Skip to main content

Roles of Immune-Cell-Derived Matrix Metalloproteinases in Tumor Growth and Metastasis

  • Chapter
  • 708 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A considerable amount of clinical and experimental data has shown that proteolytic enzymes affecting the composition and function of the extracellular matrix (ECM) and cell surface molecules appear to be essential for the metastatic process. Certain structural changes of the ECM accompany cell migration during physiological tissue remodeling and tumor cell invasion. The ECM forms basement membranes that modulate cell adhesion, cell motility, and the selective exchange of molecules between cells and interstitial fluids. In mediating immune surveillance, inflammatory cells routinely cross this barrier. Matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that share structural domains and have the capacity to degrade ECM components as well as to alter biological functions of ECM macromolecules (1). The specific proteolytic targets of MMPs include many other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth-factor-binding proteins, cell surface receptors, as well as cell-cell and cell-matrix adhesion molecules (210). ECM fragments of laminin, collagen, and fibrin also have biological roles in modulating inflammatory cell infiltration and cell proliferation. Such activities further underscore the importance of immune-cell-derived matrix-degrading enzymes, such as MMPs, during tumor growth and metastasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagase H, Woessner JF Jr. Matrix Metalloproteinases. J Biol Chem 1999; 274:21,491–21,494.

    Article  PubMed  CAS  Google Scholar 

  2. Bini A, Itoh Y, Kudryk BJ, Nagase H. Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the gamma Gly 404-Ala 405 peptide bond. Biochemistry 1996; 35: 13,056–13,063.

    Article  PubMed  CAS  Google Scholar 

  3. Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/Type IV collagenase (MMP-9). J Biol Chem 1997; 272: 28,823–28,825.

    Article  PubMed  CAS  Google Scholar 

  4. Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 1998; 161:6845–6852.

    PubMed  CAS  Google Scholar 

  5. Bini A, Wu D, Schnuer J, Kudryk BJ. Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7, and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments Ddimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments. Biochemistry1999; 38:13,928–13,936.

    Article  PubMed  CAS  Google Scholar 

  6. Bergers G, Coussens LM. Extrinsic regulators of epithelial tumour progression: metalloproteinases. Curr Opin Genet Dev 2000; 10:120–127.

    Article  PubMed  CAS  Google Scholar 

  7. Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type-1 matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J Biol Chem 2000; 275:33,008–33,013.

    Article  PubMed  CAS  Google Scholar 

  8. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000; 289:1202–1206.

    Article  PubMed  CAS  Google Scholar 

  9. Noë V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M. Release of an invasion promotor E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; 114:111–118.

    PubMed  Google Scholar 

  10. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 2001; 13:534–540.

    Article  PubMed  CAS  Google Scholar 

  11. Goetzl E, Banda MJ, Leppert D. Matrix metalloproteinases in immunity. J Immunol 1996; 156: 1–4.

    PubMed  CAS  Google Scholar 

  12. Leppert D, Lindberg RL, Kappos L, Leib SL. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Rev 2001; 36:249–257.

    Article  PubMed  CAS  Google Scholar 

  13. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295:2387–2392.

    Article  PubMed  CAS  Google Scholar 

  14. Woessner JF Jr. MMPs and TIMPs-an historical perspective. Mol Biotechnol 2002; 22:33–49.

    Article  PubMed  CAS  Google Scholar 

  15. Borkakoti N. Structural studies of matrix metalloproteinases. J Mol Med 2000; 78:261–268.

    Article  PubMed  CAS  Google Scholar 

  16. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000; 18:1135–1149.

    PubMed  CAS  Google Scholar 

  17. Westermarck J, Kähäri V. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999; 13:781–792.

    PubMed  CAS  Google Scholar 

  18. Stetler-Stevenson WG, Yu AE. Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 2001; 11:143–152.

    Article  PubMed  CAS  Google Scholar 

  19. Hoekstra R, Eskens FA, Verweij E. Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist 2001; 6:415–427.

    Article  PubMed  CAS  Google Scholar 

  20. Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R. Regulation of membrane type-matrix metalloproteinases. Semin Cancer Biol 2002; 12:131–138.

    Article  PubMed  CAS  Google Scholar 

  21. Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 1993; 53: 288–295.

    Article  PubMed  CAS  Google Scholar 

  22. Madlener M, Mauch C, Conca W, Brauchle M, Parks WC, Werner S. Regulation of the expression of stromelysin-2 by growth factors in keritanocytes: implications for normal and impaired wound healing. Biochem J 1996; 320:659–664.

    PubMed  CAS  Google Scholar 

  23. Fini ME, Cook JR, Mohan R. Regulation of MMP gene expression. In: Parks WC and Mecham RP, eds. Matrix metalloproteinases. San Diego, CA: Academic, 1998:299–356.

    Google Scholar 

  24. Frisch SM, Ruley HE. Transcription from the stromelysin promotor is induced by interleukin-1 and repressed by dexamethasone. J Biol Chem 1987; 262:16,300–16,304.

    PubMed  CAS  Google Scholar 

  25. Kerr LD, Miller DB, Martrisian LM. TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell 1990; 61:267–278.

    Article  PubMed  CAS  Google Scholar 

  26. Lafyatis R, Kim SJ, Angel P, Roberts AB, Sporn MB, Karin M, Wilder RL. Interleukin-1 stimulates and all-trans-retinoic acid inhibits collagenase gene expression through its 5′ activator protein-1-binding site. Mol Endocrinol 1990; 4:973–980.

    PubMed  CAS  Google Scholar 

  27. Nicholson RC, Mader S, Nagpal S, Leid M, Rochette-Egly C, Chambon P. Negative regulation of the rat stromelysin gene promotor by retinoic acid is mediated by an AP1 binding site. EMBO J 1990; 9: 4443–4454.

    PubMed  CAS  Google Scholar 

  28. Delany AM, Brinckerhoff CE. Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. J Cell Biochem 1992; 50: 400–410.

    Article  PubMed  CAS  Google Scholar 

  29. Parker A, Gockerman A, Busby WH, Clemmons DR. Properties of an insulin-like growth factorbinding protein-4 protease that is secreted by smooth muscle cells. Endocrinology 1995; 136:2470–2476.

    Article  PubMed  CAS  Google Scholar 

  30. Imai Y, Busby WH Jr, Smith CE, Clarke JB, Garmong AJ, Horwitz GD, Rees C, Clemmons DR. Protease-resistant form of insulin-like growth factor-binding protein 5 is an inhibitor of insulin-like growth factor-I actions on porcine smooth muscle cells in culture. J Clin Invest 1997; 100:2596–2605.

    PubMed  CAS  Google Scholar 

  31. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 1990; 87:364–368.

    Article  PubMed  CAS  Google Scholar 

  32. Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 1999; 284:1667–1670.

    Article  PubMed  CAS  Google Scholar 

  33. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997; 17:439–444.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Z, Winyard PG, Chidwick K, Murphy G, Wardell M, Carrell RW, Blake DR. Proteolysis of human native and oxidised alpha 1-proteinase inhibitor by matrilysin and stromelysin. Biochim Biophys Acta 1994; 1199: 224–228.

    PubMed  CAS  Google Scholar 

  35. Sires UI, Murphy G, Baragi VM, Fliszar CJ, Welgus HG, Senior RM. Matrilysin is much more efficient than other matrix metalloproteinases in the proteolytic inactivation of alpha 1-antitrypsin. Biochem Biophys Res Commun 1994; 204:613–620.

    Article  PubMed  CAS  Google Scholar 

  36. Noel A, Santavicca M, Stoll I, L’Hoir C, Staub A, Murphy G, et al. Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities. J Biol Chem 1995; 270: 22,866–22,872.

    Article  PubMed  CAS  Google Scholar 

  37. Noel A, Gilles C, Bajou K, Devy L, Kebers F, Lewalle JM, et al. Emerging roles for proteinases in cancer. Invasion Metastasis 1997; 17:221–239.

    PubMed  CAS  Google Scholar 

  38. Itoh Y, Binner S, Nagase H. Steps involved in activation of the complex of pro-matrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)-2 by 4-aminophenylmercuric acetate. Biochem J 1995; 308:645–651.

    PubMed  CAS  Google Scholar 

  39. Kinoshita T, Sato H, Okada A, Ohuchi E, Imai K, Okada Y, Seiki M. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem 1998; 273:16,098–16,103.

    Article  PubMed  CAS  Google Scholar 

  40. Atkinson SJ, Crabbe T, Cowell S, Ward RV, Butler MJ, Sato H, et al. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem 1995; 270: 30,479–30,485.

    Article  PubMed  CAS  Google Scholar 

  41. Zucker S, Drews M, Conner C, Foda HD, DeClerck YA, Langley KE, et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem 1998; 273: 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  42. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, van Westrum SS, et al. The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 1998; 273:871–880.

    Article  PubMed  CAS  Google Scholar 

  43. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 1995; 270:5331–5338.

    Article  PubMed  CAS  Google Scholar 

  44. Jo Y, Yeon J, Kim HJ, Lee ST. Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system. Biochem J 2000; 345Pt3:511–519.

    Article  PubMed  CAS  Google Scholar 

  45. Kerr LD, Olashaw NE, Matrisian LM. Transforming growth factor beta 1 and cAMP inhibit transcription of epidermal growth factor and oncogene-induced transin RNA. J Biol Chem 1988; 263:16,999–17,005.

    PubMed  CAS  Google Scholar 

  46. Overall CM, Wrana JL, Sodek J. Transcriptional and post-transcriptional regulation of a 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts: Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem1991; 266:14,064–14,071.

    PubMed  CAS  Google Scholar 

  47. Welgus HG, Campbell EJ, Bar-Shavit Z, Senior RM, Teitelbaum SL. Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor. J Clin Invest 1985; 76:219–224.

    PubMed  CAS  Google Scholar 

  48. Busiek DF, Ross FP, McDonnell S, Murphy G, Matrisian LM, Welgus HG. The matrix metalloproteinase matrilysin (PUMP) is expressed in developing human mononuclear phagocytes. J Biol Chem 1992; 267:9087–9092.

    PubMed  CAS  Google Scholar 

  49. Lacraz S, Nicod L, Galve-de Rochemonteix B, Baumberger C, Dayer JM, Welgus HG. Suppression of metalloproteinase biosynthesis in human alveolar macrophages by interleukin-4. J Clin Invest 1992; 90: 382–388.

    PubMed  CAS  Google Scholar 

  50. Xie B, Dong Z, Fidler IJ. Regulatory mechanisms for the expression of type IV collagenases/gelatinases in murine macrophages. J Immunol 1994; 152:3637–3644.

    PubMed  CAS  Google Scholar 

  51. Kumar R, Dong Z, Fidler IJ. Differential regulation of metalloelastase activity in murine peritoneal macrophages by granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor. J Immunol 1996; 157:5104–5111.

    PubMed  CAS  Google Scholar 

  52. Cury JD, Campbell EJ, Lazarus CJ, Albin RJ, Welgus HG. Selective up-regulation of human alveolar macrophage collagenase production by lipopolysaccharide and comparison to collagenase production by fibroblasts. J Immunol 1988; 141:4306–4312.

    PubMed  CAS  Google Scholar 

  53. Welgus HG, Campbell EJ, Cury JD, Eisen AZ, Senior RM, Wilhelm SM, Goldberg GI. Neutral metalloproteinases produced by human alveolar mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest 1990; 86: 1496–1502.

    PubMed  CAS  Google Scholar 

  54. Campbell EJ, Cury JD, Shapiro SD, Goldberg GI, Welgus HG. Neutral proteinases of human mononuclear phagocytes. Cellular differentiation markedly alters cell phenotype for serine proteinases, metalloproteinases, and tissue inhibitor of metalloproteinases. J Immunol 1991; 146:1286–1293.

    PubMed  CAS  Google Scholar 

  55. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 1993; 268:23,824–23,829.

    PubMed  CAS  Google Scholar 

  56. Shapiro SD. Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles in destructive lung disease. Am J Respir Crit Care Med 1994; 150: S160–S164.

    PubMed  CAS  Google Scholar 

  57. Belaaouaj A, Shipley JM, Kobayashi DK, Zimonjic DB, Popescu N, Silverman GA, Shapiro SD. Human macrophage metalloelastase. Genomic organization, chromosomal location, gene linkage, and tissue-specific expression. J Biol Chem 1995; 270:14,568–14,575.

    Article  PubMed  CAS  Google Scholar 

  58. Chizzolini C, Rezzonico R, De Luca C, Burger D, Dayer JM. Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1 (MMP-1) while decreasing MMP-9 production by granulocyte-macrophage colony-stimulating factor-differentiated human monocytes. J Immunol2000; 164:5952–5960.

    PubMed  CAS  Google Scholar 

  59. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320:365–376.

    Article  PubMed  CAS  Google Scholar 

  60. Tschesche H, Groeger C, Wenzel HR. Enzymatic fragment substitution as a tool in protein design. Biomed Biochim Acta 1991; 50:S175–180.

    PubMed  CAS  Google Scholar 

  61. Sorsa T, Ding Y, Salo T, Lauhio A, Teronen O, Ingman T, et al. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and western-blot assessment with special reference to their cellular sources in periodontal diseases. Ann NY Acad Sci 1994; 732: 112–131.

    Article  PubMed  CAS  Google Scholar 

  62. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 2001; 69:851–859.

    PubMed  CAS  Google Scholar 

  63. Schwartz JD, Monea S, Marcus SG, Patel S, Eng K, Galloway AC, Mignatti P, Shamamian P. Soluble factor(s) released from neutrophils activates endothelial cell matrix metalloproteinase-2. J Surg Res1998; 76: 79–85.

    Article  PubMed  CAS  Google Scholar 

  64. Banda MJ, Rice AG, Griffin GL, Senior RM. Alpha 1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J Biol Chem 1988; 263:4481–4484.

    PubMed  CAS  Google Scholar 

  65. Montgomery AM, Sabzevari H, Reisfeld RA. Production and regulation of gelatinase B by human T-cells. Biochim Biophys Acta 1993; 1176:265–268.

    Article  PubMed  CAS  Google Scholar 

  66. Zhou H, Bernhard EJ, Fox FE, Billings PC. Induction of metalloproteinase activity in human T-lymphocytes. Biochim Biophys Acta 1993; 1177:174–178.

    Article  PubMed  CAS  Google Scholar 

  67. Leppert D, Waubant E, Galardy R, Bunnett NW, Hauser SL. T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 1995; 154:4379–4389.

    PubMed  CAS  Google Scholar 

  68. Johnatty RN, Taub DD, Reeder SP, Turcovski-Corrales SM, Cottam DW, Stephenson TJ, Rees RC. Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 1997; 158:2327–2333.

    PubMed  CAS  Google Scholar 

  69. Xia M, Leppert D, Hauser SL, Sneedharan SP, Nelson PJ, Krensky AM, Goetzl EJ. Stimulus specificity of matrix metalloproteinase dependence of human T cell migration through a model basement membrane. J Immunol 1996; 156:160–167.

    PubMed  CAS  Google Scholar 

  70. Leber TM, Balkwill FR. Regulation of monocyte MMP-9 production by TNF-alpha and a tumourderived soluble factor (MMPSF). Br J Cancer 1998; 78:724–732.

    PubMed  CAS  Google Scholar 

  71. Ismair MG, Ries C, Lottspeich F, Zang C, Kolb HJ, Petrides PE. Autocrine regulation of matrix metalloproteinase-9 gene expression and secretion by tumor necrosis factor-alpha (TNF-alpha) in NB4 leukemic cells: specific involvement of TNF receptor type 1. Leukemia 1998; 12:1136–1143.

    Article  PubMed  CAS  Google Scholar 

  72. Leppert D, Hauser SL, Kishiyama JL, An S, Zeng L, Goetzl EJ. Stimulation of matrix metalloproteinasedependent migration of T cells by eicosanoids. FASEB J 1995; 9:1473–1481.

    PubMed  CAS  Google Scholar 

  73. Leppert D, Waubant E, Burk MR, Oksenberg JR, Hauser SL. Interferon beta-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann Neurol 1996; 40:846–852.

    Article  PubMed  CAS  Google Scholar 

  74. Liu Z, Shipley JM, Vu TH, Zhou X, Diaz LA, Werb Z, Senior RM. Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J Exp Med 1998; 188:475–482.

    Article  PubMed  CAS  Google Scholar 

  75. López-Boado YS, Wilson CL, Hooper LV, Gordon JI, Hultgren SJ, Parks WC. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J Cell Biol 2000; 148:1305–1315.

    Article  PubMed  Google Scholar 

  76. Parks WC, Lopez-Boado YS, Wilson CL. Matrilysin in epithelial repair and defense. Chest 2001; 120:36S–41S.

    Article  PubMed  CAS  Google Scholar 

  77. Dunsmore SE, Saarialho-Kere UK, Roby JD, Wilson CL, Matrisian LM, Welgus HG, Parks WC. Matrilysin expression and function in airway epithelium. J Clin Invest 1998; 102:1321–1331.

    PubMed  CAS  Google Scholar 

  78. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boada YS, Stratman JL, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science1999; 286:113–117.

    Article  PubMed  CAS  Google Scholar 

  79. Taub DD, Oppenheim JJ. Chemokines, inflammation and the immune system. Ther Immunol 1994; 1: 229–246.

    PubMed  CAS  Google Scholar 

  80. McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 2002; 100:1160–1167.

    PubMed  CAS  Google Scholar 

  81. Vaday GG, Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukocyte Biol 2000; 67: 149–159.

    PubMed  CAS  Google Scholar 

  82. Unemori EN, Hibbs MS, Amento EP. Constitutive expression of a 92-kD gelatinase (type V collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines. J Clin Invest 1991; 88:1656.

    PubMed  CAS  Google Scholar 

  83. Hanemaaijer R, Sorsa T, Konttinen YT, Ding Y, Sutinen M, Visser H, et al. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. J Biol Chem 1997; 272: 31,504–31,509.

    Article  PubMed  CAS  Google Scholar 

  84. Vaday GG, Hershkoviz R, Rahat MA, Lahat N, Cahalon L, Lider O. Fibronectin-bound TNF-alpha stimulates monocyte matrix metalloproteinase-9 expression and regulates chemotaxis. J Leukocyte Biol 2000; 68: 737–747.

    PubMed  CAS  Google Scholar 

  85. Vaday GG, Schor H, Rahat MA, Lahat N, Lider O. Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes. J Leukocyte Biol2001; 69: 613–621.

    PubMed  CAS  Google Scholar 

  86. Robinson SC, Scott KA, Balkwill FR. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol 2002; 32:404–412.

    Article  PubMed  CAS  Google Scholar 

  87. Sarén P, Welgus HG, Kovanen PT. TNF-alpha and IL-1 beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 1996; 157:4159–4165.

    PubMed  Google Scholar 

  88. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 1995; 95:55–65.

    PubMed  CAS  Google Scholar 

  89. Marsh CB, Pomerantz RP, Parker JM, Winnard AV, Mazzaferri EL, Moldovan N, et al. Regulation of monocyte survival in vitro by deposited IgG: role of macrophage colony-stimulating factor. J Immunol1999; 162: 6217–6225.

    PubMed  CAS  Google Scholar 

  90. Akagawa KS, Kamoshita K, Tokunaga T. Effects of granulocyte-macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages. J Immunol 1988; 141:3383–3390.

    PubMed  CAS  Google Scholar 

  91. Held TK, Mielke ME, Unger M, Trautmann M, Cross AS. Kinetics and dose dependence of macrophage colony-stimulating factor-induced proliferation and activation of murine mononuclear phagocytes in situ: differences between lungs, liver and spleen. J Interferon Cytokine Res 1996; 16:159–168.

    PubMed  CAS  Google Scholar 

  92. Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG. Biology and activation of colony-stimulating factor-1. Mol Reprod Dev 1997; 46:4–10.

    Article  PubMed  CAS  Google Scholar 

  93. Hashimoto S, Suzuki T, Dong HY, Yamazaki N, Matsushima K. Serial analysis of gene expression in human monocytes and macrophages. Blood 1999; 94:837–844.

    PubMed  CAS  Google Scholar 

  94. Zhang Y, McCluskey K, Fujii K, Wahl LM. Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and independent mechanisms. J Immunol 1998; 161:3071–3076.

    PubMed  CAS  Google Scholar 

  95. Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ, Sasaguri Y, Mori Y. Degradation of interleukin 1 beta by matix metalloproteinases. J Biol Chem 1996; 271:14,657–14,660.

    Article  PubMed  CAS  Google Scholar 

  96. Arend WP, Dayer JM. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 1990; 33:305–315.

    Article  PubMed  CAS  Google Scholar 

  97. Shapiro SD, Campbell EJ, Kobayashi DK, Welgus HG. Immune modulation of metalloproteinase production in human macrophages. Selective pretranslational suppression of interstitial collagenase and stromelysin biosynthesis by interferon-gamma. J Clin Invest 1990; 86:1204–1210.

    PubMed  CAS  Google Scholar 

  98. Wahl LM, Corcoran ME, Mergenhagen SE, Finbloom DS. Inhibition of phospholipase activity in human monocytes by IFN-gamma blocks endogenous prostaglandin E2-dependent collagenase production. J Immunol 1990; 144: 3518–3522.

    PubMed  CAS  Google Scholar 

  99. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEBJ 1991; 5:2145–2154.

    CAS  Google Scholar 

  100. Corcoran ML, Stetler-Stevenson WG, Brown PD, Wahl LM. Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J Biol Chem 1992; 267:515–519.

    PubMed  CAS  Google Scholar 

  101. Mertz PM, DeWitt DL, Stetler-Stevenson WG, Wahl LM. Interleukin 10 suppression of monocyte prostaglandin H synthase-2. Mechanism of inhibition of prostaglandin-dependent matrix metalloproteinase production. J Biol Chem 1994; 269:21,322–21,329.

    PubMed  CAS  Google Scholar 

  102. Lacraz S, Nicod L, Chicheportiche R, Welgus HG, Dayer JM. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest 1995; 96:2304–2310.

    Article  PubMed  CAS  Google Scholar 

  103. Sica A, Saccani A, Borsatti A, Power CA, Wells TN, Luini W, et al. Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J Exp Med 1997; 185:969–974.

    Article  PubMed  CAS  Google Scholar 

  104. Weber C, Draude G, Weber KS, Wubert J, Lorenz RL, Weber PC. Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein: a potential mechanism of monocyte retention in atherosclerotic lesions. Atherosclerosis 1999; 145:115–123.

    Article  PubMed  CAS  Google Scholar 

  105. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, et al. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 1994; 370:555–557.

    Article  PubMed  CAS  Google Scholar 

  106. McGeehan GM, Becherer JD, Bast RC, Boyer CM, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S, et al. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 1994; 370:558–561.

    Article  PubMed  CAS  Google Scholar 

  107. Lacraz S, Isler P, Vey E, Welgus HG, Dayer JM. Direct contact beween T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem 1994; 269:22,027–22,033.

    PubMed  CAS  Google Scholar 

  108. Miltenburg AM, Lacraz S, Welgus HG, Dayer JM. Immobilized anti-CD3 antibody activates T cell clones to induce the production of interstitial collagenase, but not tissue inhibitor of metalloproteinases, in monocytic THP-1 cells and dermal fibroblasts. J Immunol 1995; 154: 2655–2667.

    PubMed  CAS  Google Scholar 

  109. Aoudjit F, Potworowski EF, St-Pierre Y. Bi-directional induction of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 during T lymphoma/endothelial cell contact: implication of ICAM-1. J Immunol 1998; 160:2967–2973.

    PubMed  CAS  Google Scholar 

  110. Aoudjit F, Esteve PO, Desrosiers M, Potworowski EF, St-Pierre Y. Gelatinase B (MMP-9) production and expression by stromal cells in the normal and adult thymus and experimental thymic lymphoma. Int J Cancer 1997; 71:71–78.

    Article  PubMed  CAS  Google Scholar 

  111. Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori Ya. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol2001; 167:4008–4016.

    PubMed  CAS  Google Scholar 

  112. Bhattacharyya SP, Drucker I, Reshef T, Kirshenbaum AS, Metcalfe DD, Mekori Ya. Activated T lymphocytes induce degranulation and cytokine production by human mast cells following cell-to-cell contact. J Leukocyte Biol 1998; 63:337–341.

    PubMed  CAS  Google Scholar 

  113. Burger D, Rezzonico R, Li JM, Modoux C, Pierce RA, Welgus HG, Dayer JM. Imbalance between interstitial collagenase and tissue inhibitor of metalloproteinases 1 in synoviocytes and fibroblasts upon direct contact with stimulated T lymphocytes: involvement of membrane-associated cytokines. Arthritis Rheum 1998; 41: 1748–1759.

    Article  PubMed  CAS  Google Scholar 

  114. Zhang JH, Ferrante A, Arrigo AP, Dayer JM. Neutrophil stimulation and priming by direct contact with activated human T lymphocytes. J Immunol 1992; 148:177–181.

    PubMed  CAS  Google Scholar 

  115. Malik N, Greenfield BW, Wahl AF, Kiener PA. Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol 1996; 156:3952–3960.

    PubMed  CAS  Google Scholar 

  116. Kayagaki N, Kawasaki A, Ebata T, Ohmoto H, Ikeda S, Inoue S, Yoshino K, Okumura K, Yagita H. Metalloproteinase-mediated release of human Fas ligand. J Exp Med 1995; 182:1777–1783.

    Article  PubMed  CAS  Google Scholar 

  117. Chandler S, Cossins J, Lury J, Wells G. Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem Biophys Res Commun1996; 228: 421–429.

    Article  PubMed  CAS  Google Scholar 

  118. Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V, Docherty AJ, Murphy G. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998; 435: 39–44.

    Article  PubMed  CAS  Google Scholar 

  119. Perl A.K, Wilgenbus P, Dahl U, Semb H, Christofori G. A casual role for E-cadherin in the translation from adenocarcinoma to carcinoma. Nature 1998; 392:190–193.

    Article  PubMed  CAS  Google Scholar 

  120. Gu B, Bendall LJ, Wiley JS. Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteinases. Blood1998; 92: 946–951.

    PubMed  CAS  Google Scholar 

  121. Zhao L, Shey M, Farnsworth M, Dailey MO. Regulation of membrane metalloproteolytic cleavage of L-selectin (CD62l) by the epidermal growth factor domain. J Biol Chem 2001; 276:30,631–30,640.

    Article  PubMed  CAS  Google Scholar 

  122. Okamoto I, Kawano Y, Tsuiki H, Sasaki J, Nakao M, Matsumoto M, Suga M, Ando M, Nakajima M, Saya H. CD44 cleavage induced by a membrane-associated metalloproteinase plays a critical role in tumor cell migration. Oncogene 1999; 18:1435–1446.

    Article  PubMed  CAS  Google Scholar 

  123. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 2001; 153:893–904.

    Article  PubMed  CAS  Google Scholar 

  124. Schönbeck U, Mach F, Sukhova GK, Murphy C, Bonnefoy JY, Fabunmi RP, Libby P. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997; 81:448–454.

    PubMed  Google Scholar 

  125. Manes S, Mira E, Barbacid MM, Cipres A, Fernandez-Resa P, Buesa JM, et al. Identification of insulinlike growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 1997; 272:25,706–25,712.

    Article  PubMed  CAS  Google Scholar 

  126. Springer TA. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Annu Rev Cell Biol 1990; 6: 359–402.

    Article  PubMed  CAS  Google Scholar 

  127. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76:301–314.

    Article  PubMed  CAS  Google Scholar 

  128. Altomonte M, Gloghini A, Bertola G, Gasparollo A, Carbone A, Ferrone S, Maio M. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res 1993; 53:3343–3348.

    PubMed  CAS  Google Scholar 

  129. Becker JC, Brocker EB. Lymphocyte-melanoma interaction: role of surface molecules. Recent Results Cancer Res 1995; 139:205–214.

    PubMed  CAS  Google Scholar 

  130. Becker JC, Dummer R, Hartmann AA, Burg G, Schmidt RE. Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. Functional consequences on cell-mediated cytotoxicity. J Immunol 1991; 147:4398–4401.

    PubMed  CAS  Google Scholar 

  131. Fonsatti E, Altomonte M, Coral S, Cattarossi I, Nicotra MR, Gasparollo A, et al. Tumour-derived interleukin 1alpha (IL-1alpha) up-regulates the release of soluble intercellular adhesion molecule-1 (sICAM-1) by endothelial cells. Br J Cancer 1997; 76:1255–1261.

    PubMed  CAS  Google Scholar 

  132. Sanchez-Rovira P, Jimenez E, Carracedo J, Barneto IC, Ramirez R, Aranda E. Serum levels of intercellular adhesion molecule 1 (ICAM-1) in patients with colorectal cancer: inhibitory effect on cytotoxicity. Eur J Cancer 1998; 34:394–398.

    Article  PubMed  CAS  Google Scholar 

  133. Lyons PD, Benveniste EN. Cleavage of membrane-associated ICAM-1 from astrocytes: involvement of a metalloprotease. Glia 1998; 22:103–112.

    Article  PubMed  CAS  Google Scholar 

  134. Romanic AM, Madri JA. The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J Cell Biol 1994; 125:1165–1178.

    Article  PubMed  CAS  Google Scholar 

  135. Xia M, Sreedharan SP, Dazin P, Damsky CH, Goetzl EJ. Integrin-dependent role of human T cell matrix metalloproteinase activity in chemotaxis through a model basement membrane. J Cell Biochem1996; 61: 452–458.

    Article  PubMed  CAS  Google Scholar 

  136. Fiore E, Fusco C, Romero P, Stamenkovic I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 2002; 21:5213–5223.

    Article  PubMed  CAS  Google Scholar 

  137. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Kozlosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA. An essential role for ectodomain shedding in mammalian development. Science 1998; 282:1281–1284.

    Article  PubMed  CAS  Google Scholar 

  138. Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K. L-selectin shedding regulates leukocyte recruitment. J Exp Med 2001; 193:863–872.

    Article  PubMed  CAS  Google Scholar 

  139. Ohtani H. Stromal reaction in cancer tissue: pathophysiologic significance of the expression of matrixdegrading enzymes in relation to matrix turnover and immune/inflammatory reactions. Pathol Int 1998; 48:1–9.

    Article  PubMed  CAS  Google Scholar 

  140. Leek RD, Harris AL, Lewis CE. Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukocyte Biol 1994; 56:423–435.

    PubMed  CAS  Google Scholar 

  141. Neville MC, Medina D, Monks J, Hovey RC. The mammary fat pad. J Mammary Gland Biol Neoplasia 1998; 3:109–116.

    Article  PubMed  CAS  Google Scholar 

  142. Alexander CM, Selvarajan S, Mudgett J, Werb Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol 2001; 152:693–703.

    Article  PubMed  CAS  Google Scholar 

  143. Giannelli G, Fransvea E, Marinosci F, Bergamini C, Daniele A, Colucci S, et al. Gelatinase levels in male and female breast cancer. Biochem Biophys Res Commun 2002; 292:161–166.

    Article  PubMed  CAS  Google Scholar 

  144. Atula S, Grenman R, Syrjanen S. Fibroblasts can modulate the phenotype of malignant epithelial cells in vitro. Exp Cell Res 1997; 235:180–187.

    Article  PubMed  CAS  Google Scholar 

  145. Göttlinger HG, Rieber P, Gokel JM, Lohe KJ, Riethmuller G. Infiltrating mononuclear cells in human breast carcinoma: predominance of T4+ monocytic cells in the tumor stroma. Int J Cancer 1985; 35: 199–205.

    Article  PubMed  Google Scholar 

  146. Kelly PM, Davison RS, Bliss E, McGee JO. Macrophages in human breast disease: a quantitative immunohistochemical study. Br J Cancer 1988; 57:174–177.

    PubMed  CAS  Google Scholar 

  147. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996; 56:4625–4629.

    PubMed  CAS  Google Scholar 

  148. O’Sullivan C, Lewis CE. Tumour-associated leukocytes: friends or foes in breast carcinoma. J Pathol 1994; 172:229–235.

    Article  PubMed  CAS  Google Scholar 

  149. Normann SJ. Macrophage infiltration and tumor progression. Cancer Metastasis Rev 1985; 4:277–291.

    Article  PubMed  CAS  Google Scholar 

  150. Ring P, Johansson K, Hoyhtya M, Rubin K, Lindmark G. Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer-a predictor of tumour stage. Br J Cancer 1997; 76:805–811.

    PubMed  CAS  Google Scholar 

  151. Jaalinoja J, Herva R, Korpela M, Hoyhtya M, Turpeenniemi-Hujanen T. Matrix metalloproteinase 2 (MMP-2) immunoreactive protein is associated with poor grade and survival in brain neoplasms. J Neurooncol 2000; 46:81–90.

    Article  PubMed  CAS  Google Scholar 

  152. Zuk JA, Walker RA. Immunohistochemical analysis of HLA antigens and mononuclear infiltrates of benign and malignant breast. J Pathol 1987; 152:275–285.

    Article  PubMed  CAS  Google Scholar 

  153. Van Netten JP, Ashmead BJ, Parker RL, Thornton IG, Fletcher C, Cavers D, et al. Macrophage-tumor cell associations: a factor in metastasis of breast cancer? J Leukocyte Biol 1993; 54:360–362.

    PubMed  Google Scholar 

  154. Nathan CF. Secretory products of macrophages. J Clin Invest 1987; 79:319–326.

    PubMed  CAS  Google Scholar 

  155. Turnock K, Bulmer JN, Gray C. Phenotypic characterization of macrophage subpopulations and localization of factor XIII in the stromal cells of carcinomas. Histochem J 1990; 22:661–666.

    Article  PubMed  CAS  Google Scholar 

  156. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today 1992; 13:265–270.

    Article  PubMed  CAS  Google Scholar 

  157. Van Netten JP, George EJ, Ashmead BJ, Fletcher C, Thornton IG, Coy P. Macrophage-tumor cell associations in breast cancer. Lancet 1993; 342:872,873.

    Google Scholar 

  158. Graves DT, Valent AJ. Monocyte chemotactic proteins from human tumor cells. Biochem Pharmacol 1991; 41:333–337.

    Article  PubMed  CAS  Google Scholar 

  159. Fu YX, Cai JP, Chin YH, Watson GA, Lopez DM. Regulation of leukocyte binding protein to endothelial tissues by tumor-derived granulocyte macrophage colony-stimulating factor (GM-CSF). Int J Cancer 1992; 50: 585–588.

    Article  PubMed  CAS  Google Scholar 

  160. Stewart T, Tsai SC, Grayson H, Henderson R, Opelz G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 1995; 346:796–798.

    Article  PubMed  CAS  Google Scholar 

  161. Leibovich SJ, Polverini PJ, Fong TW, Harlow LA, Koch AE. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci USA 1994; 91: 4190–4194.

    Article  PubMed  CAS  Google Scholar 

  162. Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR. Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int J Cancer 1994; 56:777–782.

    Article  PubMed  CAS  Google Scholar 

  163. Pusztai L, Clover LM, Cooper K, Starkey PM, Lewis CE, McGee JO. Expression of tumour necrosis factor alpha and its receptors in carcinoma of the breast. Br J Cancer 1994; 70:289–292.

    PubMed  CAS  Google Scholar 

  164. Jones PD, Castro JE. Immunological mechanisms in metastatic spread and the antimetastatic effects of C. parvum. Br J Cancer 1977; 35:519–527.

    PubMed  CAS  Google Scholar 

  165. Mantovani A, Giavazzi R, Polentarutti N, Spreafico F, Garattini S. Divergent effects of macrophage toxins on growth of primary tumors and lung metastases in mice. Int J Cancer 1980; 25:617–620.

    Article  PubMed  CAS  Google Scholar 

  166. Keller R. Mononuclear phagocytes in the control of primary and secondary tumor growth. Adv Exp Med Biol 1982; 155:289–302.

    PubMed  CAS  Google Scholar 

  167. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79:315–328.

    Article  PubMed  CAS  Google Scholar 

  168. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277–285.

    Article  PubMed  CAS  Google Scholar 

  169. Dong, Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloproteinase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997; 88:801–810.

    Article  PubMed  CAS  Google Scholar 

  170. Lijnen HR, Ugwu F, Bini A, Collen D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 1998; 37: 4699–4702.

    Article  PubMed  CAS  Google Scholar 

  171. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997; 385:733–736.

    Article  PubMed  CAS  Google Scholar 

  172. Whalen GF. Solid tumours and wounds: transformed cells misunderstood as injured tissue? Lancet 1990; 336:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  173. Polverini PJ, Leibovich SJ. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab Invest 1984; 51:635–642.

    PubMed  CAS  Google Scholar 

  174. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukocyte Biol 1994; 55:410–422.

    PubMed  CAS  Google Scholar 

  175. Basset P, Okada A, Chenard MP, Kannan R, Stoll I, Anglard P, et al. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol 1997; 15:535–541.

    Article  PubMed  CAS  Google Scholar 

  176. Uria JA, Stahle-Backdahl M, Seiki M, Fueyo A, Lopez-Otin C. Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal-epithelial cell interactions. Cancer Res 1997; 57: 4882–4888.

    PubMed  CAS  Google Scholar 

  177. Johnsen M, Lund LR, Romer J, Almholt K, Dano K. Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol 1998; 10: 667–671.

    Article  PubMed  CAS  Google Scholar 

  178. Johansson N, Vaalamo M, Grenman S, Hietanen S, Klemi P, Saarialho-Kere U, Kahari VM. Collagenase-3 (MMP-13) is expressed by tumor cells in invasive vulvar squamous cell carcinomas. Am J Pathol 1999; 154: 469–480.

    PubMed  CAS  Google Scholar 

  179. Sheu B-C, Hsu S-M, Ho H-N, Lien H-C, Huang S-C, Lin R-H. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 2001; 61:237–242.

    PubMed  CAS  Google Scholar 

  180. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-b and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14:163–176.

    PubMed  Google Scholar 

  181. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med 2001; 7:1118–1122.

    Article  PubMed  CAS  Google Scholar 

  182. Kataoka H, Uchino H, Iwamura T, Sseiki M, Nabeshima K, Koono M. Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal framgent of α1-Proteinase inhibitor generated by m atrix metalloproteinases. Am J Pathol 1999; 154:457–468.

    PubMed  CAS  Google Scholar 

  183. Martin DC, Ruther U, Sanchez-Sweatman OH, Orr FW, Khokha R. Inhibition of SV40 T antigeninduced hepatocellular carcinoma in TIMP-1 transgenic mice. Oncogene 1996; 13: 569–576.

    PubMed  CAS  Google Scholar 

  184. Soloway PD, Alexander CM, Werb Z, Jaenisch R. Targeted mutagenesis of Timp-1 reveals that lung tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. Oncogene 1996; 13: 2307–2314.

    PubMed  CAS  Google Scholar 

  185. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 1992; 298:29–32.

    Article  PubMed  CAS  Google Scholar 

  186. Nemeth JA, Rafe A, Steiner M, Goolsby CL. TIMP-2 growth-stimulatory activity: a concentrationand cell type-specific response in the presence of insulin. Exp Cell Res 1996; 224:110–115.

    Article  PubMed  CAS  Google Scholar 

  187. Chen WT. Membrane proteases: roles in tissue remodeling and tumour invasion. Curr Opin Cell Biol 1992; 4:802–809.

    Article  PubMed  CAS  Google Scholar 

  188. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 1995; 7: 728–735.

    Article  PubMed  CAS  Google Scholar 

  189. Kohn EC, Liotta LA. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 1995; 55:1856–1862.

    PubMed  CAS  Google Scholar 

  190. Visscher DW, Hoyhtya M, Ottosen SK, Liang CM, Sarkar FH, Crissman JD, Fridman R. Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. Int J Cancer 1994; 59:339–344.

    Article  PubMed  CAS  Google Scholar 

  191. Polette M, Gilbert N, Stas I, Nawrocki B, Noel A, Remacle A, et al. Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch 1994; 424:641–645.

    Article  PubMed  CAS  Google Scholar 

  192. MacDougall JR, Matrisian LM. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev 1995; 14:351–362.

    Article  PubMed  CAS  Google Scholar 

  193. Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 1996; 149:273–282.

    PubMed  CAS  Google Scholar 

  194. Soini Y, Hurskainen T, Hoyhtya M, Oikarinen A, Autio-Harmainen H. 72 KD and 92 KD type IV collagenase, type IV collagen, and laminin mRNAs in breast cancer: a study by in situ hybridization. J Histochem Cytochem 1994; 42:945–951.

    PubMed  CAS  Google Scholar 

  195. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9:541–573.

    Article  PubMed  CAS  Google Scholar 

  196. Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem Biol 1996; 3:895–904.

    Article  PubMed  CAS  Google Scholar 

  197. Hoyhtya M, Fridman R, Komarek D, Porter-Jordan K, Stetler-Stevenson WG, Liotta LA, Liang CM. Immunohistochemical localization of matrix metalloproteinase 2 and its specific inhibitor TIMP-2 in neoplastic tissues with monoclonal antibodies. Int J Cancer 1994; 56: 500–505.

    Article  PubMed  CAS  Google Scholar 

  198. Davies B, Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 1993; 67:1126–1131.

    PubMed  CAS  Google Scholar 

  199. Monsky WL, Kelly T, Lin CY, Yeh Y, Stetler-Stevenson WG, Mueller SC, Chen WT. Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res 1993; 53:3159–3164.

    PubMed  CAS  Google Scholar 

  200. Monteagudo C, Merino MJ, San-Juan J, Liotta LA, Stetler-Stevenson WG. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 1990; 136:585–592.

    PubMed  CAS  Google Scholar 

  201. Clavel C, Polette M, Doco M, Binninger I, Birembaut P. Immunolocalization of matrix metalloproteinases and their tissue inhibitor in human mammary pathology. Bull Cancer 1992; 79:261–270.

    PubMed  CAS  Google Scholar 

  202. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370:61–65.

    Article  PubMed  CAS  Google Scholar 

  203. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996; 85:683–693.

    Article  PubMed  CAS  Google Scholar 

  204. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001; 7:14–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Szabo, K.A., Singh, G. (2005). Roles of Immune-Cell-Derived Matrix Metalloproteinases in Tumor Growth and Metastasis. In: Singh, G., Rabbani, S.A. (eds) Bone Metastasis. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-892-7:087

Download citation

  • DOI: https://doi.org/10.1385/1-59259-892-7:087

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-403-6

  • Online ISBN: 978-1-59259-892-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics