Skip to main content

Genetically Engineered Mouse Models of Human Cancer for Drug Discovery and Development

  • Chapter
The Oncogenomics Handbook

Abstract

Animal models for cancer research, although not perfect, have traditionally been crucial to the drug discovery and development process. Recent advances in genetically modified mice have created opportunities to model many aspects of cancer biology, which established xenograft models ignore. Selection of the right model will be of increasing importance in the search for efficacious human therapeutics. These improved mouse models also permit a new concept of preclinical trials in which the efficacy of novel drugs can be tested against spontaneous tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furth J, Seibold HR, Rathbone RR. Experimental studies on lymphomatosis of mice. Am J Cancer 1933; 19:521–526.

    Google Scholar 

  2. Bittner JJ. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 1936; 84:162.

    Article  PubMed  Google Scholar 

  3. Chin L, Tam A, Pomerantz J, et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400(6743):468–472.

    Article  PubMed  CAS  Google Scholar 

  4. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406(6796):641–645.

    Article  PubMed  CAS  Google Scholar 

  5. O’Hagan RC, Chang S, Maser RS, et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2002; 2(2):149–155.

    Article  PubMed  CAS  Google Scholar 

  6. You MJ, Castrillon DH, Bastian BC, et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci USA 2002; 99(3):1455–1460.

    Article  PubMed  CAS  Google Scholar 

  7. Ellwood-Yen K, Graeber TG, Wongvipat J, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4(3):223–238.

    Article  PubMed  CAS  Google Scholar 

  8. Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 1984; 37(2):367–379.

    Article  PubMed  CAS  Google Scholar 

  9. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 1984; 38(3):627–637.

    Article  PubMed  CAS  Google Scholar 

  10. Fisher GH, Wellen SL, Klimstra D, et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 2001; 15(24):3249–3262.

    Article  PubMed  CAS  Google Scholar 

  11. Greenberg NM, DeMayo FJ, Sheppard PC, et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol 1994; 8(2):230–349.

    Article  PubMed  CAS  Google Scholar 

  12. Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 1989; 86(5):1563–1567.

    Article  PubMed  CAS  Google Scholar 

  13. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54(1):105–115.

    Article  PubMed  CAS  Google Scholar 

  14. Saitoh A, Kimura M, Takahashi R, et al. Most tumors in transgenic mice with human c-Ha-ras gene contained somatically activated transgenes. Oncogene 1990; 5(8):1195–1200.

    PubMed  CAS  Google Scholar 

  15. Maronpot RR, Palmiter RD, Brinster RL, Sandgren EP. Pulmonary carcinogenesis in transgenic mice. Exp Lung Res 1991; 17(2):305–320.

    PubMed  CAS  Google Scholar 

  16. Suda Y, Aizawa S, Hirai S, et al. Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J 1987; 6(13):4055–4065.

    PubMed  CAS  Google Scholar 

  17. Gunther EJ, Belka GK, Wertheim GB, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 2002; 16(3):283–292.

    Article  PubMed  CAS  Google Scholar 

  18. D’Cruz CM, Gunther EJ, Boxer RB, et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med 2001; 7(2):235–359.

    Article  PubMed  CAS  Google Scholar 

  19. Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4(2):199–207.

    Article  PubMed  CAS  Google Scholar 

  20. Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genet 2000; 24(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  21. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 1999; 3(5):565–577.

    Article  PubMed  CAS  Google Scholar 

  22. Pao W, Klimstra DS, Fisher GH, Varmus HE. Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proc Natl Acad Sci USA 2003; 100(15):8764–8769.

    Article  PubMed  CAS  Google Scholar 

  23. Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15(24):3243–3248.

    Article  PubMed  CAS  Google Scholar 

  24. Hooper M, Hardy K, Handyside A, Hunter S, Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 1987; 326(6110):292–295.

    Article  PubMed  CAS  Google Scholar 

  25. Jacks T. Tumor suppressor gene mutations in mice. Annu Rev Genet 1996; 30:603–636.

    Article  PubMed  CAS  Google Scholar 

  26. McClatchey AI, Jacks T. Tumor suppressor mutations in mice: the next generation. Curr Opin Genet Dev 1998; 8(3):304–310.

    Article  PubMed  CAS  Google Scholar 

  27. Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R. Mouse models for colorectal cancer. Oncogene 1999; 18(38):5325–5333.

    Article  PubMed  CAS  Google Scholar 

  28. Rangarajan A, Weinberg RA. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev Cancer 2003; 3(12):952–959.

    Article  CAS  Google Scholar 

  29. Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002; 108(2): 135–144.

    Article  PubMed  Google Scholar 

  30. Yang K, Edelmann W, Fan K, et al. Dietary modulation of carcinoma development in a mouse model for human familial adenomatous polyposis. Cancer Res 1998; 58(24):5713–5717.

    PubMed  CAS  Google Scholar 

  31. Lipkin M, Yang K, Edelmann W, et al. Preclinical mouse models for cancer chemoprevention studies. Ann NY Acad Sci 1999; 889:14–19.

    Article  PubMed  CAS  Google Scholar 

  32. de Vries A, Flores ER, Miranda B, et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 2002; 99(5):2948–2953.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson L, Mercer K, Greenbaum D, et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410(6832):1111–1116.

    Article  PubMed  CAS  Google Scholar 

  34. Gunther EJ, Moody SE, Belka GK, et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 2003; 17(4):488–501.

    Article  PubMed  CAS  Google Scholar 

  35. Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003; 17(24):3112–3126.

    Article  PubMed  CAS  Google Scholar 

  36. De Ome KB FL Jr, Bern H, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H Mice. Cancer Res 1959; 19:515–525.

    Google Scholar 

  37. Paul Edwards CA, Bradbury J. Genetic manipulation of mammary epithelium by transplantation. J Mammary Gland Biol Neoplasia 1996; 1(1):75–89.

    Article  Google Scholar 

  38. Bradbury JM, Sykes H, Edwards PAC. Induction of mouse mammary tumors in a transplantation system by the sequential introduction of the MYC and RAS oncogenes. Int J Cancer 1991; 48:908–915.

    Article  PubMed  CAS  Google Scholar 

  39. Cunha GR, Donjacour AA, Cooke PS, et al. The endocrinology and developmental biology of the prostate. Endocr Rev 1987; 8(3):338–362.

    Article  PubMed  CAS  Google Scholar 

  40. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989; 56(6):917–930.

    Article  PubMed  CAS  Google Scholar 

  41. Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation 2002; 70(9–10):473–485.

    Article  PubMed  Google Scholar 

  42. Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 2003; 107(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Lund AH, Turner G, Trubetskoy A, et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nature Genet 2002; 32(1):160–165.

    Article  PubMed  CAS  Google Scholar 

  44. Mikkers H, Allen J, Knipscheer P, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nature Genet 2002; 32(1):153–159.

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki T, Shen H, Akagi K, et al. New genes involved in cancer identified by retroviral tagging. Nature Genet 2002; 32(1):166–174.

    Article  PubMed  CAS  Google Scholar 

  46. Zambrowicz BP, Sands AT. Knockouts model the 100 best-selling drugs—will they model the next 100? Nature Rev Drug Discov 2003; 2(1):38–51.

    Article  CAS  Google Scholar 

  47. Hannon GJ. RNA interference. Nature 2002; 418(6894):244–251.

    Article  PubMed  CAS  Google Scholar 

  48. Tuschl T. RNA interference and small interfering RNAs. Chembiochemistry 2001; 2(4):239–245.

    Article  CAS  Google Scholar 

  49. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet 2003; 33(3): 401–406.

    Article  PubMed  CAS  Google Scholar 

  50. McManus MT, Haines BB, Dillon CP, et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol 2002; 169(10):5754–5760.

    PubMed  CAS  Google Scholar 

  51. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA. Germline transmission of RNAi in mice. Nature Struct Biol 2003; 10(2):91–92.

    Article  PubMed  CAS  Google Scholar 

  52. Noonan FP, Otsuka T, Bang S, Anver MR, Merlino G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res 2000; 60(14):3738–3743.

    PubMed  CAS  Google Scholar 

  53. Inui A. Targeted therapy in cancer and transgenic animal model. Cancer Invest 2003; 21(5): 819–820.

    Article  PubMed  Google Scholar 

  54. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 2003; 9(11):4227–4239.

    PubMed  Google Scholar 

  55. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769):503–511.

    Article  PubMed  CAS  Google Scholar 

  56. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001; 98(24): 13,790–13,795.

    Article  PubMed  CAS  Google Scholar 

  57. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet 1996; 14(4):457–460.

    Article  PubMed  CAS  Google Scholar 

  58. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439):531–537.

    Article  PubMed  CAS  Google Scholar 

  59. Hedenfalk I, Duggan D, Chen Y, et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001; 344(8):539–548.

    Article  PubMed  CAS  Google Scholar 

  60. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19):10,869–10,874.

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi M, Rhodes DR, Furge KA, et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci USA 2001; 98(17):9754–9759.

    Article  PubMed  CAS  Google Scholar 

  62. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871):530–536.

    Article  Google Scholar 

  63. Su YA, Bittner ML, Chen Y, et al. Identification of tumor-suppressor genes using human melanoma cell lines UACC903, UACC903(+6), and SRS3 by comparison of expression profiles. Mol Carcinog 2000; 28(2):119–127.

    Article  PubMed  CAS  Google Scholar 

  64. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406(6795):532–535.

    Article  PubMed  CAS  Google Scholar 

  65. O’Hagan RC, Brennan CW, Strahs A, et al. Array comparative genome hybridization for tumor classification and gene discovery in mouse models of malignant melanoma. Cancer Res 2003; 63(17):5352–5356.

    PubMed  CAS  Google Scholar 

  66. Green JE, Desai K, Ye Y, Kavanaugh C, Calvo A, Huh JI. Genomic approaches to understanding mammary tumor progression in transgenic mice and responses to therapy. Clin Cancer Res 2004; 10(1 Pt 2): 385S–390S.

    Article  PubMed  CAS  Google Scholar 

  67. Desai KV, Xiao N, Wang W, et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 2002; 99(10):6967–6972.

    Article  PubMed  CAS  Google Scholar 

  68. Renou JP, Bierie B, Miyoshi K, et al. Identification of genes differentially expressed in mouse mammary epithelium transformed by an activated beta-catenin. Oncogene 2003; 22(29):4594–4610.

    Article  PubMed  CAS  Google Scholar 

  69. Dillner K, Kindblom J, Flores-Morales A, et al. Gene expression analysis of prostate hyperplasia in mice overexpressing the prolactin gene specifically in the prostate. Endocrinology 2003; 144(11):4955–4966.

    Article  PubMed  CAS  Google Scholar 

  70. Kostler WJ, Brodowicz T, Hejna M, Wiltschke C, Zielinski CC. Detection of minimal residual disease in patients with cancer: a review of techniques, clinical implications, and emerging therapeutic consequences. Cancer Detect Prev 2000; 24(4):376–403.

    PubMed  CAS  Google Scholar 

  71. Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev Cancer 2002; 2(1):11–18.

    Article  CAS  Google Scholar 

  72. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nature Rev Drug Discov 2003; 2(2):123–131.

    Article  CAS  Google Scholar 

  73. Berns A. Cancer. Improved mouse models. Nature 2001; 410(6832):1043–1044.

    Article  PubMed  CAS  Google Scholar 

  74. Graham J, Mushin M, Kirkpatrick P. Oxaliplatin. Nature Rev Drug Discov 2004; 3(1):11–12.

    Article  CAS  Google Scholar 

  75. Pritchard JF, Jurima-Romet M, Reimer ML, Mortimer E, Rolfe B, Cayen MN. Making better drugs: decision gates in non-clinical drug development. Nature Rev Drug Discov 2003; 2(7):542–553.

    Article  CAS  Google Scholar 

  76. Gonzalez FJ. Role of gene knockout and transgenic mice in the study of xenobiotic metabolism. Drug Metab Rev 2003; 35(4):319–335.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

O’Hagan, R.C., Wu, M., Rideout, W.M., Zhou, Y., Heyer, J. (2005). Genetically Engineered Mouse Models of Human Cancer for Drug Discovery and Development. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:247

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:247

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics