcription, and angiogenesis. The inhibition of the proteasome is a promising novel therapeutic approach to cancer treatment. Bortezomib (Velcade) is the first proteasome inhibitor to have shown anticancer activity and reach clinical trials. Preclinical and early clinical trials in both solid tumors and hematological malignancies demonstrate that bortezomib is a relatively well-tolerated and active agent, either alone or in combination with traditional chemotherapeutic drugs. Most recently, its efficacy has been shown in multiple myeloma. Currently, clinical trials are ongoing in order to determine the efficacy as well as safety of bortezomib in the management of solid tumors, especially in combination with traditional cytotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Bio-chem 1996; 65:801–847.

    Article  CAS  Google Scholar 

  2. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998; 17(24):7151–7160.

    Article  PubMed  CAS  Google Scholar 

  3. Spataro V, Norbury C, Harris AL. The ubiquitin-proteasome pathway in cancer. Br J Cancer 1998; 77(3):448–455.

    PubMed  CAS  Google Scholar 

  4. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70:503–533.

    Article  PubMed  CAS  Google Scholar 

  5. King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. Science 1996; 274(5293):1652–1659.

    Article  PubMed  CAS  Google Scholar 

  6. Chadebech P, Brichese L, Baldin V, Vidal S, Valette A. Phosphorylation and proteasome-dependent degradation of Bcl-2 in mitotic-arrested cells after microtubule damage. Biochem Biophys Res Commun 1999; 262(3): 823–827.

    Article  PubMed  CAS  Google Scholar 

  7. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994; 78(5):773–785.

    Article  PubMed  CAS  Google Scholar 

  8. Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcription regulation. Science 2002; 296(5571):1254–1258.

    Article  PubMed  CAS  Google Scholar 

  9. Lipkowitz S. The role of the ubiquitination-proteasome pathway in breast cancer: ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer. Breast Cancer Res 2003; 5(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  10. Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 2003; 8(6):508–513.

    Article  PubMed  Google Scholar 

  11. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349(6305):132–138.

    Article  PubMed  CAS  Google Scholar 

  12. Hateboer G, Kerkhoven RM, Shvarts A, Bernards R, Beijersbergen RL. Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev 1996; 10(23):2960–2970.

    Article  PubMed  CAS  Google Scholar 

  13. Blagosklonny MV, Wu GS, Omura S, El-Deiry WS. Proteosome-dependent regulation of p21WAF/CIP1 expression. Biochem Biophys Res Commun 1996; 227:564–569.

    Article  PubMed  CAS  Google Scholar 

  14. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269(5224): 682–685.

    Article  PubMed  CAS  Google Scholar 

  15. Machiels BM, Henfling ME, Gerards WL, Broers JL, Bloemendal H, Ramaekers FC, et al. Detailed analysis of cell cycle kinetics upon proteasome inhibition. Cytometry 1997; 28(3):243–252.

    Article  PubMed  CAS  Google Scholar 

  16. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, et al. Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 1997; 3(2): 227–230.

    Article  PubMed  CAS  Google Scholar 

  17. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 1997; 3(2): 231–234.

    Article  PubMed  CAS  Google Scholar 

  18. Tsihlias J, Kapusta LR, DeBoer G, Morava-Protzner I, Zbieranowski I, Bhattacharya N, et al. Loss of cyclin-dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cancer Res 1998; 58(3):542–548.

    PubMed  CAS  Google Scholar 

  19. Catzavelos C, Tsao MS, DeBoer G, Bhattacharya N, Shepherd FA, Slingerland JM. Reduced expression of the cell cycle inhibitor p27Kip1 in non-small cell lung carcinoma: a prognostic factor independent of Ras. Cancer Res 1999; 59(3):684–688.

    PubMed  CAS  Google Scholar 

  20. Mack PC, Davies AM, Lara PN, Gumerlock PH, Gandara DR. Integration of the proteasome inhibitor PS-341 (Velcade) into the therapeutic approach to lung cancer. Lung Cancer 2003; 41(Suppl 1):S89–S96.

    Article  PubMed  Google Scholar 

  21. Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res 1996; 56(11):2649–2654.

    PubMed  CAS  Google Scholar 

  22. Cox LS, Lane DP. Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. Bioessays 1995; 17(6):501–508.

    Article  PubMed  CAS  Google Scholar 

  23. Ling YH, Liebes L, Jiang JD, Holland JF, Elliott PJ, Adams J, et al. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 2003; 9(3):1145–1154.

    PubMed  CAS  Google Scholar 

  24. Bartek J, Lukas J. Mammalian G1-and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 2001; 13(6):738–747.

    Article  PubMed  CAS  Google Scholar 

  25. Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 1994; 91(9): 3602–3606.

    Article  PubMed  CAS  Google Scholar 

  26. Herrmann JL, Briones F Jr, Brisbay S, Logothetis CJ, McDonnell TJ. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 1998; 17(22): 2889–2899.

    Article  PubMed  CAS  Google Scholar 

  27. An WG, Hwang SG, Trepel JB, Blagosklonny MV. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000; 14(7):1276–1283.

    Article  PubMed  CAS  Google Scholar 

  28. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59(11):2615–2622.

    PubMed  CAS  Google Scholar 

  29. Dietrich C, Bartsch T, Schanz F, Oesch F, Wieser RJ. p53-dependent cell cycle arrest induced by N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal in platelet-derived growth factor-stimulated human fibroblasts. Proc Natl Acad Sci USA 1996; 93(20):10,815–10,819.

    Article  PubMed  CAS  Google Scholar 

  30. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274(5288):782–784.

    Article  PubMed  CAS  Google Scholar 

  31. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996; 274(5288):787–789.

    Article  PubMed  Google Scholar 

  32. Wang CY, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274(5288):784–787.

    Article  PubMed  CAS  Google Scholar 

  33. Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, et al. Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 1997; 278(5344):1812–1815.

    Article  PubMed  CAS  Google Scholar 

  34. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13(4): 382–387.

    PubMed  CAS  Google Scholar 

  35. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14:649–683.

    Article  PubMed  CAS  Google Scholar 

  36. Mayo MW, Madrid LV, Westerheide SD, Jones DR, Yuan XJ, Baldwin AS Jr, et al. PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J Biol Chem 2002; 277(13):11,116–11,125.

    Article  PubMed  CAS  Google Scholar 

  37. Jones DR, Broad RM, Madrid LV, Baldwin AS Jr, Mayo MW. Inhibition of NF-kappaB sensitizes non-small cell lung cancer cells to chemotherapy-induced apoptosis. Ann Thorac Surg 2000; 70(3):930–936; discussion 936-937.

    Article  PubMed  CAS  Google Scholar 

  38. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced antitumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999; 5(4):412–417.

    Article  PubMed  Google Scholar 

  39. Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, et al. Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 2001; 115(2): 279–286.

    Article  PubMed  CAS  Google Scholar 

  40. Izban KF, Ergin M, Huang Q, Qin JZ, Martinez RL, Schnitzer B, et al. Characterization of NF-kappaB expression in Hodgkin’s disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod Pathol 2001; 14(4):297–310.

    Article  PubMed  CAS  Google Scholar 

  41. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-KB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000; 14(3):399–402.

    Article  PubMed  CAS  Google Scholar 

  42. Tricot G. New insights into the role of microenvironment in multiple myeloma. Lancet 2000; 355(9200):248–250.

    Article  PubMed  CAS  Google Scholar 

  43. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 1997; 17(7): 3629–3639.

    PubMed  CAS  Google Scholar 

  44. Patel NM, Nozaki S, Shortle NH, Bhat-Nakshatri P, Newton TR, Rice S, et al. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 2000; 19(36):4159–4169.

    Article  PubMed  CAS  Google Scholar 

  45. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999; 5(1): 119–127.

    PubMed  CAS  Google Scholar 

  46. Mukhopadhyay T, Roth JA, Maxwell SA. Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene 1995; 11(5):999–1003.

    PubMed  CAS  Google Scholar 

  47. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 1993; 365(6442):182–185.

    Article  PubMed  CAS  Google Scholar 

  48. Alkalay I, Yaron A, Hatzubai A, Orian A, Ciechanover A, Ben-Neriah Y. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1995; 92(23):10,599–10,603.

    Article  PubMed  CAS  Google Scholar 

  49. Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999; 5(9):2638–2645.

    PubMed  CAS  Google Scholar 

  50. Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl Bancroft C, Sausville E, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 2001; 7(5):1419–1428.

    PubMed  CAS  Google Scholar 

  51. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001; 61(9):3535–3540.

    PubMed  CAS  Google Scholar 

  52. Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 2001; 82(1):110–122.

    Article  PubMed  CAS  Google Scholar 

  53. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 2001; 100(1):11–17.

    Article  PubMed  CAS  Google Scholar 

  54. Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 2004; 3(1): 59–70.

    PubMed  CAS  Google Scholar 

  55. Fahy BN, Schlieman MG, Virudachalam S, Bold RJ. Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res 2003; 113(1):88–95.

    Article  PubMed  CAS  Google Scholar 

  56. Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 2002; 8(8):2505–2511.

    PubMed  CAS  Google Scholar 

  57. Albanell J, Baselga J, Guix M, Twelves CJ, Glasspool R, Awada A, et al. Phase I study of bortezomib in combination with docetaxel in anthracycline-pretreated advanced breast cancer. In: American Society of Clinical Oncology; Chicago, IL, 2003 (abstract).

    Google Scholar 

  58. Aghajanian C, Dizon D, Yan XJ, Raizer J, Sabbatini P, Pezzulli S, et al. Phase I trial of PS-341 and carboplatin in recurrent ovarian cancer. In: American Society of Clinical Oncology; Chicago, IL, 2003 (abstract).

    Google Scholar 

  59. Appleman LJ, Ryan DP, Clark JW, Eder JP, Fishman M, Cusack JC, et al. Phase I dose escalation study of bortezomib and gemcitabine safety and tolerability in patients with advanced solid tumors. In: American Society of Clinical Oncology, Chicago, IL; 2003 (abstract).

    Google Scholar 

  60. Iqbal S, Lenz H-J, Groshen S, Wei Y, Gandara DR, Lara PN, et al. Phase I study of PS-341 in combination with 5-FU/LV in solid tumors. In: American Society of Clinical Oncology, Orlando, FL; 2002 (abstract).

    Google Scholar 

  61. Ryan DP, O’Neil B, Lima CR, Eder JP, Lynch TL, Cusack JC, et al. Phase I dose-escalation study of the proteasome inhibitor, bortezomib, plus irinotecan in patients with advanced solid tumors. In: American Society of Clinical Oncology, Chicago, IL; 2003 (abstract).

    Google Scholar 

  62. Papandreou C, Daliani D, Millikan RE, Tu S, Pagliaro L, Adams J, et al. Phase I study of intravenous (I.V.) Proteasome inhibitor PS-341 in patients (pts) with advanced malignancies. In: American Society of Clinical Oncology, 2001 (abstract).

    Google Scholar 

  63. Erlichman C, Adjei AA, Thomas JP, Wilding G, Reid JM, Sloan JA, et al. A phase I trial of the proteasome inhibitor PS-341 in patients with advanced cancer. In: American Society of Clinical Oncology, San Francisco, CA; 2001 (abstract).

    Google Scholar 

  64. Albanell J, Baselga J, Guix M, Twelves CT, Glasspool R, Awada A, et al. Phase I study of bortezomib in combination with docetaxel in anthracycline-pretreated advanced breast cancer. In: American Society of Clinical Oncology, Chicago, IL; 2003 (abstract).

    Google Scholar 

  65. Lebowitz PF, Harkins C, Conley B, Headlee D, Camphausen K, Guis D, et al. Concomitant therapy with proteasome inhibitor, bortezomib, and radiation in patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). In: American Society of Clinical Oncology, Chicago, IL; 2003 (abstract).

    Google Scholar 

  66. Davis NB, Taber DA, Ansari RH, Ryan CW, George C, Vokes EE, et al. Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago phase II consortium study. J Clin Oncol 2004; 22(1):115–119.

    Article  PubMed  CAS  Google Scholar 

  67. Drucker BJ, Schwartz L, Bacik J, Mazumdar M, Marion S, Motzer RJ. Phase II trial of PS-341 shows response in patients with advanced renal cell carcinoma. In: American Society of Clinical Oncology; Chicago, IL, 2003 (abstract).

    Google Scholar 

  68. Maki R, Kraft A, Demetri GD, Siegel E, Hirst C, Connors S, et al. A phase II multicenter study of proteasome inhibitor PS-341 (LDP-341, bortezomib) for untreated recurrent or metastatic soft tissue sarcoma (STS); CTEP study 1757. In: American Society of Clinical Oncology, Chicago, IL; 2003 (abstract).

    Google Scholar 

  69. Shah MH, Martin E, Ellison C, Kraut E, Kindler H, Young D, et al. A phase II study of proteasome inhibitor PS-341 in metastatic neuroendocrine tumors. In: American Society of Clinical Oncology, Orlando, FL; 2002 (abstract).

    Google Scholar 

  70. Stevenson J, Nho CW, Schick J, Johnson SW, Algazy K, Miller D, et al. Phase II clinical/pharmacodynamic trial of the proteasome inhibitor PS-341 in advanced non-small cell lung cancer. In: American Society of Oncology; Chicago, IL, 2003 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Park, D.J., Lenz, HJ. (2005). Proteasome Inhibition and Its Clinical Application in Solid Tumors. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:493

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:493

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics