Skip to main content

Innovative Strategies for Improving Engineered Mouse Models of Human Cancer for Preclinical Development

  • Chapter
Book cover The Oncogenomics Handbook

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 968 Accesses

Abstract

Because of the high cost and risk of anticancer drug discovery and development, predictability is highly desirable. Results from a small-animal model system that is highly relevant to a given human tumor are of the highest quality in target identification and validation, in evaluating the efficacy and toxicity, and in targeting the delivery of a therapeutic. Here, we discuss efforts in engineering better mouse model systems of cancer and the promise offered by innovative technologies in further improving them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society. Cancer facts and figures. Atlanta, GA: American Cancer Society, 2004.

    Google Scholar 

  2. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. [see comment]. J Health Econ 2003; 22:151–185.

    Article  PubMed  Google Scholar 

  3. Tornell J, Snaith M. Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov Today 2002; 7:461–470.

    Article  PubMed  CAS  Google Scholar 

  4. Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 2003; 107:688–695.

    Article  PubMed  CAS  Google Scholar 

  5. Rijkers T, Peetz A, Ruther U. Insertional mutagenesis in transgenic mice. Transgen Res 1994; 3: 203–215.

    Article  CAS  Google Scholar 

  6. Rigel DS. Malignant melanoma: perspectives on incidence and its effects on awareness, diagnosis, and treatment. Ca: Cancer J Clin 1996; 46:195–198.

    CAS  Google Scholar 

  7. Herlyn M. Molecular and cellular biology of melanoma. Austin, TX: Landes, 1993.

    Google Scholar 

  8. Bradl M, Klein-Santo A, Porter S, Mintz B. Malignant melanoma in transgenic mice. Proc Natl Acad Sci USA 1991; 88:164–168.

    Article  PubMed  CAS  Google Scholar 

  9. Chin L, Pomerantz J, Polsky D, et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997; 11:2822–2834.

    PubMed  CAS  Google Scholar 

  10. Iwamoto T, Takahashi M, Ito M, et al. Aberrant melanogenesis and melanocytic tumour development in transgenic mice that carry a metallothionein/ret fusion gene. EMBO J 1991; 10:3167–3175.

    PubMed  CAS  Google Scholar 

  11. Kato M, Takahashi M, Akhand AA, et al. Transgenic mouse model for skin malignant melanoma. Oncogene 1998; 17:1885–1888.

    Article  PubMed  CAS  Google Scholar 

  12. Mintz B, Silvers WK, Klein-Szanto AJP. Histopathogenesis of malignant skin melanoma induced in genetically susceptible transgenic mice. Proc Natl Acad Sci USA 1993; 90:8822–8826.

    Article  PubMed  CAS  Google Scholar 

  13. Klein-Szanto AJ, Silvers WK, Mintz B. Ultraviolet radiation-induced malignant skin melanoma in melanoma-susceptible transgenic mice. Cancer Res 1994; 54:4569–4572.

    PubMed  CAS  Google Scholar 

  14. Powell MB, Gause PR, Hyman P, et al. Induction of melanoma in TPras transgenic mice. Carcinogenesis 1999; 20:1747–1753.

    Article  Google Scholar 

  15. Otsuka T, Takayama H, Sharp R, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 1998; 58:5157–5167.

    PubMed  CAS  Google Scholar 

  16. Takayama H, LaRochelle WJ, Sharp R, et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94: 701–706.

    Article  PubMed  CAS  Google Scholar 

  17. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413:83–86.

    Article  PubMed  CAS  Google Scholar 

  18. Sharpless NE, Bardeesy N, Lee KH, et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413:86–91.

    Article  PubMed  CAS  Google Scholar 

  19. Bardeesy N, Wong KK, DePinho RA, Chin L. Animal models of melanoma: recent advances and future prospects. Adv Cancer Res 2000; 79:123–156.

    Article  PubMed  CAS  Google Scholar 

  20. Chen S, Tiecher L, Kazim D, Pollack R, Wise L. DNA commitment of mouse fibroblasts to adipocyte differentiation by DNA transfection. Science 1989; 244:582–585.

    Article  PubMed  CAS  Google Scholar 

  21. Colon-Teicher L, Wise LS, Martino JJ, et al. Genomic sequences capable of committing mouse and rat fibroblasts to adipogenesis. Nucleic Acids Res 1993; 21:2223–2228.

    Article  PubMed  CAS  Google Scholar 

  22. Chen S, Zhu H, Wetzel WJ, Philbert MA. Spontaneous melanocytosis in transgenic mice. J Invest Dermatol 1996; 106:1145–1150.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu H, Reuhl K, Zhang X, et al. Development of heritable melanoma in transgenic mice. J Invest Dermatol 1998; 110:247–252.

    Article  PubMed  CAS  Google Scholar 

  24. Trent J, Stanbridge E, McBride H, et al. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 1990; 247:568–571.

    Article  PubMed  CAS  Google Scholar 

  25. Pollock PM, Cohen-Solal K, Sood R, et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nature Genet 2003; 34:108–112.

    Article  PubMed  CAS  Google Scholar 

  26. Harris S. Transgenic knockouts as part of high-throughput, evidence-based target selection and validation strategies. Drug Discov Today 2001; 6:628–636.

    Article  PubMed  CAS  Google Scholar 

  27. Kubinyi H. Chance favors the prepared mind—from serendipity to rational drug design. J Receptor Signal Transduct Res 1999; 19:15–39.

    Article  CAS  Google Scholar 

  28. Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J. Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 2003; 9:1837–1849.

    PubMed  CAS  Google Scholar 

  29. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92:3439–3943.

    Article  PubMed  CAS  Google Scholar 

  30. Martiniello-Wilks R, Dane A, Voeks DJ, et al. Gene-directed enzyme prodrug therapy for prostate cancer in a mouse model that imitates the development of human disease. J Gene Med 2004; 6:43–54.

    Article  PubMed  CAS  Google Scholar 

  31. Jikai J, Shamis M, Huebener N, et al. Neuroblastoma directed therapy by a rational prodrug design of etoposide as a substrate for tyrosine hydroxylase. Cancer Lett 2003; 197:219–224.

    Article  PubMed  CAS  Google Scholar 

  32. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997; 16:2985–2995.

    Article  PubMed  CAS  Google Scholar 

  33. Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet 2003; 362: 1401–1403.

    Article  PubMed  CAS  Google Scholar 

  34. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002; 532:227–230.

    Article  PubMed  CAS  Google Scholar 

  35. Contag PR. Whole-animal cellular and molecular imaging to accelerate drug development. [see comment]. Drug Discov Today 2002; 7:555–562.

    Article  PubMed  CAS  Google Scholar 

  36. Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science 2003; 302: 605–608.

    Article  PubMed  CAS  Google Scholar 

  37. Vooijs M, Jonkers J, Lyons S, Berns A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res 2002; 62:1862–1867.

    PubMed  CAS  Google Scholar 

  38. Johnson GA, Cofer GP, Gewalt SL, Hedlund LW. Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 2002; 222:789–793.

    Article  PubMed  Google Scholar 

  39. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999; 56:247–258.

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez FJ, Kimura S. Study of P450 function using gene knockout and transgenic mice. Arch Biochem Biophys 2003; 409:153–158.

    Article  PubMed  CAS  Google Scholar 

  41. Nelson DR, Zeldin DC, Hoffman S, Malttais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004; 14:1–18.

    Article  PubMed  CAS  Google Scholar 

  42. Nebert DW, Dalton TP, Stuart GW, Carvan MJ 3rd. “Gene-swap knock-in” cassette in mice to study allelic differences in human genes. Ann NY Acad Sci 2000; 919:148–170.

    Article  PubMed  CAS  Google Scholar 

  43. Xie W, Evans RM. Pharmaceutical use of mouse models humanized for the xenobiotic receptor. Drug Discov Today 2002; 7:509–515.

    Article  PubMed  CAS  Google Scholar 

  44. Fugger L. Human autoimmunity genes in mice. Curr Opin Immunol 2000; 12:698–703.

    Article  PubMed  CAS  Google Scholar 

  45. DePinho RA. The age of cancer. Nature 2000; 408:248–254.

    Article  PubMed  CAS  Google Scholar 

  46. Rangarajan A, Weinberg RA. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Reviews. Cancer 2003; 3:952–959.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Martino, J.J., Chen, S. (2005). Innovative Strategies for Improving Engineered Mouse Models of Human Cancer for Preclinical Development. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:275

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:275

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics