Skip to main content

Targeting Inducible Chemotherapy Resistance Mechanisms in Colon Cancer

  • Chapter
The Oncogenomics Handbook

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Resistance toward chemotherapy remains one of the principle obstacles to the effective treatment of malignancies. As our knowledge of mechanisms involved in cancer biology expands, new molecular targets emerge. This chapter aims to overview the major resistance mechanisms, in order to identify potential targets appropriate for developmental therapeutics. An emphasis on the role of transcription factor NF-κB in colorectal cancer is presented as an example of how targeted therapies may advance from the bench to the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kastan MB. Molecular determinants of sensitivity to antitumor agents. Biochim Biophys Acta 1999; 1424(1):R37–R42.

    PubMed  CAS  Google Scholar 

  2. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78(4):539–542.

    Article  PubMed  CAS  Google Scholar 

  3. Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol 1999; 187(1):127–137.

    Article  PubMed  CAS  Google Scholar 

  4. Baldini N. Multidrug resistance—a multiplex phenomenon. Nature Med 1997; 3(4):378–380.

    Article  PubMed  CAS  Google Scholar 

  5. Wang CY, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274(5288):784–787.

    Article  PubMed  CAS  Google Scholar 

  6. Wang CY, et al. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nature Med 1999; 5(4):412–417.

    Article  PubMed  CAS  Google Scholar 

  7. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274(5288):782–784.

    Article  PubMed  CAS  Google Scholar 

  8. Cusack JC Jr, Liu R, Baldwin AS Jr. Inducible chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothe cin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-kappaB activation. Cancer Res 2000; 60(9):2323–2330.

    PubMed  CAS  Google Scholar 

  9. Fulda S, et al. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 1998; 58(19):4453–4460.

    PubMed  CAS  Google Scholar 

  10. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J Clin Oncol 1992; 10(6):896–903.

    Google Scholar 

  11. Saltz LB, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 2000; 343(13):905–914.

    Article  PubMed  CAS  Google Scholar 

  12. Douillard JY, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 2000; 355(9209): 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  13. de Gramont A, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 2000; 18(16):2938–2947.

    PubMed  Google Scholar 

  14. Tournigand C, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004; 22(2):229–237.

    Article  PubMed  CAS  Google Scholar 

  15. Vincent M, Labianca R, Harper P. Which 5-fluorouracil regimen?—the great debate. Anticancer Drugs 1999; 10(4):337–354.

    Article  PubMed  CAS  Google Scholar 

  16. Andre T, Louvet C, de Gramont A. [Colon cancer: what is new in 2004?]. Bull Cancer 2004; 91(1):75–80.

    PubMed  Google Scholar 

  17. Kern A, et al. Nucleotide and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter. Biochem J 2004; 380(Pt. 2):549–560.

    Article  PubMed  CAS  Google Scholar 

  18. Baldini N. Multidrug resistance—a multiplex phenomenon. Nature Med 1997; 3(4):378–380.

    Article  PubMed  CAS  Google Scholar 

  19. Sikic BI, et al. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 1997; 40(Suppl):S13–S29.

    Article  PubMed  CAS  Google Scholar 

  20. Maliepaard M, et al. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59(18):4559–4563.

    PubMed  CAS  Google Scholar 

  21. Sikic BI. New approaches in cancer treatment. Ann Oncol 1999; 10(Suppl 6):149–153.

    Article  PubMed  Google Scholar 

  22. Maliepaard M, et al. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res 2001; 7(4):935–941.

    PubMed  CAS  Google Scholar 

  23. Sinha P, et al. Search for novel proteins involved in the development of chemoresistance in colorectal cancer and fibrosarcoma cells in vitro using two-dimensional electrophoresis, mass spectrometry and microsequencing. Electrophoresis 1999; 20(14):2961–2969.

    Article  PubMed  CAS  Google Scholar 

  24. Mini E, et al. Marked variation of thymidylate synthase and folylpolyglutamate synthetase gene expression in human colorectal tumors. Oncol Res 1999; 11(9):437–445.

    PubMed  CAS  Google Scholar 

  25. Plummer R, et al. A phase I trial of ZD9331, a water-soluble, nonpolyglutamatable, thymidylate synthase inhibitor. Clin Cancer Res 2003; 9(4):1313–1322.

    PubMed  CAS  Google Scholar 

  26. Gibbs D, Raynaud CP, Valenti M, Jackman AL. CB300638, an alpha-folate receptor (a-FR) targeted antifolate thymidylate synthase (TS) inhibitor that inhibits TS in human tumour xenografts but not in normal tissues. Proc Am Assoc Cancer Res 2003; 2624a.

    Google Scholar 

  27. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003; 22(47):7369–7375.

    Article  PubMed  CAS  Google Scholar 

  28. Kivisto KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 1995; 40(6):523–530.

    PubMed  CAS  Google Scholar 

  29. Ferreira CG, Tolis C, Giaccone G. p53 and chemosensitivity. Ann Oncol 1999; 10(9):1011–1021.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto M, et al. The p53 tumor suppressor gene in anticancer agent-induced apoptosis and chemosensitivity of human gastrointestinal cancer cell lines. Cancer Chemother Pharmacol 1999; 43(1):43–49.

    Article  PubMed  CAS  Google Scholar 

  31. Zheng M, et al. The influence of the p53 gene on the in vitro chemosensitivity of colorectal cancer cells. J Cancer Res Clin Oncol 1999; 125(6):357–360.

    Article  PubMed  CAS  Google Scholar 

  32. Fujiwara T, et al. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 1994; 54(9):2287–2291.

    PubMed  CAS  Google Scholar 

  33. Spitz FR, et al. In vivo adenovirus-mediated p53 tumor suppressor gene therapy for colorectal cancer. Anticancer Res 1996; 16(6B):3415–3422.

    PubMed  CAS  Google Scholar 

  34. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nature Rev Cancer 2001; 1(1):68–76.

    Article  CAS  Google Scholar 

  35. Wang W, Rastinejad F, El-Deiry WS. Restoring p53-dependent tumor suppression. Cancer Biol Ther 2003; 2(4 Suppl 1):S55–S63.

    PubMed  CAS  Google Scholar 

  36. Foster BA, et al. Pharmacological rescue of mutant p53 conformation and function. Science 1999; 286(5449):2507–2510.

    Article  PubMed  CAS  Google Scholar 

  37. Kaufmann SH, Vaux DL. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene 2003; 22(47):7414–7430.

    Article  PubMed  CAS  Google Scholar 

  38. te Poele RH, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002; 62(6):1876–1883.

    Google Scholar 

  39. Schmitt CA, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109(3):335–346.

    Article  PubMed  CAS  Google Scholar 

  40. Chang BD, et al. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci USA 2002; 99(1):389–394.

    Article  PubMed  CAS  Google Scholar 

  41. Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999; 59(7):1391–1399.

    PubMed  CAS  Google Scholar 

  42. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nature Rev Mol Cell Biol 2001; 2(8):589–598.

    Article  CAS  Google Scholar 

  43. Kaufmann SH, Gores GJ. Apoptosis in cancer: cause and cure. Bioessays 2000; 22(11):1007–1017.

    Article  PubMed  CAS  Google Scholar 

  44. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108(2):153–164.

    Article  PubMed  CAS  Google Scholar 

  45. Violette S, et al. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 2002; 98(4): 498–504.

    Article  PubMed  CAS  Google Scholar 

  46. Oliver L, et al. Resistance to apoptosis is increased during metastatic dissemination of colon cancer. Clin Exp Metastasis 2002; 19(2):175–180.

    Article  PubMed  CAS  Google Scholar 

  47. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281(5381):1312–1316.

    Article  PubMed  CAS  Google Scholar 

  48. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281(5381): 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  49. Budihardjo I, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269–290.

    Article  PubMed  CAS  Google Scholar 

  50. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15(22):2922–2933.

    PubMed  CAS  Google Scholar 

  51. Acehan D, et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002; 9(2):423–432.

    Article  PubMed  CAS  Google Scholar 

  52. Cheng EH, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8(3):705–711.

    Article  PubMed  CAS  Google Scholar 

  53. Ozoren N, El-Deiry WS. Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 2002; 4(6):551–557.

    Article  PubMed  CAS  Google Scholar 

  54. Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model. Semin Immunol 2003; 15(3): 185–193.

    Article  PubMed  CAS  Google Scholar 

  55. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol 2002; 192(2):131–137.

    Article  PubMed  CAS  Google Scholar 

  56. Srinivasula SM, et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 2000; 275(46):36,152–36,157.

    Article  PubMed  CAS  Google Scholar 

  57. Martins LM, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002; 277(1):439–444.

    Article  PubMed  CAS  Google Scholar 

  58. Jansen B, et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med 1998; 4(2):232–234.

    Article  PubMed  CAS  Google Scholar 

  59. Waters JS, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000; 18(9):1812–1823.

    PubMed  CAS  Google Scholar 

  60. Jansen B, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356(9243):1728–1733.

    Article  PubMed  CAS  Google Scholar 

  61. Taylor JK, et al. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nature Biotechnol 1999; 17(11):1097–1100.

    Article  CAS  Google Scholar 

  62. Grossman D, et al. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA 2001; 98(2):635–640.

    Article  PubMed  CAS  Google Scholar 

  63. Zamore PD. RNA interference: listening to the sound of silence. Nature Struct Biol 2001; 8(9): 746–750.

    Article  PubMed  CAS  Google Scholar 

  64. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nature Rev Genet 2002; 3(10):737–747.

    Article  CAS  Google Scholar 

  65. Crnkovic-Mertens I, Hoppe-Seyler F, Butz K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene 2003; 22(51):8330–8336.

    Article  PubMed  CAS  Google Scholar 

  66. Guo F, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 2002; 99(9):3419–3426.

    Article  PubMed  CAS  Google Scholar 

  67. Fulda S, et al. Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Med 2002; 8(8):808–815.

    PubMed  CAS  Google Scholar 

  68. Arnt CR, et al. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002; 277(46):44,236–44,243. Epub 2002 Sep 5.

    Article  PubMed  CAS  Google Scholar 

  69. Darnell JE Jr. Transcription factors as targets for cancer therapy. Nature Rev Cancer 2002; 2(10):740–749.

    Article  CAS  Google Scholar 

  70. Brivanlou AH, Darnell JE Jr. Signal transduction and the control of gene expression. Science 2002; 295(5556):813–818.

    Article  PubMed  CAS  Google Scholar 

  71. Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science 2000; 287(5460):1969–1973.

    Article  PubMed  CAS  Google Scholar 

  72. Tilley WD, et al. Hormones and cancer: new insights, new challenges. Trends Endocrinol Metab 2001; 12(5):186–188.

    Article  PubMed  CAS  Google Scholar 

  73. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 1998; 94(6):557–572.

    CAS  Google Scholar 

  74. Stark GR, et al. How cells respond to interferons. Annu Rev Biochem 1998; 67:227–264.

    Article  PubMed  CAS  Google Scholar 

  75. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nature Rev Mol Cell Biol 2002; 3(9):651–662.

    Article  CAS  Google Scholar 

  76. Starr R, Hilton DJ. Negative regulation of the JAK/STAT pathway. Bioessays 1999; 21(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  77. Shuai K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene 2000; 19(21): 2638–2644.

    Article  PubMed  CAS  Google Scholar 

  78. Bowman T, et al. STATs in oncogenesis. Oncogene 2000; 19(21):2474–2488.

    Article  PubMed  CAS  Google Scholar 

  79. Lacronique V, et al. Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood 2000; 95(6):2076–2083.

    PubMed  CAS  Google Scholar 

  80. Lacronique V, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278(5341):1309–1312.

    Article  PubMed  CAS  Google Scholar 

  81. Song JI, Grandis JR. STAT signaling in head and neck cancer. Oncogene 2000; 19(21):2489–2495.

    Article  PubMed  CAS  Google Scholar 

  82. Catlett-Falcone R, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1):105–115.

    Article  PubMed  CAS  Google Scholar 

  83. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296(5573):1655–1657.

    Article  PubMed  CAS  Google Scholar 

  84. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev Cancer 2002; 2(7):489–501.

    Article  CAS  Google Scholar 

  85. Hayakawa J, et al. Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 2000; 60(21):5988–5994.

    PubMed  CAS  Google Scholar 

  86. Park SY, Seol DW. Regulation of Akt by EGF-R inhibitors, a possible mechanism of EGF-R inhibitor-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 2002; 295(2):515–518.

    Article  PubMed  CAS  Google Scholar 

  87. Neshat MS, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001; 98(18):10,314–10,319.

    Article  PubMed  CAS  Google Scholar 

  88. Guba M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med 2002; 8(2):128–135.

    Article  PubMed  CAS  Google Scholar 

  89. Barish GD, Williams BO. In: Gutkind JS, ed. Signaling networks and cell cycle control: the molecular basis of cancer and other diseases. Humana, Totowa, NJ, 2000:53–82.

    Chapter  Google Scholar 

  90. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001; 411(6835): 349–354.

    Article  PubMed  CAS  Google Scholar 

  91. van Gijn ME, et al. The wnt-frizzled cascade in cardiovascular disease. Cardiovasc Res 2002; 55(1):16–24.

    Article  PubMed  Google Scholar 

  92. Wong CM, Fan ST, Ng IO. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 2001; 92(1):136–145.

    Article  PubMed  CAS  Google Scholar 

  93. Kramps T, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 2002; 109(1):47–60.

    Article  PubMed  CAS  Google Scholar 

  94. Barker N, Clevers H. Catenins, Wnt signaling and cancer. Bioessays 2000; 22(11):961–965.

    Article  PubMed  CAS  Google Scholar 

  95. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nature Immunol 2002; 3(3): 221–227.

    Article  CAS  Google Scholar 

  96. Wang CY, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274(5288):784–787.

    Article  PubMed  CAS  Google Scholar 

  97. Wang CY, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281(5383):1680–1683.

    Article  PubMed  CAS  Google Scholar 

  98. Hsu H, et al. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4(4):387–396.

    Article  PubMed  CAS  Google Scholar 

  99. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995; 81(4):495–504.

    Article  PubMed  CAS  Google Scholar 

  100. Santana P, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 1996; 86(2):189–199.

    Article  PubMed  CAS  Google Scholar 

  101. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992; 13(5):151–153.

    Article  PubMed  CAS  Google Scholar 

  102. Ryan KM, et al. Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000; 404(6780): 892–897.

    Article  PubMed  CAS  Google Scholar 

  103. Cusack JC, Liu R, Baldwin AS. NF-kappa B and chemoresistance: potentiation of cancer drugs via inhibition of NF-kappa B. Drug Resist Update 1999; 2(4):271–273.

    Article  CAS  Google Scholar 

  104. Spencer E, Jiang J, Chen ZJ.Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 1999; 13(3):284–294.

    PubMed  CAS  Google Scholar 

  105. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001; 107(3):241–246.

    Article  PubMed  CAS  Google Scholar 

  106. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene 2003; 22(20):3138–3151.

    Article  PubMed  CAS  Google Scholar 

  107. Tam WF, Wang W, Sen R. Cell-specific association and shuttling of IkappaBalpha provides a mechanism for nuclear NF-kappaB in B lymphocytes. Mol Cell Biol 2001; 21(14):4837–4846.

    Article  PubMed  CAS  Google Scholar 

  108. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 1996; 93(13):6721–6725.

    Article  PubMed  CAS  Google Scholar 

  109. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114(2):181–190.

    Article  PubMed  CAS  Google Scholar 

  110. Joyce D, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem 1999; 274(36):25,245–25,249.

    Article  PubMed  CAS  Google Scholar 

  111. Wadgaonkar R, et al. CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. J Biol Chem 1999; 274(4):1879–1882.

    Article  PubMed  CAS  Google Scholar 

  112. Tergaonkar V, et al. p53 stabilization is decreased upon NFkappaB activation: a role for NfkappaB in acquisition of resistance to chemotherapy. Cancer Cell 2002; 1(5):493–503.

    Article  PubMed  CAS  Google Scholar 

  113. Bentires-Alj M, et al. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 2001; 20(22):2805–2813.

    Article  PubMed  CAS  Google Scholar 

  114. Bottero V, et al. Ikappa b-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 2001; 276(24):21,317–21,324.

    Article  PubMed  CAS  Google Scholar 

  115. Cogswell PC, et al. NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 2003; 278(5):2963–2968.

    Article  PubMed  CAS  Google Scholar 

  116. Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18(49): 6938–6947.

    Article  PubMed  CAS  Google Scholar 

  117. Maxwell SA, Mukhopadhyay T. A novel NF-kappa B p65 spliced transcript lacking exons 6 and 7 in a non-small cell lung carcinoma cell line. Gene 1995; 166(2):339–340.

    Article  PubMed  CAS  Google Scholar 

  118. Visconti R, et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene 1997; 15(16):1987–1994.

    Article  PubMed  CAS  Google Scholar 

  119. Mathew S, et al. Chromosomal localization of genes encoding the transcription factors, c-rel, Nf-kappa Bp50, NF-kappa Bp65, and lyt-10 by fluorescence in situ hybridization. Oncogene 1993; 8(1):191–193.

    PubMed  CAS  Google Scholar 

  120. Bours V, et al. The NF-kappa B transcription factor and cancer: high expression of NF-kappa B-and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 1994; 47(1):145–149.

    Article  PubMed  CAS  Google Scholar 

  121. Cabannes E, et al. Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 1999; 18(20):3063–3070.

    Article  PubMed  CAS  Google Scholar 

  122. Chen C, Edelstein LC, Gelinas C. The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 2000; 20(8):2687–2695.

    Article  PubMed  Google Scholar 

  123. Ni H, et al. Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 2001; 115(2):279–286.

    Article  PubMed  CAS  Google Scholar 

  124. Hideshima T, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61(7):3071–3076.

    PubMed  CAS  Google Scholar 

  125. Ogata A, et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159(5):2212–2221.

    PubMed  CAS  Google Scholar 

  126. Chauhan D, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene 1997; 15(7):837–843.

    Article  PubMed  CAS  Google Scholar 

  127. Palombella VJ, et al. Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 1998; 95(26):15,671–15,676.

    Article  PubMed  CAS  Google Scholar 

  128. Wang W, et al. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999; 5(1):119–127.

    PubMed  CAS  Google Scholar 

  129. Nakshatri H, et al. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 1997; 17(7):3629–3639.

    PubMed  CAS  Google Scholar 

  130. Sovak MA, et al. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 1997; 100(12):2952–2960.

    PubMed  CAS  Google Scholar 

  131. Palayoor ST, et al. Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999; 18(51):7389–7394.

    Article  PubMed  CAS  Google Scholar 

  132. Patel NM, et al. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 2000; 19(36):4159–4169.

    Article  PubMed  CAS  Google Scholar 

  133. Lind DS, et al. Nuclear factor-kappa B is upregulated in colorectal cancer. Surgery 2001; 130(2): 363–369.

    Article  PubMed  CAS  Google Scholar 

  134. Mukhopadhyay T, Roth JA, Maxwell SA. Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene 1995; 11(5):999–1003.

    PubMed  CAS  Google Scholar 

  135. Reuning U, et al. Inhibition of NF-kappa B-Rel A expression by antisense oligodeoxynucleotides suppresses synthesis of urokinase-type plasminogen activator (uPA) but not its inhibitor PAI-1. Nucleic Acids Res 1995; 23(19):3887–3893.

    Article  PubMed  CAS  Google Scholar 

  136. Grundker C, et al. Luteinizing hormone-releasing hormone induces nuclear factor kappaB-activation and inhibits apoptosis in ovarian cancer cells. J Clin Endocrinol Metab 2000; 85(10):3815–3820.

    Article  PubMed  CAS  Google Scholar 

  137. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nature Med 1999; 5(4): 412–417.

    Article  PubMed  CAS  Google Scholar 

  138. Duffey DC, et al. Expression of a dominant-negative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 1999; 59(14):3468–3474.

    PubMed  CAS  Google Scholar 

  139. Cusack JC Jr, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001; 61(9):3535–3540.

    PubMed  CAS  Google Scholar 

  140. Russo SM, et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 2001; 50(1):183–193.

    Article  PubMed  CAS  Google Scholar 

  141. An B, et al. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998; 5(12):1062–1075.

    Article  PubMed  CAS  Google Scholar 

  142. Masdehors P, et al. Ubiquitin-proteasome system and increased sensitivity of B-CLL lymphocytes to apoptotic death activation. Leuk Lymphoma 2000; 38(5–6):499–504.

    PubMed  CAS  Google Scholar 

  143. Delic J, et al. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo-and radio-resistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer 1998; 77(7): 1103–1107.

    PubMed  CAS  Google Scholar 

  144. LeBlanc R, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62(17):4996–5000.

    PubMed  CAS  Google Scholar 

  145. Richardson PG, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348(26):2609–2617.

    Article  PubMed  CAS  Google Scholar 

  146. Desai SD, et al. Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem 1997; 272(39):24,159–24,164.

    Article  PubMed  CAS  Google Scholar 

  147. Cusack JC Jr. Overcoming antiapoptotic responses to promote chemosensitivity in metastatic colorectal cancer to the liver. Ann Surg Oncol 2003; 10(8):852–862.

    Article  PubMed  Google Scholar 

  148. Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res 1996; 56(11):2649–2654.

    PubMed  CAS  Google Scholar 

  149. Cayrol C, Ducommun B. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene 1998; 17(19):2437–2444.

    Article  PubMed  CAS  Google Scholar 

  150. Pagano M, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269(5224):682–685.

    Article  PubMed  CAS  Google Scholar 

  151. Chadebech P, et al. Phosphorylation and proteasome-dependent degradation of Bcl-2 in mitotic-arrested cells after microtubule damage. Biochem Biophys Res Commun 1999; 262(3):823–827.

    Article  PubMed  CAS  Google Scholar 

  152. Salvat C, et al. Differential directing of c-Fos and c-Jun proteins to the proteasome in serum-stimulated mouse embryo fibroblasts. Oncogene 1998; 17(3):327–337.

    Article  PubMed  CAS  Google Scholar 

  153. Clurman BE, et al. Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 1996; 10(16):1979–1990.

    Article  PubMed  CAS  Google Scholar 

  154. Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 1997; 11(8):957–972.

    Article  PubMed  CAS  Google Scholar 

  155. Sudakin V, et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 1995; 6(2):185–197.

    PubMed  CAS  Google Scholar 

  156. Buschmann T, et al. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 2000; 101(7):753–762.

    Article  PubMed  CAS  Google Scholar 

  157. Dietrich C, et al. p53-dependent cell cycle arrest induced by N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal in platelet-derived growth factor-stimulated human fibroblasts. Proc Natl Acad Sci USA 1996; 93(20): 10,815–10,819.

    Article  PubMed  CAS  Google Scholar 

  158. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59(11):2615–2622.

    PubMed  CAS  Google Scholar 

  159. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 2001; 100(1):11–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ljungman, D., Cusack, J.C. (2005). Targeting Inducible Chemotherapy Resistance Mechanisms in Colon Cancer. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:209

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics