Cell Transplantation

The New Frontier
  • Shafie Fazel
  • Paul W. M. Fedak
  • Richard D. Weisel
  • Denis Angoulvant
  • Terrence M. Yau
  • Ren-Ke Li
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Cell transplantation of noncontractile cells into ischemic or dilated cardiomyopathic hearts prevents progressive failure and improves cardiac function by incompletely understood mechanisms. Significant angiogenesis and extracellular matrix remodeling occur after cell transplantation, but these effects do not fully explain the improvement in systolic function of the heart. Recent provocative results suggest that cell transplantation may be able to induce neocardiomyogenesis, and may enhance regional systolic function by recruiting stem cells that differentiate into functioning cardiomyocytes. Enhancing these effects using a combined modality that includes transplantation of genetically modified cells may hold the key to future cardiac regeneration.

Key Words

Cardiomyopathy cell transplantation genetic modification angiogenesis stem cells extracellular matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al Radi OO, Rao V, Li RK, Yau T, Weisel RD. Cardiac cell transplantation: closer to bedside. Ann Thorac Surg 2003;75:S674–S677.Google Scholar
  2. 2.
    Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–1083.PubMedGoogle Scholar
  3. 3.
    Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002;106:3009–3017.PubMedGoogle Scholar
  4. 4.
    Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–46.PubMedGoogle Scholar
  5. 5.
    Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–1918.PubMedGoogle Scholar
  6. 6.
    Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47–49.PubMedGoogle Scholar
  7. 7.
    Koide M, Kawahara Y, Nakayama I, Tsuda T, Yokoyama M. Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines. J Biol Chem 1993;268:24,959–24,966.PubMedGoogle Scholar
  8. 8.
    Ali S, Becker MW, Davis MG, Dorn GW. Dissociation of vasoconstrictor-stimulated basic fibroblast growth factor expression from hypertrophic growth in cultured vascular smooth muscle cells. Relevant roles of protein kinase C. Circ Res 1994;75:836–843.PubMedGoogle Scholar
  9. 9.
    Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 1995;92:11–14.PubMedGoogle Scholar
  10. 10.
    Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 1999;31:513–522.PubMedGoogle Scholar
  11. 11.
    Chiu RC, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995;60:12–18.PubMedGoogle Scholar
  12. 12.
    Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512–2523.PubMedGoogle Scholar
  13. 13.
    Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–933.PubMedGoogle Scholar
  14. 14.
    Scorsin M, Hagege A, Vilquin JT, et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 2000;119: 1169–1175.PubMedGoogle Scholar
  15. 15.
    Menasche P. Skeletal muscle satellite cell transplantation. Cardiovasc Res 2003; 58:351–357.PubMedGoogle Scholar
  16. 16.
    Suzuki K, Murtuza B, Smolenski RT, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001;104(12 Suppl 1): I207–I212.PubMedGoogle Scholar
  17. 17.
    Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001;104(12 Suppl 1):I218–I222.PubMedGoogle Scholar
  18. 18.
    Kim EJ, Li RK, Weisel RD, et al. Angiogenesis by endothelial cell transplantation. J Thorac Cardiovasc Surg 2001;122:963–971.PubMedGoogle Scholar
  19. 19.
    Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S. Endothelial progenitor cells: new hope for a broken heart. Circulation 2003;107:3093–3100.PubMedGoogle Scholar
  20. 20.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development 1998;125:725–732.PubMedGoogle Scholar
  21. 21.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71–77.PubMedGoogle Scholar
  22. 22.
    Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000;105:1527–1536.PubMedGoogle Scholar
  23. 23.
    Eggermann J, Kliche S, Jarmy G, et al. Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 2003;58:478–486.PubMedGoogle Scholar
  24. 24.
    Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000;95:3106–3112.PubMedGoogle Scholar
  25. 25.
    Hristov M, Erl W, Weber PC. Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 2003;13:201–206.PubMedGoogle Scholar
  26. 26.
    Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34 (+) cells identifies a population of functional endothelial precursors. Blood 2000;95:952–958.PubMedGoogle Scholar
  27. 27.
    Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002;105:732–738.PubMedGoogle Scholar
  28. 28.
    Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001;7:1035–1040.PubMedGoogle Scholar
  29. 29.
    Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634–637.PubMedGoogle Scholar
  30. 30.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430–436.PubMedGoogle Scholar
  31. 31.
    Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003;107: 461–468.PubMedGoogle Scholar
  32. 32.
    Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37:1726–1732.PubMedGoogle Scholar
  33. 33.
    Vicario J, Piva J, Pierini A, et al. Transcoronary sinus delivery of autologous bone marrow and angiogenesis in pig models with myocardial injury. Cardiovasc Radiat Med 2002;3:91–94.PubMedGoogle Scholar
  34. 34.
    Nishida M, Li TS, Hirata K, Yano M, Matsuzaki M, Hamano K. Improvement of cardiac function by bone marrow cell implantation in a rat hypoperfusion heart model. Ann Thorac Surg 2003;75:768–773.PubMedGoogle Scholar
  35. 35.
    Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98:10,344–10,349.PubMedGoogle Scholar
  36. 36.
    Hirschi KK, Goodell MA. Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 2002;9:648–652.PubMedGoogle Scholar
  37. 37.
    Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001;104:1046–1052.PubMedGoogle Scholar
  38. 38.
    Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001;105:369–377.PubMedGoogle Scholar
  39. 39.
    Rafii S, Avecilla S, Shmelkov S, et al. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann NY Acad Sci 2003;996:49–60.PubMedGoogle Scholar
  40. 40.
    Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998;91:4523–4530.PubMedGoogle Scholar
  41. 41.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development 1998;125:725–732.PubMedGoogle Scholar
  42. 42.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–705.PubMedGoogle Scholar
  43. 43.
    Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395–1402.PubMedGoogle Scholar
  44. 44.
    Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(19 Suppl):II247–II256.PubMedGoogle Scholar
  45. 45.
    Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123:1132–1140.PubMedGoogle Scholar
  46. 46.
    Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 2001;122:699–705.PubMedGoogle Scholar
  47. 47.
    Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181:67–73.PubMedGoogle Scholar
  48. 48.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276: 71–74.PubMedGoogle Scholar
  49. 49.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.PubMedGoogle Scholar
  50. 50.
    Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003;288:51–59.PubMedGoogle Scholar
  51. 51.
    Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.PubMedGoogle Scholar
  52. 52.
    Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88:1112–1119.PubMedGoogle Scholar
  53. 53.
    Hornberger LK, Singhroy S, Cavalle-Garrido T, Tsang W, Keeley F, Rabinovitch M. Synthesis of extracellular matrix and adhesion through beta(1) integrins are critical for fetal ventricular myocyte proliferation. Circ Res 2000;87:508–515.PubMedGoogle Scholar
  54. 54.
    Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 1998;8:437–441.PubMedGoogle Scholar
  55. 55.
    Lundgren E, Terracio L, Mardh S, Borg TK. Extracellular matrix components influence the survival of adult cardiac myocytes in vitro. Exp Cell Res 1985;158:371–381.PubMedGoogle Scholar
  56. 56.
    Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000;106:857–866.PubMedGoogle Scholar
  57. 57.
    Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 2002; 90:520–530.PubMedGoogle Scholar
  58. 58.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183:1797–1806.PubMedGoogle Scholar
  59. 59.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988;241:58–62.PubMedGoogle Scholar
  60. 60.
    Matsui Y, Zsebo KM, Hogan BL. Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 1990;347:667–669.PubMedGoogle Scholar
  61. 61.
    Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997;88: 287–298.PubMedGoogle Scholar
  62. 62.
    Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999;96:737–749.PubMedGoogle Scholar
  63. 63.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183:1797–1806.PubMedGoogle Scholar
  64. 64.
    Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–1530.PubMedGoogle Scholar
  65. 65.
    Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168–1170.PubMedGoogle Scholar
  66. 66.
    Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997;94:4080–4085.PubMedGoogle Scholar
  67. 67.
    Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290:1779–1782.PubMedGoogle Scholar
  68. 68.
    Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290:1775–1779.PubMedGoogle Scholar
  69. 69.
    Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390–394.PubMedGoogle Scholar
  70. 70.
    Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999;96:14,482–14,486.PubMedGoogle Scholar
  71. 71.
    McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 2002;99:1341–1346.PubMedGoogle Scholar
  72. 72.
    Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283:534–537.PubMedGoogle Scholar
  73. 73.
    Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105:829–841.PubMedGoogle Scholar
  74. 74.
    Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002;415:240–243.PubMedGoogle Scholar
  75. 75.
    Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 1998;95:8801–8805.PubMedGoogle Scholar
  76. 76.
    Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–1757.PubMedGoogle Scholar
  77. 77.
    Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann NY Acad Sci 2001;938:221–229.PubMedGoogle Scholar
  78. 78.
    Muller P, Pfeiffer P, Koglin J, et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 2002;106:31–35.PubMedGoogle Scholar
  79. 79.
    Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 2002;90:634–640.PubMedGoogle Scholar
  80. 80.
    Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346:5–15.PubMedGoogle Scholar
  81. 81.
    Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 2003;107: 1247–1249.PubMedGoogle Scholar
  82. 82.
    Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002;8:403–409.PubMedGoogle Scholar
  83. 83.
    Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003;422:901–904.PubMedGoogle Scholar
  84. 84.
    Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003;422:897–901.PubMedGoogle Scholar
  85. 85.
    Blau HM. A twist of fate. Nature 2002;419:437.PubMedGoogle Scholar
  86. 86.
    Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109:625–637.PubMedGoogle Scholar
  87. 87.
    Fleming WH, Alpern EJ, Uchida N, Ikuta K, Weissman IL. Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo. Proc Natl Acad Sci USA 1993;90:3760–3764.PubMedGoogle Scholar
  88. 88.
    Okumura N, Tsuji K, Ebihara Y, et al. Chemotactic and chemokinetic activities of stem cell factor on murine hematopoietic progenitor cells. Blood 1996;87:4100–4108.PubMedGoogle Scholar
  89. 89.
    Broudy VC, Lin NL, Priestley GV, Nocka K, Wolf NS. Interaction of stem cell factor and its receptor c-kit mediates lodgment and acute expansion of hematopoietic cells in the murine spleen. Blood 1996;88:75–81.PubMedGoogle Scholar
  90. 90.
    Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA 1995;92:9647–9651.PubMedGoogle Scholar
  91. 91.
    Miyake K, Weissman IL, Greenberger JS, Kincade PW. Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med 1991;173:599–607.PubMedGoogle Scholar
  92. 92.
    Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cellmicroenvironment interactions. Nature 1991;352:438–441.PubMedGoogle Scholar
  93. 93.
    Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R. Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 1996;380:171–175.PubMedGoogle Scholar
  94. 94.
    Frangogiannis NG, Perrard JL, Mendoza LH, Burns AR, Lindsey ML, Ballantyne CM et al. Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 1998;98:687–698.PubMedGoogle Scholar
  95. 95.
    Korbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med 2003;349:570–582.PubMedGoogle Scholar
  96. 96.
    Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett 2002;530:239–243.PubMedGoogle Scholar
  97. 97.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100: 12,313–12,318.PubMedGoogle Scholar
  98. 98.
    Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.PubMedGoogle Scholar
  99. 99.
    Urbanek K, Quaini F, Tasca G, et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 2003;100:10,440–10,445.PubMedGoogle Scholar
  100. 100.
    Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003;9:1195–1201.PubMedGoogle Scholar
  101. 101.
    Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362:697–703.PubMedGoogle Scholar
  102. 102.
    Suzuki K, Murtuza B, Smolenski RT, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001;104(12 Suppl 1): I207–I212.PubMedGoogle Scholar
  103. 103.
    Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47–49.PubMedGoogle Scholar
  104. 104.
    Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302.PubMedGoogle Scholar
  105. 105.
    Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(19 Suppl):II247–II256.PubMedGoogle Scholar
  106. 106.
    Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123: 1132–1140.PubMedGoogle Scholar
  107. 107.
    Sakakibara Y, Nishimura K, Tambara K, et al. Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J Thorac Cardiovasc Surg 2002; 124:50–56.PubMedGoogle Scholar
  108. 108.
    Miyagawa S, Sawa Y, Taketani S, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 2002;105:2556–2561.PubMedGoogle Scholar
  109. 109.
    Li TS, Hamano K, Kajiwara K, Nishida M, Zempo N, Esato K. Prolonged survival of xenograft fetal cardiomyocytes by adenovirus-mediated CTLA4-Ig expression. Transplantation 2001;72:1983–1985.PubMedGoogle Scholar
  110. 110.
    Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907–921.PubMedGoogle Scholar
  111. 111.
    Liu TB, Fedak PW, Weisel RD, et al. Enhanced 1GF-1 expansion improves smooth muscle cell engraftment after cell transplantation. Am J Physiol Heart Circ Physiol Aug 26, 2004 [Epub ahead of print].Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Shafie Fazel
    • 1
  • Paul W. M. Fedak
    • 1
  • Richard D. Weisel
    • 1
  • Denis Angoulvant
    • 1
  • Terrence M. Yau
    • 1
  • Ren-Ke Li
    • 1
  1. 1.Division of Cardiac Surgery, Toronto General HospitalUniversity Health Network, University of TorontoTorontoCanada

Personalised recommendations