Skip to main content

Bone Metastasis and Pathological Fractures

Bone Tissue Engineering as a Novel Therapy

  • Chapter
Bone Metastasis

Abstract

Bone metastasis commonly occurs in association with solid malignant tumors such as breast, prostate, lung, and renal cancers (15). Thirty to seventy percent of cancer patients have skeletal metastasis (6), making the axial skeleton the third most common site for metastasis after lung and liver. Because all of these cancers (breast, prostate, lung, and renal) are common, metastatic bone lesions actually outnumber primary bone malignancies. The spine is affected in approximately half of all patients with bone metastasis (5,6), and involvement of the appendicular skeleton, primarily the femur and humerus, is also common. Metastatic bone lesions can be classified as osteolytic, osteoblastic, mixed, or intertrabecular type based on histology (3,4,7). Bone metastases secondary to breast cancer are typically osteolytic in nature, and these lesions are of particular interest as bone resorption at these sites often leads to pathological fracture. Thus, breast cancer is also the most common cause of pathological fracture (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serafini AN. Therapy of metastatic bone pain. J Nucl Med 2001; 42:895–906.

    PubMed  CAS  Google Scholar 

  2. Van Poznak CH. The use of bisphosphonate in patients with breast cancer. Cancer Control 2002; 9:480–489.

    PubMed  Google Scholar 

  3. Vukmirovic-Popovic S, Colterjohn N, Lhotak S, et al. Morphological, histolomorphometric, and microstructural alterations in human bone metastsis from breast carcinoma. Bone 2002; 31:529–535.

    Article  PubMed  CAS  Google Scholar 

  4. Coleman RE. Skeletal complications of malignancy. Cancer 1997; 80:1588–1594.

    Article  PubMed  CAS  Google Scholar 

  5. Aebi M. Spinal metastases in the elderly. Eur Spine J 2003; 12(Suppl):S202–S213.

    Article  PubMed  Google Scholar 

  6. Wenger M. Vertebroplasty for metastasis. Med Oncol 2003; 20:203–209.

    Article  PubMed  Google Scholar 

  7. Vinholes J, Coleman R, Eastell R. Effects of bone metastases on bone metabolism: implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev 1996; 22:289–331.

    Article  PubMed  CAS  Google Scholar 

  8. Domchek SM, Younger J, Finkelstein DM, et al. Predictors of skeletal complications in patients with metastatic breast carcinoma. Cancer 2000; 89:363–368.

    Article  PubMed  CAS  Google Scholar 

  9. Mastro AM, Gay Carol V, Welch DR, et al. Breast cancer cells induce osteoblast apoptosis: A posible contributor to bone degradation. J Cell Biochem 2004; 91:265–276.

    Article  PubMed  CAS  Google Scholar 

  10. Frassica FJ, Frassica DA. Evaluation and treatment of metastases to the humerus. Clin Orthop Related Res 2003; 415S:S212–S218.

    Article  Google Scholar 

  11. Buggay D, Jaffe K. Metastatic bone tumors of the pelvis and lower extremity. J Surg Orthop Adv 2003; 12:192–199.

    PubMed  Google Scholar 

  12. Campa JA, Payne R. The management of intractable bone pain: a clinicians perspective. Semin Nucl Med 1992; 22:3–10.

    Article  PubMed  Google Scholar 

  13. Maisano R, Pergoizzo S, Cascinu S. Novel therapeutic approaches to cancer patients with bone metastsis. Crit Rev Oncol Hematol 2001; 40:239–250.

    Article  PubMed  CAS  Google Scholar 

  14. Fox A, Medhurst S, Courade JP, et al. Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain 2004; 107:33–40.

    Article  PubMed  CAS  Google Scholar 

  15. Duivenvoorden WCM, Popovic SV, Lhotak S, et al. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res 2002; 62:1588–1591.

    PubMed  CAS  Google Scholar 

  16. Doita M, Harada T, Iguchi T, et al. Total sacrectomy and reconstruction for sacral tumors. Spine 2003; 28:E296–301.

    Article  PubMed  Google Scholar 

  17. Kaemmerlen P, Thiesse P, Jonas P, et al. Purcutaneous injection of orthopedic cement in metastatic vertebral lesions. N Engl J Med 1989; 321:121.

    PubMed  CAS  Google Scholar 

  18. Mathis JM. Percutaneous vertebroplasty. JBR-BTR 2003; 86:299–301.

    PubMed  CAS  Google Scholar 

  19. Faisham WI, Zulmi W, Biswal BM. Metastatic disease of the proximal femur. Med J Malaysia 2003; 58:120–124.

    PubMed  CAS  Google Scholar 

  20. Weber KL, OConner MI. Operative treatment of long bone metastases. Clin Orthop Related Res 2003; 415S:S276–S278.

    Article  Google Scholar 

  21. Dalgorf D, Borkhoff CM, Stephen JG, et al. Venting during prophylatic nailing for femoral metastases: current orthopedic practice. Can J Surg 2003; 46:427–431.

    PubMed  Google Scholar 

  22. Ilyas L, Kurar A, Moreau PG, et al. Modular megaprosthesis for distal femoral tumors. Int Orthop 2001; 25:375–377.

    Article  PubMed  CAS  Google Scholar 

  23. Kawai A, Lin PP, Boland PJ, et al. Relationship between magnitude of resection, complications, and prosthetic survival after prosthetic knee reconstructions for distal femoral tumors. J Surg Oncol 1999; 70: 109–115.

    Article  PubMed  CAS  Google Scholar 

  24. Shin DS, Choong PFM, Chao EYH, et al. Large tumor endoprostheses and extracortical bone bridging. Acta Orthop Scand 2000; 71:305–311.

    Article  PubMed  CAS  Google Scholar 

  25. Shin KH, Park HJ, Yoo JH, et al. Reconstructive surgery in primary malignant and aggressive benign bone tumor of the proximal humerus. Yonsei Med J 2000; 41:304–311.

    PubMed  CAS  Google Scholar 

  26. Franck WM, Olivieri M, Jannasch O, et al. An expandable nailing system for the management of pathological humerus fractures. Arch Orthop Trauma Surg 2002; 122:400–405.

    PubMed  CAS  Google Scholar 

  27. Jacofsky DJ, Papagelopoulos PJ, Sim FH. Advances and challenges in the surgical treatment of metastatic bone disease. Clin Orthop Related Res 2003; 415S:S14–S18.

    Article  Google Scholar 

  28. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: A 21st century solution to surgical reconstruction. Ann Thorac Surg 2001; 72:577–91.

    Article  PubMed  CAS  Google Scholar 

  29. Ramkrishnan M, Prasad SS, Parkinson RW, et al. Management of subtrochanteric femoral fractures and metastases using long proximal femoral nail. Injury 2004; 35:184–190.

    Article  Google Scholar 

  30. Luyton FP, Francesco DA, De Bari C. Skeletal tissue engineering; opportunities and challenges. Best Pract Res Cl Rh 2001; 15:759–770.

    Article  Google Scholar 

  31. Yamanouchi K, Satomura K, Gotoh Y, et al. Bone formation by transplanted human osteoblasts cultured with collagen sponge with dexamethasone in vitro. J Bone Miner Res 2001; 16:857–867.

    Article  PubMed  CAS  Google Scholar 

  32. Oldham JB, Hefferan TE, Larson DR, et al. Biological activity of rhBMP-2 released from PLGA microspheres. J Biomech Engin 2000; 122:289–292.

    Article  CAS  Google Scholar 

  33. Perka C, Schultz R, Lindenhayn K, et al. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 2000; 21:1145–1153.

    Article  PubMed  CAS  Google Scholar 

  34. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period. J Biomed Mater Res 2000; 51: 376–382.

    Article  PubMed  CAS  Google Scholar 

  35. Stevenson S. Enhancement of fracture healing with autogenous and allogenic bone grafts. Clin Orthop Related Res 1998; 355S:S239–S246.

    Article  Google Scholar 

  36. Lane JM, Tomin E, Bostrom MPG. Biosynthetic bone grafting. Clin Orthop Related Res 1999; 367S:S107–S117.

    Article  Google Scholar 

  37. Boden SD. Bioactive factors for bone tissue engineering. Clin Orthop Related Res 1999; 367S: S84–S94.

    Article  Google Scholar 

  38. Tamura S, Kataoka H, Matsui Y, et al. The effects of transplantation of osteoblastic cells with bone morphogenetic protein (BMP)/carrier complex on bone repair. Bone 2001; 29:169–175.

    Article  PubMed  CAS  Google Scholar 

  39. Miller MJ. Osseous tissue engineering in oncological surgery. Semin Surg Oncol 2000; 19: 294–301.

    Article  PubMed  CAS  Google Scholar 

  40. Voegele TJ, Voegele-Kadletz M, Esposito V, et al. The effect of different techniques on human osteo-blast-like cell growth. Anticancer Res 2000; 20:3575–3582.

    PubMed  CAS  Google Scholar 

  41. De Bari C, Dell-Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheumat 2001; 44:1928–1942.

    Article  PubMed  Google Scholar 

  42. Martinez P, Moreno I, Miguel F, et al. Changes in osteocalcin response to 1,25-dihydroxyvitamin D3 stiulation and basal vitamin D receptor expression in human osteoblastic cells according to donor age and skeletal origin. Bone 2001; 29:35–41.

    Article  PubMed  CAS  Google Scholar 

  43. Hankey DP, McCabe RE, Doherty MJ, et al. Enhancement of human osteoblast proliferation and phenotypic expression when cultured in human serum. Acta Orthop Scand 2001; 72:395–403.

    Article  PubMed  CAS  Google Scholar 

  44. Kim WS, Vacanti CA, Upton J, et al. Bone defect repair with tissue-engineered cartilage. Plast Reconstr Surg 1994; 94:580–584.

    Article  PubMed  CAS  Google Scholar 

  45. Cook SD, Rueger DC. Osteogenic protein-1. Biology and Applications. Clin Orthop Related Res 1996; 324:29–38.

    Article  Google Scholar 

  46. Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic protien-1 induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992; 267:20,352–20,362.

    PubMed  CAS  Google Scholar 

  47. Baylink DJ, Finkelman RD, Mohan S. Growth factors to stimulate bone formation. J Bone Miner Res 1993; 8(Suppl 2):s565–s572.

    Article  PubMed  Google Scholar 

  48. Kirker-Head CA, Gerhart TN, Armstrong R, et al. Healing bone using recombinant human bone morphogenetic protein 2 and copolymer. Clin Orthop 1998; 349:205–217.

    Article  PubMed  Google Scholar 

  49. Harakas NK. Demineralized bone-matrix-induced osteogenesis. Clin Orthop Related Res 1983; 188: 239–251.

    Google Scholar 

  50. Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes. Orthop Clin NA 2000; 31:389–398.

    Article  CAS  Google Scholar 

  51. Bassett CAL. Clinical Implications of Cell Function in Bone Grafting. Clin Orthop Related Res 1972; 87:49–55.

    CAS  Google Scholar 

  52. Friedlaender GE. Current concepts review: Bone grafts. The basic science rationale for clinical applications. J Bone Joint Surg 1987; 69A:786–790.

    Google Scholar 

  53. Kveiborg M, Flyvbjerg A, Eriksen EF, et al. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-1 and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors. J Endocrin 2001; 169:549–561.

    Article  CAS  Google Scholar 

  54. Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of massive diaphyseal defects. Clin Orthop Related Res 1982; 171:224.

    Google Scholar 

  55. Moxham JP, Kibblewhite DJ, Dvorak M, et al. TGF-_1 forms fuctionally normal bone in a segmental sheep tibial diaphyseal defect. J Otolarygology 1996; 23:388–392.

    Google Scholar 

  56. Johnson EE, Urist MR, Finerman GA. Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. Clin Orthop Related Res 1998; 230:257–265.

    Google Scholar 

  57. Bruder SP, Fox BS. Tissue engineering of bone. Clin Orthop Related Res 1999; 367S:S68–S83.

    Article  Google Scholar 

  58. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Related Res 1988; 346:26–37.

    Google Scholar 

  59. Guo W, Gorlick R, Ladanyi M, et al. Expression of bone morphogenetic proteins and receptors in sarcomas. Clin Orthop Related Res 1999; 365:175–183.

    Article  Google Scholar 

  60. Gauthier O, Khairoun I, Bosco J, et al. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J Biomed Mater Res 2003; 66A:47–54.

    Article  CAS  Google Scholar 

  61. Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 1997; 6:125–134.

    Article  PubMed  CAS  Google Scholar 

  62. Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes. Orthop Clin NA 2000; 31:389–398.

    Article  CAS  Google Scholar 

  63. Sciadini MF, Dawson JM, Johnson KD. Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model J Orthop Res 1997; 15:844–857.

    Article  PubMed  CAS  Google Scholar 

  64. Moore DC, Chapman MW, Manske D. The evaluation of a biphasi calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res 1987; 5:356–365.

    Article  PubMed  CAS  Google Scholar 

  65. Omstead DR, Baird LG, Christienson L, et al. Voluntary guidance for the development of tissue-engineered products. Tissue Engineer 1998; 3:239–266.

    Article  Google Scholar 

  66. Bellows CG, Aubin JE. Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 1989; 133:8–13.

    Article  PubMed  CAS  Google Scholar 

  67. Aubin JE. Advances n the osteoblastic lineage. Biochem Cell Biol 1998; 76:899–910.

    Article  PubMed  CAS  Google Scholar 

  68. Jia D, Heersche JNM. Insulin-like growth factor-1 and-2 stimulate osteoprogenitor proliferation and differentiation and adipocyte formation in cell populations derived from adult rat bone Bone 2000; 27: 785–794.

    Article  PubMed  CAS  Google Scholar 

  69. Bellows CG, Heersche JNM. The frequency of common progenitors for adipocytes and osteoblasts of committed and restricted adipocyte and osteoblast progenitors in fetal rat calvaria cell populations. J Bone Miner Res 2001; 16:1983–1993.

    Article  PubMed  CAS  Google Scholar 

  70. Beresford JN, Beresford JN, Graves SE, Smoothy CA. Formation of mineralized nodules by bone derived cells in vitro: A model of bone formation? Am J Med Genet 1993; 45:163–178.

    Article  PubMed  CAS  Google Scholar 

  71. Matsuyama T, Lau KHW, Wergedal JE. Monolayer cultures of normal human bone cells contain multiple subpopulations of alkaline phosphatase positive cells. Calcif Tissue Int 1990; 47:276–283.

    Article  PubMed  CAS  Google Scholar 

  72. Bellows CG, Aubin JN, Heersche JNM, Antosz ME. Mineralized bone nodules formed in vitro from enzymatically released rat calvarial cell populations. Calcif Tissue Int 1986; 38:143–154.

    Article  PubMed  CAS  Google Scholar 

  73. Harris-Hooker SA, Gajduek CM, Wight TN, et al. Neovascular responses induced by cultured aortic endothelial cells. J Cell Physio 1988; 14:302–310.

    Google Scholar 

  74. Deckers M, van der Plum G, Dooijewaard S, et al. Effect of angiogenic and antiangiogenic compounds on the outgrowth of capillary structures from fetal mouse bone explants. Lab Invest 2001; 81:5–15.

    PubMed  CAS  Google Scholar 

  75. Hendrickson DA, Nixon AJ, Grande DA, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 1994; 12:485–497.

    Article  PubMed  CAS  Google Scholar 

  76. Yamaji T, Ando K, Wolf S, et al. The effect of micromovement on callus formation. J Orthop Sci 2001; 6:571–575.

    Article  PubMed  CAS  Google Scholar 

  77. Ducharme NG, Nixon AJ. Delayed union, non union, and malunion, In: Nixon AJ, ed. Equine Fracture Repair. Philadelphia, PA: Saunders, 1996:354–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McDuffee, L.A., Colterjohn, N., Singh, G. (2005). Bone Metastasis and Pathological Fractures. In: Singh, G., Rabbani, S.A. (eds) Bone Metastasis. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-892-7:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-892-7:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-403-6

  • Online ISBN: 978-1-59259-892-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics