Skip to main content

Use of Adenovirus-Mediated Gene Transfer to Facilitate Biological Annotation of Novel Genes

  • Chapter
The Oncogenomics Handbook

Abstract

As part of a large program of gene annotation, use of adenovirus-mediated gene transfer facilitated rapid progress in the functional evaluation of more than 100 genes. Localized or systemic exposure to gene products expressed by adenovirus-transduced cells led to the discovery of several novel activities through analysis of resulting physiochemical or histological changes. In this summary of the work, we present examples of two studies in which activities of novel growth factors were initially characterized using this approach. In the first example, intravenous delivery of adenovirus encoding different forms of platelet-derived growth factor (PDGF) allowed us to evaluate effects of systemic exposure to two new members of this family, PDGF-C and PDGF-D, and led to specific new hypotheses regarding their roles in diseases of the liver and kidney, respectively. In the second example, localized delivery of adenovirus encoding fibroblast growth factor (FGF)-18 to mouse pinna led to the discovery that this novel FGF is a trophic factor for mature chondrocytes and their progenitors and might be useful for treating cartilage disease. These examples serve to illustrate the potential of in vivo gene delivery approaches to facilitate functional analysis and focus of secondary investigation in a large screening effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellsworth JL, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage 2002; 10:308–320.

    Article  PubMed  CAS  Google Scholar 

  2. Moore EE, Bendele A, Thompson DL, et al. Fibroblast growth factor-18 stimulates chondrogenesis and promotes cartilage repair in a rat model of injury-induced osteoarthritis. Trans Orthop Res Soc 2004;29:199.

    Google Scholar 

  3. Ellsworth JL, Garcia R, Yu J, Kindy MS. Fibroblast growth factor-18 reduced infarct volumes and behavioral deficits following occlusion of the middle cerebral artery in rats. Stroke 2003; 34:1507–1512.

    Article  PubMed  CAS  Google Scholar 

  4. Ellsworth JL, Garcia R, Yu J, Kindy MS. Time window of fibroblast growth factor-18-mediated neuroprotection after occlusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 2004; 24: 114–123.

    Article  PubMed  CAS  Google Scholar 

  5. Raper SE, DeMatteo RP. Adenovirus-mediated in vivo gene transfer and expression in normal rat pancreas. Pancreas 1996; 12:401–410.

    Article  PubMed  CAS  Google Scholar 

  6. Wilson JM. Adenovirus-mediated gene transfer to liver. Adv Drug Deliv Rev 2001; 46:205–209.

    Article  PubMed  CAS  Google Scholar 

  7. Panchal RG, Williams DA, Kitchener PD, et al. Gene transfer: manipulating and monitoring function in cells and tissues. Clin Exp Pharmacol Physiol 2001; 28:687–691.

    Article  PubMed  CAS  Google Scholar 

  8. Hidaka C, Khan SN, Farmer JC, Sandhu HS. Gene therapy for spinal applications. Orthop Clin North Am 2002; 33:439–446.

    Article  PubMed  Google Scholar 

  9. Goossens PH, Huizinga TW. Adenoviral-mediated gene transfer to the synovial tissue. Clin Exp Rheumatol 2002; 20:415–419.

    PubMed  CAS  Google Scholar 

  10. Alisky JM, Davidson BL. Gene transfer to brain and spinal cord using recombinant adenoviral vectors. Methods Mol Biol 2004; 246:91–120.

    PubMed  CAS  Google Scholar 

  11. Lai CM, Lai YK, Rakoczy PE. Adenovirus and adeno-associated virus vectors. DNA Cell Biol 2002; 21: 895–913.

    Article  PubMed  CAS  Google Scholar 

  12. Douglas JT. Adenovirus-mediated gene delivery: an overview. Methods Mol Biol 2004; 246:3–14.

    PubMed  CAS  Google Scholar 

  13. Imperiale MJ, Kochanek S. Adenovirus vectors: biology, design, and production. Curr Topics Microbiol Immunol 2004; 273:335–357.

    CAS  Google Scholar 

  14. Kozarsky KF, Wilson JM. Gene therapy: adenovirus vectors. Curr Opin Genet Dev 1993; 3:499–503.

    Article  PubMed  CAS  Google Scholar 

  15. Mizuguchi H, Kay MA, Hayakawa T. Approaches for generating recombinant adenovirus vectors. Adv Drug Deliv Rev 2001; 52:165–176.

    Article  PubMed  CAS  Google Scholar 

  16. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95:2509–2514.

    Article  PubMed  CAS  Google Scholar 

  17. Sadikot RT, Han W, Everhart MB, et al. Selective I kappa B kinase expression in airway epithelium generates neutrophilic lung inflammation. J Immunol 2003; 170:1091–1098.

    PubMed  CAS  Google Scholar 

  18. Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003; 10:935–940.

    Article  PubMed  CAS  Google Scholar 

  19. Moore EE, Kuestner RE, Conklin DC, et al. Stanniocalcin 2: characterization of the protein and its localization to human pancreatic alpha cells. Horm Metab Res 1999; 31:406–414.

    Article  PubMed  CAS  Google Scholar 

  20. Gilbertson DG, Duff ME, West JW, et al. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor. J Biol Chem 2001; 276:27,406–27,414.

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nature Cell Biol 2000; 2:302–309.

    Article  PubMed  CAS  Google Scholar 

  22. LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nature Cell Biol 2001; 3:517–521.

    Article  PubMed  CAS  Google Scholar 

  23. Changsirikulchai S, Hudkins KL, Goodpaster TA, et al. Platelet-derived growth factor-D expression in developing and mature human kidneys. Kidney Int 2002; 62:2043–2054.

    Article  PubMed  CAS  Google Scholar 

  24. Hudkins KL, Gilbertson DG, Carling M, et al. Exogenous PDGF-D is a potent mesangial cell mitogen and causes a severe mesangial proliferative glomerulopathy. J Am Soc Nephrol 2004; 15:286–298.

    Article  PubMed  CAS  Google Scholar 

  25. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275:2247–2250.

    Article  PubMed  CAS  Google Scholar 

  26. Rojkind M, Giambrone MA, Biempica L. Collagen types in normal and cirrhotic liver. Gastroenterology 1979; 76:710–719.

    PubMed  CAS  Google Scholar 

  27. Whitmore TE, Maurer MF, Sexson S, Raymond F, Conklin D, Deisher TA. Assignment of fibroblast growth factor 18 (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet 2000; 90:231–233.

    Article  PubMed  CAS  Google Scholar 

  28. Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bio-essays 2000; 22:108–112.

    CAS  Google Scholar 

  29. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001; 2:REVIEWS3005.1-3005.12.

    Google Scholar 

  30. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 2000; 127:1833–1843.

    PubMed  CAS  Google Scholar 

  31. Hoshikawa M, Yonamine A, Konishi M, Itoh N. FGF-18 is a neuron-derived glial cell growth factor expressed in the rat brain during early postnatal development. Brain Res Mol Brain Res 2002; 105:60–66.

    Article  PubMed  CAS  Google Scholar 

  32. Pourtier-Manzanedo A, Vercamer C, Van Belle E, Mattot V, Mouquet F, Vandenbunder B. Expression of an Ets-1 dominant-negative mutant perturbs normal and tumor angiogenesis in a mouse ear model. Oncogene 2003; 22: 1795–1806.

    Article  PubMed  CAS  Google Scholar 

  33. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  34. Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage 2002; 10:785–791.

    Article  PubMed  CAS  Google Scholar 

  35. Lozoya KA, Flores JB. A novel rat osteoarthrosis model to assess apoptosis and matrix degradation. Pathol Res Pract 2000; 196:729–745.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ellsworth, J.L., Feldhaus, A., Hughes, S.D. (2005). Use of Adenovirus-Mediated Gene Transfer to Facilitate Biological Annotation of Novel Genes. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:287

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:287

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics