Skip to main content

Intermittent Hypoxia During Sleep as a Model of Environmental (Nongenetic) Contributions to Attention Deficit Hyperactivity Disorder

  • Chapter
Attention Deficit Hyperactivity Disorder

Abstract

Attention deficit hyperactivity disorder (ADHD) is a clinically heterogenous neuropsychiatric syndrome of persistent and developmentally inappropriate levels of hyperactivity, inattention, and impulsivity, typically of juvenile onset. Research on this disease has been complicated by the fact that the specific features and presentations of ADHD show substantial variability between individuals, and that no single pathophysiological profile of ADHD has been identified (1,2). Although the exact cause of ADHD is still unknown, both genetic and environmental factors are now recognized to play a role in the development of the disease (35). Children who suffer from sleep-disordered breathing (SDB) have been reported to experience learning disabilities, hyperactivity, and impaired attention in much the same manner as children with ADHD, suggesting that SDB and some forms of ADHD may share common pathophysiological mechanisms (see Chapter 19). These findings in clinical populations with sleep disorders have led to the hypothesis that exposure to intermittent hypoxia, such as that encountered in SDB, during critical developmental periods is an important environmental contributor to the development of ADHD-like behavioral problems, and may be particularly important in individuals with a genetic predisposition to develop ADHD. In support of this hypothesis, data from animal experiments has shown that exposure to intermittent hypoxia, the primary hallmark of SDB, replicates many of the behavioral features of ADHD and may provide insight into the neurobiological mechanisms underlying some nongenetic forms of ADHD-like pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faraone SV, Biederman J. Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry 1998;44:951–958.

    Article  PubMed  CAS  Google Scholar 

  2. Solanto MV. Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 2002;130:65–71.

    Article  PubMed  CAS  Google Scholar 

  3. Palomo T, Beninger RJ, Kostrzewa RM, Archer T. Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. Neurotox Res 2003;5:1–26

    Article  PubMed  CAS  Google Scholar 

  4. Biederman J, Faraone SV. Current concepts on the neurobiology of attention-deficit/hyperactivity disorder. J Atten Disord 2002;6Suppl 1:S7–S16.

    PubMed  Google Scholar 

  5. Biederman J, Faraone SV, Monuteaux MC. Differential effect of environmental adversity by gender: Rutter’s index of adversity in a group of boys and girls with and without ADHD. Am J Psychiatry 2002;159:1556–1562.

    Article  PubMed  Google Scholar 

  6. Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997;121:65–94.

    Article  PubMed  CAS  Google Scholar 

  7. Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment Retard Dev Disabil Res Rev 2003;9:184–195.

    Article  PubMed  Google Scholar 

  8. Benson DF. The role of frontal dysfunction in attention deficit hyperactivity disorder. J Child Neurol 1991;6 Suppl:S9–S12.

    PubMed  Google Scholar 

  9. Niedermeyer E, Naidu SB. Attention-deficit hyperactivity disorder (ADHD) and frontal-motor cortex disconnection. Clin Electroencephalogr 1997;28:130–136.

    PubMed  CAS  Google Scholar 

  10. Itami S, Uno H. Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks. Neuroreport 2002;13:2453–2457.

    Article  PubMed  Google Scholar 

  11. de Bruin JP, van Oyen HG, Van de Poll N. Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behav Brain Res 1983;10:209–232.

    Article  PubMed  Google Scholar 

  12. Yee BK. Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat. Neuroscience 2000;95:675–689.

    Article  PubMed  CAS  Google Scholar 

  13. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999;46:1234–1242.

    Article  PubMed  CAS  Google Scholar 

  14. Papp M, Bal A. Separation of the motivational and motor consequences of 6-hydroxydopamine lesions of the mesolimbic or nigrostriatal system in rats. Behav Brain Res 1987;23:221–229.

    Article  PubMed  CAS  Google Scholar 

  15. Mogenson GJ, Yang CR. The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 1991;295:267–290.

    PubMed  CAS  Google Scholar 

  16. Hollerman JR, Tremblay L, Schultz W. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Prog Brain Res 2000;126:193–215.

    PubMed  CAS  Google Scholar 

  17. Sesack SR, Carr DB. Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 2002;77:513–517.

    Article  PubMed  CAS  Google Scholar 

  18. O’Donnell P, Grace AA. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 1995;15:3622–3639.

    PubMed  CAS  Google Scholar 

  19. Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Rev 2000;31:330–341.

    Article  PubMed  CAS  Google Scholar 

  20. Albanese A, Minciacchi D. Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 1983;216:406–420.

    Article  PubMed  CAS  Google Scholar 

  21. Williams SM, Goldman-Rakic PS. Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 1998;8:321–345.

    Article  PubMed  CAS  Google Scholar 

  22. Madras BK, Miller GM, Fischman AJ. The dopamine transporter: relevance to attention deficit hyperactivity disorder (ADHD). Behav Brain Res 2002;130:57–63.

    Article  PubMed  CAS  Google Scholar 

  23. Altman J. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model. Environ Health Perspect 1987;74:153–168.

    Article  PubMed  CAS  Google Scholar 

  24. Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002;3:617–628.

    PubMed  CAS  Google Scholar 

  25. Castellanos FX. Neural substrates of attention-deficit hyperactivity disorder. Adv Neurol 2001;85:197–206.

    PubMed  CAS  Google Scholar 

  26. Russell VA. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 2002;130:191–196.

    Article  PubMed  CAS  Google Scholar 

  27. Solanto MV, Abikoff H, Sonuga-Barke E, et al. The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multi-modal treatment study of AD/HD. J Abnorm Child Psychol 2001;29:215–228.

    Article  PubMed  CAS  Google Scholar 

  28. Thierry AM, Gioanni Y, Degenetais E, Glowinsky J. Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 2000;10:411–419.

    Article  PubMed  CAS  Google Scholar 

  29. Davids E, Zhang K, Tarazi FI, Baldessarini RJ. Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev 2003;42:1–21.

    Article  PubMed  Google Scholar 

  30. Russell VA. Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder-the spontaneously hypertensive rat. Neurosci Biobehav Rev 2003;27:671–682.

    Article  PubMed  CAS  Google Scholar 

  31. Arnsten AF. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 1997;11:151–162.

    Article  PubMed  CAS  Google Scholar 

  32. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 2001;292:2499–2501.

    Article  PubMed  CAS  Google Scholar 

  33. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996;379:606–612.

    Article  PubMed  CAS  Google Scholar 

  34. Shaywitz BA, Yager RD, Klopper JH. Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 1976;191:305–308.

    Article  PubMed  CAS  Google Scholar 

  35. Viggiano D, Grammatikopoulos G, Sadile AG. A morphometric evidence for a hyperfunctioning mesolimbic system in an animal model of ADHD. Behav Brain Res 2002;130:181–189.

    Article  PubMed  CAS  Google Scholar 

  36. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991;41:1–24.

    Article  PubMed  CAS  Google Scholar 

  37. Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003;6:968–973.

    Article  PubMed  CAS  Google Scholar 

  38. Grace AA, Moore H, O’Donnell P. The modulation of corticoaccumbens transmission by limbic afferents and dopamine: a model for the pathophysiology of schizophrenia. Adv Pharmacol 1998;42:721–724.

    Article  PubMed  CAS  Google Scholar 

  39. Russell VA. In vitro glutamate-stimulated release of dopamine from nucleus accumbens core and shell of spontaneously hypertensive rats. Metab Brain Dis 2003;18:161–168.

    Article  PubMed  CAS  Google Scholar 

  40. Lanau F, Zenner MT, Civelli O, Hartman DS. Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. J Neurochem 1997;68:804–812.

    Article  PubMed  CAS  Google Scholar 

  41. Newman-Tancredi A, Audinot-Bouchez V, Gobert A, Millan MJ. Noradrenaline and adrenaline are high affinity agonists at dopamine D4 receptors. Eur J Pharmacol 1997;319:379–383.

    Article  PubMed  CAS  Google Scholar 

  42. Nyakas C, Buwalda B, Luiten PG. Hypoxia and brain development. Prog Neurobiol 1996;49:1–51.

    PubMed  CAS  Google Scholar 

  43. Nyakas C, Markel E, Schuurman T, Luiten PG. Impaired learning and abnormal open-field behaviours of rats after early postnatal anoxia and the beneficial effect of the calcium antagonist nimodipine. Eur J Neurosci 1991;3:168–174.

    Article  PubMed  Google Scholar 

  44. Nyakas C, Buwalda B, Kramers RJ, Traber J, Luiten PG. Postnatal development of hippocampal and neocortical cholinergic and serotonergic innervation in rat: effects of nitrite-induced prenatal hypoxia and nimodipine treatment. Neuroscience 1994;59:541–559.

    Article  PubMed  CAS  Google Scholar 

  45. Gray PH, Tudehope DI, Masel JP, et al. Perinatal hypoxic-ischaemic brain injury: prediction of outcome. Dev Med Child Neurol 1993;35:965–973.

    Article  PubMed  CAS  Google Scholar 

  46. Tuor UI, Del Bigio MR, Chumas PD. Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification. Cerebrovasc Brain Metab Rev 1996;8:159–193.

    PubMed  CAS  Google Scholar 

  47. du Plessis AJ, Johnston MV. Hypoxic-ischemic brain injury in the newborn. Cellular mechanisms and potential strategies for neuroprotection. Clin Perinatol 1997;24:627–654.

    PubMed  Google Scholar 

  48. Krageloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou HC. Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr 1999;88:897–908.

    Article  PubMed  CAS  Google Scholar 

  49. Zappitelli M, Pinto T, Grizenko N. Pre-, peri-, and postnatal trauma in subjects with attention-deficit hyperactivity disorder. Can J Psychiatry 2001;46:542–548.

    PubMed  CAS  Google Scholar 

  50. Lou HC. Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 1996;85:1266–1271.

    PubMed  CAS  Google Scholar 

  51. Kamba M, Suto Y, Ohta Y, Inoue Y, Matsuda E. Cerebral metabolism in sleep apnea. Evaluation by magnetic resonance spectroscopy. Am J Respir Crit Care Med 1997;156:296–298.

    PubMed  CAS  Google Scholar 

  52. Kamba M, Inoue Y, Higami S, Ogawa T, Chen W. Cerebral metabolic impairment in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change. J Neurol Neurosurg Psychiatry 2001;71:334–339.

    Article  PubMed  CAS  Google Scholar 

  53. Macey PM, Henderson LA, Macey KE, et al. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 2002;166:1382–1387.

    Article  PubMed  Google Scholar 

  54. Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci 2001;21:2442–2450.

    PubMed  CAS  Google Scholar 

  55. Gozal D, Row BW, Gozal E, et al. Temporal aspects of spatial task performance during intermittent hypoxia in the rat: evidence for neurogenesis. Eur J Neurosci 2003;18:2335–2342.

    Article  PubMed  Google Scholar 

  56. Row BW, Kheirandish L, Neville JJ, Gozal D. Impaired spatial learning and hyperactivity in developing rats exposed to intermittent hypoxia. Pediatr Res 2002;52:449–453.

    PubMed  Google Scholar 

  57. Row BW, Lui R, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 2003;167:1548–1553.

    Article  PubMed  Google Scholar 

  58. Decker MJ. Hue GE, Caudle WM, et al. Episodic neonatal hypoxia evokes executive dysfunction and regionally specific alterations in markers of dopamine signaling. Neuroscience 2003;117:417–425.

    Article  PubMed  CAS  Google Scholar 

  59. Li R, Bao G, el-Mallakh RS, Fletcher EC. Effects of chronic episodic hypoxia on monoamine metabolism and motor activity. Physiol Behav 1996;60:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  60. Gozal E, Row BW Shurr A, Gozal D. Developmental differences in cortical and hippocampal vulnerability to intermittent hypoxia in the rat. Neurosci Lett 2001;305:197–201.

    Article  PubMed  CAS  Google Scholar 

  61. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev 1997;100:149–160.

    Article  CAS  Google Scholar 

  62. Vannucci RC, Rossini A, Towfighi J, Vannucci SJ. Measuring the accentuation of the brain damage that arises from perinatal cerebral hypoxia-ischemia. Biol Neonate 1997;72:187–191.

    Article  PubMed  CAS  Google Scholar 

  63. Decker MJ, Rye DB. Neonatal intermittent hypoxia impairs dopamine signaling and executive functioning. Sleep Breath 2002;6:205–210.

    Article  PubMed  Google Scholar 

  64. Robinson TE, Castaneda E, Whishaw IQ. Compensatory changes in striatal dopamine neurons following recovery from injury induced by 6-OHDA or methamphetamine: a review of evidence from microdialysis studies. Can J Psychol 1990;44:253–275.

    PubMed  CAS  Google Scholar 

  65. Levy R, Goldman-Rakic PS. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res 2000;133:23–32.

    Article  PubMed  CAS  Google Scholar 

  66. Altman J, Brunner RL, Bayer SA. The hippocampus and behavioral maturation. Behav Biol 1973;8:557–596.

    Article  PubMed  CAS  Google Scholar 

  67. Csernansky JG, Bardgett ME. Limbic-cortical neuronal damage and the pathophysiology of schizophrenia. Schizophr Bull 1998;24:231–248.

    PubMed  CAS  Google Scholar 

  68. Bast T, Feldon J. Hippocampal modulation of sensorimotor processes. Prog Neurobiol 2003;70:319–345.

    Article  PubMed  CAS  Google Scholar 

  69. O’Donnell P, Grace AA. Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophr Bull 1998;24:267–283.

    PubMed  CAS  Google Scholar 

  70. Olton DS, Papas BC. Spatial memory and hippocampal function. Neuropsychologia 1979;17:669–682.

    Article  PubMed  CAS  Google Scholar 

  71. Vinogradova OS. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 2001;11:578–598.

    Article  PubMed  CAS  Google Scholar 

  72. Amaral DG, Witter MP. Hippocampal formation. In: the rat nervous system. Paxinos G, ed. San Diego: Academic Press 1995;443–494.

    Google Scholar 

  73. Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 1989. 31:571–591.

    Article  PubMed  CAS  Google Scholar 

  74. Bannerman DM, Yee BK Good MA, Heupel MJ, Iversen SD, Rawlins JN. Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 1999;113:1170–1188.

    Article  PubMed  CAS  Google Scholar 

  75. Caine SB, Humby T, Robbins TW, Everitt BJ. Behavioral effects of psychomotor stimulants in rats with dorsal or ventral subiculum lesions: locomotion, cocaine self-administration, and pre-pulse inhibition of startle. Behav Neurosci 2001;115:880–894.

    Article  PubMed  CAS  Google Scholar 

  76. Hock BJ, Jr. Bunsey MD. Differential effects of dorsal and ventral hippocampal lesions. J Neurosci 1998;18:7027–7032.

    PubMed  CAS  Google Scholar 

  77. Sinnamon HM, Freniere S, Kootz J. Rat hippocampus and memory for places of changing significance. J Comp Physiol Psychol 1978;92:142–155.

    Article  PubMed  CAS  Google Scholar 

  78. Cassel JC, Cassel S, Galani R, Kelche C, Will B, Jarrard L. Fimbria-fornix vs selective hippocampal lesions in rats: effects on locomotor activity and spatial learning and memory. Neurobiol Learn Mem 1998;69:22–45.

    Article  PubMed  CAS  Google Scholar 

  79. Coutureau E, Galani R, Jarrard LE, Cassel JC. Selective lesions of the entorhinal cortex, the hippocampus, or the fimbria-fornix in rats: a comparison of effects on spontaneous and amphetamine-induced locomotion. Exp Brain Res 2000;131:381–392.

    Article  PubMed  CAS  Google Scholar 

  80. Gray JA, McNaughton N. Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neurosci Biobehav Rev 1983;7:119–188.

    Article  PubMed  CAS  Google Scholar 

  81. Lipska BK, Jaskiw GE, Karoum F, Phillips I, Kleinman JE, Weinberger DR. Dorsal hippocampal lesion does not affect dopaminergic indices in the basal ganglia. Pharmacol Biochem Behav 1991;40:181–184.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang WN, Bast T, Feldon J. The ventral hippocampus and fear conditioning in rats: different anterograde amnesias of fear after infusion of N-methyl-D-aspartate or its noncompetitive antagonist MK-801 into the ventral hippocampus. Behav Brain Res 2001;126:159–174.

    Article  PubMed  CAS  Google Scholar 

  83. Kelley AE, Domesick VB. The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde-and retrograde-horseradish peroxidase study. Neuroscience 1982;7:2321–2335.

    Article  PubMed  CAS  Google Scholar 

  84. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 1987;23:103–120.

    Article  PubMed  CAS  Google Scholar 

  85. Takahata R, Moghaddam B. Glutamatergic regulation of basal and stimulus-activated dopamine release in the prefrontal cortex. J Neurochem 1998;71:1443–1449.

    Article  PubMed  CAS  Google Scholar 

  86. Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993;60:1650–1657.

    Article  PubMed  CAS  Google Scholar 

  87. Swerdlow NR, Braff DL, Geyer MA. Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 2000;11:185–204.

    PubMed  CAS  Google Scholar 

  88. Mishra OP, Fritz KI, Delivoria-Papadopoulos M. NMDA receptor and neonatal hypoxic brain injury. Ment Retard Dev Disabil Res Rev 2001;7:249–253.

    Article  PubMed  CAS  Google Scholar 

  89. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 2001;24:107–129.

    Article  PubMed  CAS  Google Scholar 

  90. Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 1997;147:103–114.

    Article  PubMed  CAS  Google Scholar 

  91. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992;42:733–738.

    PubMed  CAS  Google Scholar 

  92. Choi DW. Ischemia-induced neuronal apoptosis. Curr Opini Neurobiol 1996;6:667–672.

    Article  CAS  Google Scholar 

  93. Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci 1990;11:462–468.

    Article  PubMed  Google Scholar 

  94. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 1986;19:105–111.

    Article  PubMed  CAS  Google Scholar 

  95. Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 2000;78:3–13.

    Article  PubMed  CAS  Google Scholar 

  96. Schurr A, Payne RS, Heine MF, Rigor BM. Hypoxia, excitotoxicity, and neuroprotection in the hippocampal slice preparation. J Neurosci Methods 1995;59:129–138.

    Article  PubMed  CAS  Google Scholar 

  97. Gozal E, Rowell PP. Differential NMDA glutamate receptor changes following sustained or intermittent hypoxia in the rat brain. Sleep 2002;25:A333.

    Google Scholar 

  98. Pichiule P, Chavez JC, Boero J, Arregui A. Chronic hypoxia induces modification of the N-methyl-D-aspartate receptor in rat brain. Neurosci Lett 1996;218:83–86.

    Article  PubMed  CAS  Google Scholar 

  99. Said SI, Pakbaz H, Berisha HI, Raza S. NMDA receptor activation: critical role in oxidant tissue injury. Free Radic Biol Med 2000;28:1300–1302.

    Article  PubMed  CAS  Google Scholar 

  100. Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 1998;54:369–415.

    Article  PubMed  CAS  Google Scholar 

  101. Goldbart A, Row BW, Kheirandish L, et al. Intermittent hypoxic exposure during light phase induces changes in cAMP response element binding protein activity in the rat CA1 hippocampal region: water maze performance correlates. Neuroscience 2003;122:585–590.

    Article  PubMed  CAS  Google Scholar 

  102. Gozal D, Row BW, Kheirandish L, et al. Increased susceptibility to intermittent hypoxia in aging rats: changes in proteasomal activity, neuronal apoptosis and spatial function. J Neurochem 2003;86:1545–1552.

    Article  PubMed  CAS  Google Scholar 

  103. Li RC, Row BW, Gozal E, et al. Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat. Am J Respir Crit Care Med 2003;168:469–475.

    Article  PubMed  Google Scholar 

  104. Row BW, Goldbart A, Gozal E, Gozal D. et al. Spatial pre-training attenuates hippocampal impairments in rats exposed to intermittent hypoxia. Neurosci Lett 2003;339:67–71.

    Article  PubMed  CAS  Google Scholar 

  105. Lu C, Chan SL, Haughey N, Lee WT, Mattson P. et al. Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J Neurochem 2001;78:577–589.

    Article  PubMed  CAS  Google Scholar 

  106. Palmer LJ, Buxbaum SG, Larkin E, et al. A whole-genome scan for obstructive sleep apnea and obesity. Am J Hum Genet 2003;72:340–350.

    Article  PubMed  CAS  Google Scholar 

  107. Pellegrini-Giampietro DE, Pulsinelli WA, Zukin RS. NMDA and non-NMDA receptor gene expression following global brain ischemia in rats: effect of NMDA and non-NMDA receptor antagonists. J Neurochem 1994;62:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  108. Barth A, Barth L, Newell DW. Combination therapy with MK-801 and alpha-phenyl-tert-butyl-nitrone enhances protection against ischemic neuronal damage in organotypic hippocampal slice cultures. Exp Neurol 1996;141:330–336.

    Article  PubMed  CAS  Google Scholar 

  109. Murata T, Omata N, Fujibayashi Y, et al. Posthypoxic reoxygenation-induced neurotoxicity prevented by free radical scavenger and NMDA/non-NMDA antagonist in tandem as revealed by dynamic changes in glucose metabolism with positron autoradiography. Exp Neurol 2000;164:269–279.

    Article  PubMed  CAS  Google Scholar 

  110. Mooney SM, Miller MW. Expression of bcl-2, bax, and caspase-3 in the brain of the developing rat. Brain Res Dev 2000;123:103–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Row, B.W., Gozal, D. (2005). Intermittent Hypoxia During Sleep as a Model of Environmental (Nongenetic) Contributions to Attention Deficit Hyperactivity Disorder. In: Gozal, D., Molfese, D.L. (eds) Attention Deficit Hyperactivity Disorder. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-891-9:131

Download citation

  • DOI: https://doi.org/10.1385/1-59259-891-9:131

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-312-1

  • Online ISBN: 978-1-59259-891-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics