Skip to main content

Pathogenesis of Atherosclerotic Vascular Disease

  • Chapter
Lower Extremity Arterial Disease

Abstract

Epidemiological studies have identified risk factors for coronary heart disease (CHD) and its underlying pathology: atherosclerosis. Genetic and environmental factors interact to shape an individual’s age-related risk of atherosclerosis (1,2). In the Framingham Heart Study, substantial proportion of the variability in carotid intima-media thickness (IMT) is explained by genetic factors (3). The role of gene polymorphism has been reviewed in ref. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basha BJ, Sowers JR. Atherosclerosis: an update. Am Heart J 1996; 131:1192–1202.

    PubMed  CAS  Google Scholar 

  2. Soufi M, Sattler AM, Maisch B, Schaefer JR. Molecular mechanisms involved in atherosclerosis. Henz 2002; 27:637–648.

    Google Scholar 

  3. Fox CS, Polak JF, Chazaro I, et al. Framingham Heart Study. Genetic and environmental contributions to atherosclerosis phenotypes in men and women: heritability of carotid intima-media thickness in the Framingham Heart Study. Stroke 2003; 34:397–401.

    PubMed  Google Scholar 

  4. Loktionov A. Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases. J Nutr Biochem 2003; 14:426–451.

    PubMed  CAS  Google Scholar 

  5. Szitanyi P, Janda J, Poledne R. Intrauterine undernutrition and programming as a new risk of cardiovascular disease in later life. Physiol Res 2003; 52:389–395.

    PubMed  CAS  Google Scholar 

  6. Napoli C, Glass CK, Witztum JL, et al. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999; 354:1234–1241.

    PubMed  CAS  Google Scholar 

  7. Washino K, Takada H, Nagashima M, Iwata H. Significance of the atherosclerogenic index and body fat in children as markers for future, potential coronary heart disease. Pediatr lnt 1999; 41:260–265.

    CAS  Google Scholar 

  8. McGill HC Jr, McMahan CA, Herderick EE, et al. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr 2000; 72:1307S–1315S.

    PubMed  CAS  Google Scholar 

  9. Kunz J. Initial lesions of vascular aging disease (arteriosclerosis). Gerontology 2000; 46:295–299.

    PubMed  CAS  Google Scholar 

  10. Su TC, Jeng JS, Chien KL, et al. Hypertension status is the major determinant of carotid atherosclerosis: a community-based study in Taiwan. Stroke 2001; 32:2265–2271.

    PubMed  CAS  Google Scholar 

  11. McFarlane SI, Banerji M, and Sowers JR: Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab 2001; 86:713–718.

    PubMed  CAS  Google Scholar 

  12. Jensen JS, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B. Atherosclerotic risk factors are increased in clinically healthy subjects with microalbuminuria. Atherosclerosis 1995; 112:245–252.

    PubMed  CAS  Google Scholar 

  13. Management of type 2 diabetes: long-awaited evidence of benefits after blood sugar control. Prescrire Int 1999; 8:147–152.

    Google Scholar 

  14. Segura J, Campo C, Ruilope LM. Proteinuria. An underappreciated risk factor in cardiovascular disease. Curr Cardiol Rep 2002; 4:458–462.

    PubMed  Google Scholar 

  15. Diercks GF, Stroes ES, van Boven AJ, et al. Urinary albumin excretion is related to cardiovascular risk indicators, not to flow-mediated vasodilation, in apparently healthy subjects. Atherosclerosis 2002; 163:121–126.

    PubMed  CAS  Google Scholar 

  16. Jiang Y, Kohara K, Hiwada K. Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients. Hypertens Res 1999; 22:203–207.

    PubMed  CAS  Google Scholar 

  17. Stehbens WE. Relevance of hypercholesterolemia to fetal and pediatric atherosclerosis. Pediatr Pathol Mol Med 2002; 21:259–578.

    PubMed  Google Scholar 

  18. Noris M, Morigi M, Donadelli R, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 1995; 76:536–543.

    PubMed  CAS  Google Scholar 

  19. Yoshisue H, Suzuki K, Kawabata A, et al. Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis 2002; 162:323–334.

    PubMed  CAS  Google Scholar 

  20. Jin X, Iwasa S, Okada K, et al. Shear stress-induced collagen XII expression is associated with atherogenesis. Biochem Biophys Res Commun 2003; 308:152–158.

    PubMed  CAS  Google Scholar 

  21. Chen XL, Varner SE, Rao AS, et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 2003; 278:703–711.

    PubMed  CAS  Google Scholar 

  22. Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to the bedside. Vase Endovascular Surg 2003; 37:47–57.

    Google Scholar 

  23. Silacci P, Desgeorges A, Mazzolai L, Chambaz C, Hayoz D. Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 2001; 38:1162–1166.

    PubMed  CAS  Google Scholar 

  24. Okano M, Yoshida Y. Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta. Biorheology 1994; 31:155–161.

    PubMed  CAS  Google Scholar 

  25. Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med 2001; 194:205–218.

    PubMed  CAS  Google Scholar 

  26. Prasad A, Koh KK, Schenke WH, et al. Role of angiotensin II type 1 receptor in the regulation of cellular adhesion molecules in atherosclerosis. Am Heart J 2001; 142:248–253.

    PubMed  CAS  Google Scholar 

  27. Mazzolai L, Silacci P, Bouzourene K, et al. Tissue factor activity is upregulated in human endothelial cells exposed to oscillatory shear stress. Thromb Haemost 2002; 87:1062–1068.

    PubMed  CAS  Google Scholar 

  28. Khrenov AV, Ananyeva NM, Griffin JH, Saenko EL. Coagulation pathways in atherothrombosis. Trends Cardiovasc Med 2002; 12:317–324.

    PubMed  CAS  Google Scholar 

  29. Ananyeva NM, Kouiavskaia DV, Shima M, Saenko EL. Intrinsic pathway of blood coagulation contributes to thrombogenicity of atherosclerotic plaque. Blood 2002; 99:4475–4485.

    PubMed  CAS  Google Scholar 

  30. Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler Thromb Vase Biol 2002; 22:539–548.

    CAS  Google Scholar 

  31. Makin AJ, Chung NA, Silverman SH, Lip GY. Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: a link between angiogenesis and thrombogenesis? Clin Sci 2003; 104:397–404.

    PubMed  CAS  Google Scholar 

  32. Huber K, Christ G, Wojta J, Gulba D. Plasminogen activator inhibitor type-1 in cardiovascular disease. Status report 2001. Thromb Res 2001;103:S7–S19.

    PubMed  CAS  Google Scholar 

  33. Luttun A, Lupu F, Storkebaum E, et al. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice. Arterioscler Thromb Vase Biol 2002; 22:499–505.

    CAS  Google Scholar 

  34. Ishii H, Yoshida M, Hiraoka M, et al. Recombinant annexin II modulates impaired fibrinolytic activity in vitro and in rat carotid artery. Circ Res 2001; 89:1240–1245.

    PubMed  CAS  Google Scholar 

  35. Falkenberg M, Tom C, DeYoung MB, et al. Increased expression of urokinase during atherosclerotic lesion development causes arterial constriction and lumen loss, and accelerates lesion growth. Proc Natl Acad Sci USA 2002; 99:10,665–10,670.

    PubMed  CAS  Google Scholar 

  36. Auld GC, Ritchie H, Robbie LA, Booth NA. Thrombin upregulates tissue transglutaminase in endothelial cells: a potential role for tissue transglutaminase in stability of atherosclerotic plaque. Arterioscler Thromb Vase Biol 2001; 21:1689–1694.

    CAS  Google Scholar 

  37. Levenson J, Giral P, Razavian M, Gariepy J, Simon A. Fibrinogen and silent atherosclerosis in subjects with cardiovascular risk factors. Arterioscler Thromb Vase Biol 1995; 15:1263–1268.

    CAS  Google Scholar 

  38. Koenig W, Rothenbacher D, Hoffmeister A, Griesshammer M, Brenner H. Plasma fibrin D-dimer levels and risk of stable coronary artery disease: results of a large case-control study. Arterioscler Thromb Vase Biol 2001; 21:1701–1705.

    CAS  Google Scholar 

  39. Rezaee F, Gijbels MJ, Offerman EH, et al. Overexpression of fibrinogen in ApoE*3-Leiden transgenic mice does not influence the progression of diet-induced atherosclerosis. Thromb Haemost 2002; 88:329–334.

    PubMed  CAS  Google Scholar 

  40. Lovely RS, Falls LA, Al-Mondhiry HA, et al. Association of gammaA/gamma’ fibrinogen levels and coronary artery disease. Thromb Haemost 2002; 88:26–31.

    PubMed  CAS  Google Scholar 

  41. Huang M, Pang X, Letourneau R, Boucher W, Theoharides TC. Acute stress induces cardiac mast cell activation and histamine release, effects that are increased in Apolipoprotein E knockout mice. Cardiovasc Res 2002; 55:150–160.

    PubMed  CAS  Google Scholar 

  42. Leskinen MJ, Kovanen PT, Lindstedt KA. Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells—a potential mechanism for the weakening and rupture of atherosclerotic plaques. Biochem Pharmacol 2003; 66:1493–1498.

    PubMed  CAS  Google Scholar 

  43. Lee M, Calabresi L, Chiesa G, Franceschini G, Kovanen PT. Mast cell chymase degrades apoE and apoA-II in apoA-I-knockout mouse plasma and reduces its ability to promote cellular cholesterol efflux. Arterioscler Thromb Vase Biol 2002; 22:1475–1481.

    CAS  Google Scholar 

  44. Dell’Italia LJ, Husain A. Dissecting the role of chymase in angiotensin II formation and heart and blood vessel diseases. Curr Opin Cardiol 2002; 17:374–379.

    PubMed  Google Scholar 

  45. Tsao PS, Theilmeier G, Singer AH, Leung LL, Cooke JP. L-arginine attenuates platelet reactivity in hypercholesterolemic rabbits. Arterioscler Thromb 1994; 14:1529–1533.

    PubMed  CAS  Google Scholar 

  46. Cassar K, Bachoo P, Ford I, Greaves M, Brittenden J. Platelet activation is increased in peripheral arterial disease. J Vase Surg 2003; 38:99–103.

    CAS  Google Scholar 

  47. Theilmeier G, Michiels C, Spaepen E, et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 2002; 99:4486–4493.

    PubMed  CAS  Google Scholar 

  48. Sachais BS, Kuo A, Nassar T, et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002; 99:3613–3622.

    PubMed  CAS  Google Scholar 

  49. Nassar T, Sachais BS, Akkawi S, et al. Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells. J Biol Chem 2003; 278:6187–6193.

    PubMed  CAS  Google Scholar 

  50. Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 1998; 98:1164–1171.

    PubMed  CAS  Google Scholar 

  51. Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9:61–67.

    PubMed  CAS  Google Scholar 

  52. Di Virgilio F, Solini A. P2 receptors: new potential players in atherosclerosis. Br J Pharmacol 2002; 135:831–842.

    PubMed  Google Scholar 

  53. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 2003; 100:4736–4741.

    PubMed  CAS  Google Scholar 

  54. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vase Biol 2003; 23:168–175.

    CAS  Google Scholar 

  55. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int Angiol 2002; 21:109–116.

    PubMed  CAS  Google Scholar 

  56. Blann AD, Seigneur M, Steiner M, Boisseau MR, McCollum CN. Circulating endothelial cell markers in peripheral vascular disease: relationship to the location and extent of atherosclerotic disease. Eur J Clin Invest 1997; 27:916–921.

    PubMed  CAS  Google Scholar 

  57. Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vase Biol 2000; 20:2032–2037.

    CAS  Google Scholar 

  58. Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H. Protective role of endothelial nitric oxide synthase. J Pathol 2003; 199:8–17.

    PubMed  Google Scholar 

  59. Isenovic ER, Divald A, Milivojevic N, et al. Interactive effects of insulin-like growth factor-1 and beta-estradiol on endothelial nitric oxide synthase activity in rat aortic endothelial cells. Metabolism 2003; 52:482–487.

    PubMed  CAS  Google Scholar 

  60. Gonzalez-Santiago L, Lopez-Ongil S, Rodriguez-Puyol M, Rodriguez-Puyol D. Decreased nitric oxide synthesis in human endothelial cells cultured on type I collagen. Circ Res 2002; 90:539–545.

    PubMed  CAS  Google Scholar 

  61. Ozaki M, Kawashima S, Yamashita T, et al. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 2002; 110:331–340.

    PubMed  CAS  Google Scholar 

  62. Ma J, Nakajima T, Iida H, et al. Inhibitory effects of ursodeoxycholic acid on the induction of nitric oxide synthase in vascular smooth muscle cells. Eur J Pharmacol 2003; 464:79–86.

    PubMed  CAS  Google Scholar 

  63. Isenovic ER, Meng Y, Divald A, Milivojevic N, Sowers JR. Role of phospha-tidylinositol 3-kinase/Akt pathway in angiotensin II and insulin-like growth factor-1 modulation of nitric oxide synthase in vascular smooth muscle cells. Endocrine 2002; 19:287–292.

    PubMed  CAS  Google Scholar 

  64. Morishita T, Tsutsui M, Shimokawa H, et al. Vasculoprotective roles of neuronal nitric oxide synthase. FASEB J 2002; 16:1994–1996.

    PubMed  CAS  Google Scholar 

  65. Boger RH. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 2003; 59:824–833.

    PubMed  CAS  Google Scholar 

  66. Chen J, Kuhlencordt P, Urano F, et al. Effects of chronic treatment with L-arginine on atherosclerosis in apoE knockout and apoE/inducible NO synthase double-knockout mice. Arterioscler Thromb Vase Biol 2003; 23:97–103.

    Google Scholar 

  67. Mizia-Stec K, Zahorska-Markiewicz B, Mandecki T, et al. Serum levels of selected adhesion molecules in patients with coronary artery disease. Int J Cardiol 2002; 83:143–150.

    PubMed  Google Scholar 

  68. Chen CH, Henry PD. Atherosclerosis as a microvascular disease: impaired angiogenesis mediated by suppressed basic fibroblast growth factor expression. Proc Assoc Am Physicians 1997; 109:351–361.

    PubMed  CAS  Google Scholar 

  69. Blann AD, Belgore FM, McCollum CN, et al. Vascular endothelial growth factor and its receptor, Fit-1, in the plasma of patients with coronary or peripheral atherosclerosis, or Type II diabetes. Clin Sci 2002; 102:187–194.

    PubMed  CAS  Google Scholar 

  70. Ruef J, Hu ZY, Yin LY, et al. Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis. Circ Res 1997; 81:24–33.

    PubMed  CAS  Google Scholar 

  71. Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7:425–429.

    PubMed  CAS  Google Scholar 

  72. Cooke JP: Endothelium derived factors and peripheral vascular disease. Cardiovascular Clinic 1992; 22:3–17.

    CAS  Google Scholar 

  73. Guretzki HJ, Gerbitz KD, Olgemoller B, Schleicher E. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis 1994; 107:15–24.

    PubMed  CAS  Google Scholar 

  74. Choy JC, Granville DJ, Hunt DW, McManus BM. Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 2001; 33:1673–1690.

    PubMed  CAS  Google Scholar 

  75. Minamino T, Miyauchi H, Yoshida T, et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 2002; 105:1541–1544.

    PubMed  CAS  Google Scholar 

  76. Le Couteur DG, Fraser R, Cogger VC, McLean AJ. Hepatic pseudocapillarisation and atherosclerosis in ageing. Lancet 2002;359:1612–1615.

    PubMed  Google Scholar 

  77. Sowers JR, Draznin B. Insulin, cation metabolism and insulin resistance. J Basic Clin Physiol Pharmacol 1998; 9:223–233.

    PubMed  CAS  Google Scholar 

  78. Baltali M, Korkmaz ME, Kiziltan HT, et al. Association between postprandial hyperinsulinemia and coronary artery disease among non-diabetic women: a case control study. Int J Cardiol 2003; 88:215–221.

    PubMed  Google Scholar 

  79. Iida KT, Shimano H, Kawakami Y, et al. Insulin up-regulates tumor necrosis factor-alpha production in macrophages through an extracellular-regulated kinase-dependent pathway. J Biol Chem 2001; 276:32,531–32,537.

    PubMed  CAS  Google Scholar 

  80. Rask-Madsen C, Dominguez H, Ihlemann N, et al. Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation 2003; 108:1815–1821.

    PubMed  CAS  Google Scholar 

  81. Okamoto Y, Kihara S, Ouchi N, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002; 106:2767–2770.

    PubMed  CAS  Google Scholar 

  82. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001; 37:1053–1059.

    PubMed  CAS  Google Scholar 

  83. Djousse L, Pankow JS, Eckfeldt JH, et al. Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 2001; 74:612–619.

    PubMed  CAS  Google Scholar 

  84. Pomerantz KB, Hajjar DP. Eicosanoids in regulation of arterial VSMCs phenotype, proliferative capacity, and cholesterol metabolism. Arteriosclerosis 1989; 9:413–429.

    PubMed  CAS  Google Scholar 

  85. Sperling RI, Robin J, Kylander KA et al. The effect of n-3 polyunsaturated fatty acids on the generation of platelet activating factor formation by human mono-cytes. J Immnol 1987; 139:4186–4191.

    CAS  Google Scholar 

  86. Barcelli U, Glas-Greenwalt P, Pollak VE. Enhancing effects of dietary supplementation with −3 fatty acids on plasma fibrinolysis in normal subjects Thrombosis Res 1985; 39:307–312.

    CAS  Google Scholar 

  87. James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediatorproduction. Am J Clin Nutr 2000; 71:343S–348S.

    PubMed  CAS  Google Scholar 

  88. Fox PL, DiCorleto PE. Fish oils inhibit endothelial cell production of platelet-derived growth factor-like protein. Science 1988; 241:453–456.

    PubMed  CAS  Google Scholar 

  89. Shimokawa H, Lam JY, Chesebro JH et al: Effect of dietary supplementation with cod-liver oil on endothelial dependent responses in procine coronary arteries. Circulation 1987; 76:898–905.

    PubMed  CAS  Google Scholar 

  90. Ho M, Maple C, Bancroft A, McLaren M, Belch JJ. The beneficial effects of omega-3 and omega-6 essential fatty acidsupplementation on red blood cell rheology. ProstaglandinsLeukot Essent Fatty Acids 1999; 61:13–17.

    CAS  Google Scholar 

  91. Meydani M. Soluble adhesion molecules: surrogate markers of cardiovascular disease? Nutr Rev 2003; 61:63–68.

    PubMed  Google Scholar 

  92. Ntambi JM, Choi Y, Park Y, Peters JM, Pariza MW. Effects of conjugated linoleic acid (CLA) on immune responses, body composition and stearoyl-CoA desaturase. Can J Appl Physiol 2002; 27:617–628.

    PubMed  CAS  Google Scholar 

  93. Angerer P, Kothny W, Stork S, von Schacky C. Effect of dietary supplementation with omega-3 fatty acids on progression of atherosclerosis in carotid arteries. Cardiovasc Res 2002; 54:183–190.

    PubMed  CAS  Google Scholar 

  94. Moreno JJ, Mitjavila MT. The degree of unsaturation of dietary fatty acids and the development of atherosclerosis. J Nutr Biochem 2003; 14:182–195.

    PubMed  CAS  Google Scholar 

  95. Ramirez-Tortosa MC, Urbano G, Lopez-Jurado M, et al. Extra-virgin olive oil increases the resistance of LDL to oxidation more than refined olive oil in free-living men with peripheral vascular disease. J Nutr 1999; 129:2177–2183.

    PubMed  CAS  Google Scholar 

  96. Massaro M, Carluccio MA, De Caterina R. Direct vascular antiatherogenic effects of oleic acid: a clue to the cardioprotective effects of the Mediterranean diet. Cardiologia 1999; 44:507–513.

    PubMed  CAS  Google Scholar 

  97. De La Cruz JP, Villalobos MA, Carmona JA, et al. Antithrombotic potential of olive oil administration in rabbits with elevated cholesterol. Thromb Res 2000; 100:305–315.

    Google Scholar 

  98. Mortensen A, Hansen BF, Hansen JF, et al. Comparison of the effects of fish oil and olive oil on blood lipids and aortic atherosclerosis in Watanabe heritable hyperlipidaemic rabbits. Br J Nutr 1998; 80:565–573.

    PubMed  CAS  Google Scholar 

  99. Merkel M, Velez-Carrasco W, Hudgins LC, Breslow JL. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice. Proc Natl Acad Sci USA 2001; 98: 13,294–13,299.

    PubMed  CAS  Google Scholar 

  100. Bae JH, Bassenge E, Lee HJ, et al. Impact of postprandial hypertriglyceridemia on vascular responses in patients with coronary artery disease: effects of ACE inhibitors and fibrates. Atherosclerosis 2001; 158:165–171.

    PubMed  CAS  Google Scholar 

  101. Han SN, Leka LS, Lichtenstein AH, et al. Effect of hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory responses of adults with moderate hypercholesterolemia. J Lipid Res 2002; 43:445–452.

    PubMed  CAS  Google Scholar 

  102. Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol 2002; 13:19–24.

    PubMed  CAS  Google Scholar 

  103. Toborek M, Hennig B. The role of linoleic acid in endothelial cell gene expression. Relationship to atherosclerosis. Subcell Biochem 1998; 30:415–436.

    PubMed  CAS  Google Scholar 

  104. Bayindir O, Ozmen D, Mutaf I, et al. Comparison of the effects of dietary saturated, mono-, and n-6 polyunsaturated fatty acids on blood lipid profile, oxidant stress, prostanoid synthesis and aortic histology in rabbits. Ann Nutr Metab 2002; 46:222–228.

    PubMed  CAS  Google Scholar 

  105. van Jaarsveld PJ, Smuts CM, Benade AS. Effect of palm olein oil in a moderate-fat diet on plasma lipoprotein profile and aortic atherosclerosis in non-human primates. Asia Pac J Clin Nutr 2002; 11:S424–S432.

    PubMed  Google Scholar 

  106. Gale CR, Ashurst HE, Powers HJ, Martyn CN. Antioxidant vitamin status and carotid atherosclerosis in the elderly. Am J Clin Nutr 2001; 74:402–408.

    PubMed  CAS  Google Scholar 

  107. Dumesnil JG, Turgeon J, Tremblay A, et al. Effect of a low-glycaemic index—low-fat—high protein diet on the atherogenic metabolic risk profile of abdominally obese men. Br J Nutr 2001; 86:557–568.

    PubMed  CAS  Google Scholar 

  108. Willcox JK, Catignani GL, Lazarus S. Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr 2003; 43:1–18.

    PubMed  CAS  Google Scholar 

  109. Rao AV. Lycopene, tomatoes, and the prevention of coronary heart disease. Exp Biol Med 2002; 227:908–913.

    CAS  Google Scholar 

  110. Adams MR, Golden DL, Register TC, et al. The atheroprotective effect of dietary soy isoflavones in apolipoprotein E-/-mice requires the presence of estrogen receptor-alpha. Arterioscler Thromb Vase Biol 2002; 22:1859–1864.

    CAS  Google Scholar 

  111. Sorisky A. Molecular links between obesity and cardiovascular disease. Am J Ther 2002; 9:516–521.

    PubMed  Google Scholar 

  112. Flack JM, Sowers JR: Epidemiologic and clinical aspects of insulin resistance and hyperinsulinemia. Am J Med 1991; 91:11S–21S.

    PubMed  CAS  Google Scholar 

  113. Blann AD, Bushell D, Davies A, et al. Willebrand factor, the endothelium and obesity. Int J Obes Relat Metab Disord 1993; 17:723–725.

    PubMed  CAS  Google Scholar 

  114. Tanko LB, Bagger YZ, Alexandersen P, Larsen PJ, Christiansen C. Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation 2003; 107:1626–1631.

    PubMed  Google Scholar 

  115. Chisolm GM, Irwin KC, Penn MS. Lipoprotein oxidation and lipoprotein induced cell injury in diabetes. Diabetes 1992; 41:61–66.

    PubMed  CAS  Google Scholar 

  116. Laws A, King AC, Haskell WL, et al. Relation of fasting Plasma insulin concentration to HDL-cholesterol and triglyceride concentration in men. Arteriosclerosis and Thrombosis 1991; 11:1636–1642.

    PubMed  CAS  Google Scholar 

  117. Vitelli LL, Shahar E, Heiss G, et al. Glycosylated hemoglobin level and carotid intimal-medial thickening in nondiabetic individuals. The Atherosclerosis Risk in Communities Study. Diabetes Care 1997; 20:1454–1458.

    PubMed  CAS  Google Scholar 

  118. Bonora E, Muggeo M. Postprandial blood glucose as a risk factor for cardiovascular disease in Type II diabetes: the epidemiological evidence. Diabetologia 2001; 44:2107–2114.

    PubMed  CAS  Google Scholar 

  119. Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vase Biol 2001; 21:961–967.

    CAS  Google Scholar 

  120. Kekalainen P, Sarlund H, Farin P, et al. Femoral atherosclerosis in middle-aged subjects: association with cardiovascular risk factors and insulin resistance. Am J Epidemiol 1996; 144:742–748.

    PubMed  CAS  Google Scholar 

  121. Vliegenthart R, Geleijnse JM, Hofman A, et al. Alcohol consumption and risk of peripheral arterial disease: the Rotterdam study. Am J Epidemiol 2002; 155:332–338.

    PubMed  Google Scholar 

  122. Kiechl S, Willeit J, Rungger G, et al. Alcohol consumption and atherosclerosis: what is the relation? Prospective results from the Bruneck Study. Stroke 1998; 29:900–907.

    PubMed  CAS  Google Scholar 

  123. Kiechl S, Willeit J, Egger G, Oberhollenzer M, Aichner F. Alcohol consumption and carotid atherosclerosis: evidence of dose-dependent atherogenic and antiatherogenic effects. Results from the Bruneck Study. Stroke 1994;25: 1593–1598.

    PubMed  CAS  Google Scholar 

  124. Shaish A, Pape M, Rea T, et al. Alcohol increases plasma levels of cholesterol diet-induced atherogenic lipoproteins and aortic atherosclerosis in rabbits. Arterioscler Thromb Vase Biol 1997; 17:1091–1097.

    CAS  Google Scholar 

  125. Corder R, Douthwaite JA, Lees DM, et al. Endothelin-1 synthesis reduced by red wine. Nature 2001; 414:863–864.

    PubMed  CAS  Google Scholar 

  126. Maggi-Capeyron MF, Ceballos P, Cristol JP, et al. Wine phenolic antioxidants inhibit AP-1 transcriptional activity. J Agric Food Chem 2001; 49:5646–5652.

    PubMed  CAS  Google Scholar 

  127. Leikert JF, Rathel TR, Wohlfart P, et al. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 2002; 106:1614–1617.

    PubMed  CAS  Google Scholar 

  128. Rosenkranz S, Knirel D, Dietrich H, et al. Inhibition of the PDGF receptor by red wine flavonoids provides a molecular explanation for the “French paradox”. FASEB J 2002; 16:1958–1960.

    PubMed  CAS  Google Scholar 

  129. Iijima K, Yoshizumi M, Ouchi Y. Effect of red wine polyphenols on vascular smooth muscle cell function-molecular mechanism of the ‘French paradox’. Mech Ageing Dev 2002; 123:1033–1039.

    PubMed  CAS  Google Scholar 

  130. Auger C, Caporiccio B, Landrault N, et al. Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetusauratus). J Nutr 2002; 132:1207–1213.

    PubMed  CAS  Google Scholar 

  131. Tsiara S, Elisaf M, Mikhailidis DP. Influence of smoking on predictors of vascular disease. Angiology 2003; 54:507–530.

    PubMed  Google Scholar 

  132. Witteman JC, Grobbee DE, Valkenburg HA, et al. Cigarette smoking and the development and progression of aortic atherosclerosis. A 9-year population-based follow-up study in women. Circulation 1993; 88:2156–2162.

    PubMed  CAS  Google Scholar 

  133. Garrison RJ, Kannel WB, Feinleib MP, et al. Cigarette smoking and HDL-cholesterol: The Framingham offspring study. Atherosclerosis 1978; 30:17–25.

    PubMed  CAS  Google Scholar 

  134. Valkonen M, Kuusi T. Passive smoking induces atherogenic changes in low-density lipoprotein. Circulation 1998; 97:2012–2016.

    PubMed  CAS  Google Scholar 

  135. Hutchison SJ, Sudhir K, Sievers RE, et al. Effects of L-arginine on atherogenesis and endothelial dysfunction due to secondhand smoke. Hypertension 1999; 34:44–50.

    PubMed  CAS  Google Scholar 

  136. Wang XL, Raveendran M, Wang J. Genetic influence on cigarette-induced cardiovascular disease. Prog Cardiovasc Dis 2003; 45:361–382.

    PubMed  CAS  Google Scholar 

  137. Djousse L, Myers RH, Province MA, et al. Influence of apolipoprotein E, smoking, and alcohol intake on carotid atherosclerosis: National Heart, Lung, and Blood Institute Family Heart Study. Stroke 2002; 33:1357–1361.

    PubMed  Google Scholar 

  138. Weber C, Erl W, Weber K, Weber PC. Increased adhesiveness of isolated mono-cytes to endothelium is prevented by vitamin C intake in smokers. Circulation 1996; 93:1488–1492.

    PubMed  CAS  Google Scholar 

  139. Kiechl S, Werner P, Egger G, et al. Active and passive smoking, chronic infections, and the risk of carotid atherosclerosis: prospective results from the Bruneck Study. Stroke 2002; 33:2170–2176.

    PubMed  Google Scholar 

  140. Knight-Lozano CA, Young CG, Burow DL, et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 2002; 105:849–854.

    PubMed  CAS  Google Scholar 

  141. Schroecksnadel K, Frick B, Winkler C, et al. Hyperhomocysteinemia and immune activation. Clin Chem Lab Med 2003; 41:1438–1443.

    PubMed  CAS  Google Scholar 

  142. Konukoglu D, Serin O, Ercan M, Turhan MS. Plasma homocysteine levels in obese and non-obese subjects with or without hypertension; its relationship with oxidative stress and copper. Clin Biochem 2003; 36:405–408.

    PubMed  CAS  Google Scholar 

  143. Folsom AR, Nieto FJ, McGovern PG, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 1998; 98:204–210.

    PubMed  CAS  Google Scholar 

  144. O’Grady H, Kelly C, Bouchier-Hayes D, Leahy A. Homocysteine and occlusive arterial disease. Br J Surg 2002; 89:838–844.

    PubMed  CAS  Google Scholar 

  145. Hofmann MA, Lalla E, Lu Y, et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001; 107:675–683.

    PubMed  CAS  Google Scholar 

  146. Constans J, Blann AD, Resplandy F, et al. Endothelial dysfunction during acute methionine load in hyperhomocysteinaemic patients. Atherosclerosis 1999; 147:411–413.

    PubMed  CAS  Google Scholar 

  147. Ungvari Z, Csiszar A, Edwards JG, et al. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vase Biol 2003; 23:418–424.

    CAS  Google Scholar 

  148. Stuhlinger MC, Tsao PS, Her JH, et al. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 2001; 104:2569–2575.

    PubMed  CAS  Google Scholar 

  149. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 2000; 87:45–51.

    PubMed  CAS  Google Scholar 

  150. Sainani GS, Sainani R. Homocysteine and its role in the pathogenesis of atherosclerotic vascular disease. J Assoc Physicians India 2002; 50:16–23.

    PubMed  Google Scholar 

  151. Majors A, Ehrhart LA, Pezacka EH. Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vase Biol 1997; 17:2074–2081.

    CAS  Google Scholar 

  152. Zhou J, Moller J, Danielsen CC, et al. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vase Biol 2001; 21:1470–1476.

    CAS  Google Scholar 

  153. Li J, Zhang Y, Yao X, et al. Effect of homocysteine on the L-arginine/nitric oxide synthase/nitric oxide pathway in human platelets. Heart Vessels 2002; 16:46–50.

    PubMed  Google Scholar 

  154. Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 2000; 121:255–260.

    PubMed  CAS  Google Scholar 

  155. Grainger DJ, Bethell HW. High litres of serum antinuclear antibodies, mostly directed against nucleolar antigens, are associated with the presence of coronary atherosclerosis. Ann Rheum Dis 2002; 61:110–114.

    PubMed  CAS  Google Scholar 

  156. Chia S, Ludlam CA, Fox KA, Newby DE. Acute systemic inflammation enhances endothelium-dependent tissue plasminogen activator release in men. J Am Coll Cardiol 2003; 41:333–339.

    PubMed  CAS  Google Scholar 

  157. Elkind MS, Sciacca R, Boden-Albala B, Homma S, Di Tullio MR. Leukocyte count is associated with aortic arch plaque thickness. Stroke 2002; 33:2587–2592.

    PubMed  Google Scholar 

  158. Hata H, Kuga T, Takeshita A. Adherent leukocytes to the aortic wall promotes atherosclerosis in the Watanabe heritable hyperlipidemic rabbits. Fukuoka Igaku Zasshi 1995; 86:437–442.

    PubMed  CAS  Google Scholar 

  159. Burke-Gaffney A, Brooks AV, Bogle RG. Regulation of chemokine expression in atherosclerosis. Vascul Pharmacol 2002; 38:283–292.

    PubMed  CAS  Google Scholar 

  160. Umehara H, Bloom ET, Okazaki T, et al. Fractalkine in Vascular Biology. From Basic Research to Clinical Disease. Arterioscler Thromb Vase Biol 2004; 24:34–40.

    CAS  Google Scholar 

  161. Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003; 111:333–340.

    PubMed  CAS  Google Scholar 

  162. Lei ZB, Zhang Z, Jing Q, et al. Oxidized LDL upregulates CXCR2 expression in monocytes via scavenger receptors and activation of p38 mitogen-activated protein kinase. Cardiovasc Res 2002; 53:524–532.

    PubMed  CAS  Google Scholar 

  163. Dong ZM, Chapman SM, Brown AA, et al. The combined role of P-and E-selectins in atherosclerosis. J Clin Invest 1998; 102:145–152.

    PubMed  CAS  Google Scholar 

  164. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394:894–897.

    PubMed  CAS  Google Scholar 

  165. Aiello RJ, Bourassa PA, Lindsey S, et al. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vase Biol 1999; 19:1518–1525.

    CAS  Google Scholar 

  166. Namiki M, Kawashima S, Yamashita T, et al. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler Thromb Vase Biol 2002; 22:115–120.

    CAS  Google Scholar 

  167. Nie Q, Fan J, Haraoka S, Shimokama T, Watanabe T. Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis. Lab Invest 1997; 77:469–482.

    PubMed  CAS  Google Scholar 

  168. Hulthe J, Wikstrand J, Mattsson-Hulten L, Fagerberg B. Circulating ICAM-1 (intercellular cell-adhesion molecule 1) is associated with early stages of atherosclerosis development and with inflammatory cytokines in healthy 58-year-old men: the Atherosclerosis and Insulin Resistance (AIR) study. Clin Sci 2002; 103:123–129.

    PubMed  CAS  Google Scholar 

  169. Schreyer SA, Peschon JJ, LeBoeuf RC. Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem 1996; 271:26,174–26,178.

    PubMed  CAS  Google Scholar 

  170. Elkind MS, Cheng J, Boden-Albala B, et al. Tumor necrosis factor receptor levels are associated with carotid atherosclerosis. Stroke 2002; 33:31–37.

    PubMed  CAS  Google Scholar 

  171. Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev 2003; 83:1069–1112.

    PubMed  CAS  Google Scholar 

  172. Smith DA, Zouridakis EG, Mariani M, et al. Neopterin levels in patients with coronary artery disease are independent of Chlamydia pneumoniae seropositivity. Am Heart J 2003; 146:69–74.

    PubMed  CAS  Google Scholar 

  173. Jacob SS, Shastry P, Sudhakaran PR. Influence of non-enzymatically glycated collagen on monocyte-macrophage differentiation. Atherosclerosis 2001; 159:333–341.

    PubMed  CAS  Google Scholar 

  174. Lessner SM, Prado HL, Waller EK, Galis ZS. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol 2002; 160:2145–2155.

    PubMed  CAS  Google Scholar 

  175. Boyle JJ, Bowyer DE, Weissberg PL, Bennett MR. Human blood-derived macro-phages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas-ligand/Fas interactions. Arterioscler Thromb Vase Biol 2001; 21:1402–1407.

    CAS  Google Scholar 

  176. Linton MF, Fazio S. Cyclooxygenase-2 and atherosclerosis. Curr Opin Lipidol 2002; 13:497–504.

    PubMed  CAS  Google Scholar 

  177. Frostegard J. Autoimmunity, oxidized LDL and cardiovascular disease. Auto-immun Rev 2002; 1:233–237.

    CAS  Google Scholar 

  178. Lehr HA, Sagban TA, Ihling C, et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 2001; 104:914–920.

    PubMed  CAS  Google Scholar 

  179. Torzewski J, Oldroyd R, Lachmann P, et al. Complement-induced release of mono-cyte chemotactic protein-1 from human smooth muscle cells. A possible initiating event in atherosclerotic lesion formation. Arterioscler Thromb Vase Biol 1996; 16:673–677.

    CAS  Google Scholar 

  180. Kwon KH, Kwon HM, Hong BK, et al. Autoantibody against, malondialdehyde-modified low density lipoprotein in patients with non-diabetic unstable angina: a potential role in immunologic reaction of plaque instability. Yonsei Med J 2002; 43:203–210.

    PubMed  CAS  Google Scholar 

  181. Ostos MA, Recalde D, Zakin MM, Scott-Algara D. Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett 2002; 519:23–29.

    PubMed  CAS  Google Scholar 

  182. Shaw PX, Goodyear CS, Chang MK, Witztum JL, Silverman GJ. The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J Immunol 2003; 170:6151–6157.

    PubMed  CAS  Google Scholar 

  183. McDowell A, Young IS, Wisdom GB. Autoantibodies to malondialdehyde-modified low-density lipoprotein in patients with angiographically confirmed coronary artery disease. J Pharm Pharmacol 2002; 54:1651–1657.

    PubMed  CAS  Google Scholar 

  184. vShaw PX, Horkko S, Tsimikas S, et al. Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb Vase Biol 2001; 21:1333–1339.

    CAS  Google Scholar 

  185. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002; 109:745–753.

    PubMed  CAS  Google Scholar 

  186. Staub HL, Norman GL, Crowther T, et al. Antibodies to the atherosclerotic plaque components beta2-glycoprotein I and heat-shock proteins as risk factors for acute cerebral ischemia. Arq Neuropsiquiatr 2003; 61:757–763.

    PubMed  Google Scholar 

  187. Matsuura E, Kobayashi K, Koike T, Shoenfeld Y. Autoantibody-mediated atherosclerosis. Autoimmun Rev 2002; 1:348–353.

    PubMed  CAS  Google Scholar 

  188. Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res 2001; 89:1092–1103.

    PubMed  CAS  Google Scholar 

  189. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394:200–203.

    PubMed  CAS  Google Scholar 

  190. Tellides G, Tereb DA, Kirkiles-Smith NC, et al. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature 2000; 403:207–211.

    PubMed  CAS  Google Scholar 

  191. Whitman SC, Ravisankar P, Daugherty A. IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E-/-mice. J Interferon Cytokine Res 2002; 22:661–670.

    PubMed  CAS  Google Scholar 

  192. von der Thusen JH, Kuiper J, van Berkel TJ, Biessen EA. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133–166.

    PubMed  Google Scholar 

  193. Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 2003; 144:2195–2200.

    PubMed  CAS  Google Scholar 

  194. Plutzky J. The potential role of peroxisome proliferator-activated receptors on inflammation in type 2 diabetes mellitus and atherosclerosis. Am J Cardiol 2003; 92:34J–41J.

    PubMed  CAS  Google Scholar 

  195. Kwak BR, Myit S, Mulhaupt F, et al. PPARgamma but not PPARalpha ligands are potent repressors of major histocompatibility complex class II induction in atheroma-associated cells. Circ Res 2002; 90:356–362.

    PubMed  CAS  Google Scholar 

  196. Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb 2003; 10:63–71.

    PubMed  CAS  Google Scholar 

  197. Dentan C, Lesnik P, Chapman MJ, Ninio E. Phagocytic activation induces formation of platelet-activating factor in human monocyte-derived macrophages and in macrophage-derived foam cells. Relevance to the inflammatory reaction in atherogenesis. Eur J Biochem 1996; 236:48–55.

    PubMed  CAS  Google Scholar 

  198. Stannard AK, Riddell DR, Sacre SM, et al. Cell-derived apolipoprotein E (ApoE) particles inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in human endothelial cells. J Biol Chem 2001; 276:46,011–46,016.

    PubMed  CAS  Google Scholar 

  199. Camici M. C-reactive protein, atherosclerosis and cardiovascular disease. An update. Minerva Cardioangiol 2002; 50:327–331.

    PubMed  CAS  Google Scholar 

  200. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 2003; 108:1930–1932.

    PubMed  CAS  Google Scholar 

  201. Verma S, Li SH, Badiwala MV, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002; 105:1890–1896.

    PubMed  CAS  Google Scholar 

  202. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003; 107:398–404.

    PubMed  CAS  Google Scholar 

  203. Fu T, Borensztajn J. Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions. Biochem J 2002; 366:195–201.

    PubMed  CAS  Google Scholar 

  204. Veselka J, Prochazkova S, Duchonova R, et al. Relationship of C-reactive protein to presence and severity of coronary atherosclerosis in patients with stable angina pectoris or a pathological exercise test. Coron Artery Dis 2002; 13:151–154.

    PubMed  Google Scholar 

  205. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001; 38:307–314.

    PubMed  CAS  Google Scholar 

  206. Kanters E, Pasparakis M, Gijbels MJ, et al. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 112:1176–1185.

    PubMed  CAS  Google Scholar 

  207. Ihling C, Szombathy T, Bohrmann B, et al. Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis. Circulation 2001; 104:864–869.

    PubMed  CAS  Google Scholar 

  208. Haug C, Schmid-Kotsas A, Zorn U, et al. Endothelin-1 synthesis and endothelin B receptor expression in human coronary artery smooth muscle cells and monocyte-derived macrophages is up-regulated by low density lipoproteins. J Mol Cell Cardiol 2001; 33:1701–1712.

    PubMed  CAS  Google Scholar 

  209. Bobryshev YV. Dendritic cells and their involvement in atherosclerosis. Curr Opin Lipidol 2000; 11:511–517.

    PubMed  CAS  Google Scholar 

  210. Alderman CJ, Bunyard PR, Chain BM, et al. Effects of oxidised low density lipoprotein on dendritic cells: a possible immunoregulatory component of the atherogenic micro-environment? Cardiovasc Res 2002; 55:806–819.

    PubMed  CAS  Google Scholar 

  211. Bobryshev YV, Lord RS. Expression of heat shock protein-70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. J Vase Surg 2002; 35:368–375.

    Google Scholar 

  212. Knoflach M, Mayrl B, Mayerl C, Sedivy R, Wick G. Atherosclerosis as a paradigmatic disease of the elderly: role of the immune system. Immunol Allergy Clin North Am 2003; 23:117–132.

    PubMed  Google Scholar 

  213. Lamb DJ, El-Sankary W, Ferns GA. Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis 2003; 167:177–185.

    PubMed  CAS  Google Scholar 

  214. Binder CJ, Horkko S, Dewan A, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003; 9:736–743.

    PubMed  CAS  Google Scholar 

  215. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vase Biol 2002; 22:1547–1559.

    CAS  Google Scholar 

  216. Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002; 106:1985–1990.

    PubMed  CAS  Google Scholar 

  217. Laman JD, Schoneveld AH, Moll FL, van Meurs M, Pasterkamp G. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am J Cardiol 2002; 90:119–123.

    PubMed  CAS  Google Scholar 

  218. Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 2003; 12:805–816.

    PubMed  CAS  Google Scholar 

  219. Bouwman JJ, Visseren FL, Bosch MC, Bouter KP, Diepersloot RJ. Procoagulant and inflammatory response of virus-infected monocytes. Eur J Clin Invest 2002; 32:759–766.

    PubMed  CAS  Google Scholar 

  220. Herzberg MC. Coagulation and thrombosis in cardiovascular disease: plausible contributions of infectious agents. Ann Periodontol 2001; 6:16–19.

    PubMed  CAS  Google Scholar 

  221. Kalayoglu MV, Libby P, Byrne GI. Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA 2002; 288:2724–2731.

    PubMed  CAS  Google Scholar 

  222. Espinola-Klein C, Rupprecht HJ, Blankenberg S, et al. AtheroGene Investi-gators. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation 2002; 105:15–21.

    PubMed  Google Scholar 

  223. Prasad A, Zhu J, Halcox JP, et al. Predisposition to atherosclerosis by infections: role of endothelial dysfunction. Circulation 2002; 106:184–190.

    PubMed  Google Scholar 

  224. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362:801–809.

    PubMed  CAS  Google Scholar 

  225. Ross R. The pathogenesis of atherosclerosis. In: Braunwald E, ed. Heart Disease: A Textbook ob Cardiovascular Medicine. 4th ed. Philadelphia, PA: WB Saunders Co. 1991; 2:1106–1124.

    Google Scholar 

  226. Gordon D, Schwartz SM. Replication of arterial smooth muscle cells in hypertension and atherosclerosis. Am J Cardiol 1987; 59:44A–48A.

    PubMed  CAS  Google Scholar 

  227. Sims FH, Chen X, Gavin JB. The importance of a substantial elastic lamina subjacent to the endothelium in limiting the progression of atherosclerotic changes. Histopathology 1993; 23:307–317.

    PubMed  CAS  Google Scholar 

  228. Stary HC. Lipid and macrophage accumulations in arteries of children and the development of atherosclerosis. Am J Clin Nutr 2000; 72:1297S–1306S.

    PubMed  CAS  Google Scholar 

  229. Ridker PM, Rifai N, Clearfield M, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001; 344:1959–1965.

    PubMed  CAS  Google Scholar 

  230. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibro-atheroma: a type of vulnerable plaque. J Interv Cardiol 2003; 16:267–272.

    PubMed  Google Scholar 

  231. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002; 105:939–943.

    PubMed  Google Scholar 

  232. Heidland UE, Strauer BE. Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 2001; 104:1477–1482.

    PubMed  CAS  Google Scholar 

  233. Herrera VM, Didishvili T, Lopez LV, et al. Hypertension exacerbates coronary artery disease in transgenic hyperlipidemic Dahl salt-sensitive hypertensive rats. Mol Med 2001; 7:831–844.

    PubMed  CAS  Google Scholar 

  234. Manabe I, Nagai R. Regulation of smooth muscle phenotype. Curr Atheroscler Rep 2003; 5:214–222.

    PubMed  Google Scholar 

  235. Schneider DB, Vassalli G, Wen S, et al. Expression of Fas ligand in arteries of hypercholesterolemic rabbits accelerates atherosclerotic lesion formation. Arterioscler Thromb Vase Biol 2000; 20:298–308.

    CAS  Google Scholar 

  236. Koide M, Harayama H, Iio A, et al. Major risk factors for atherosclerosis are manifested in experimental Ca-deficiency. Hypertens Res 1996; 19:S35–S40.

    PubMed  Google Scholar 

  237. Gouni-Berthold I, Sachinidis A. Does the coronary risk factor low density lipopro-tein alter growth and signaling in vascular smooth muscle cells? FASEB J 2002; 16:1477–1487.

    PubMed  CAS  Google Scholar 

  238. Ichikawa T, Unoki H, Sun H, et al. Lipoprotein(a) promotes smooth muscle cell proliferation and dedifferentiation in atherosclerotic lesions of human apo(a) transgenic rabbits. Am J Pathol 2002; 160:227–236.

    PubMed  CAS  Google Scholar 

  239. Hayashi K, Takahashi M, Nishida W, et al. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 2001; 89:251–258.

    PubMed  CAS  Google Scholar 

  240. Zhu Y, Bujo H, Yamazaki H, et al. Enhanced expression of the LDL receptor family member LR11 increases migration of smooth muscle cells in vitro. Circu-Iation 2002; 105:1830–1836.

    CAS  Google Scholar 

  241. Nishikawa KC, Millis AJ. gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp Cell Res 2003; 287:79–87.

    PubMed  CAS  Google Scholar 

  242. Ahn JD, Morishita R, Kaneda Y, et al. Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circ Res 2002; 90:1325–1332.

    PubMed  CAS  Google Scholar 

  243. Tsuda Y, Okazaki M, Uezono Y, et al. Activation of extracellular signal-regulated kinases is essential for pressure-induced proliferation of vascular smooth muscle cells. Eur J Pharmacol 2002; 446:15–24.

    PubMed  CAS  Google Scholar 

  244. Andreassi MG, Botto N. DN A damage as a new emerging risk factor in atherosclerosis. Trends Cardiovasc Med 2003; 13:270–275.

    PubMed  CAS  Google Scholar 

  245. Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vase Med 2002; 7:5–11.

    Google Scholar 

  246. Seye CI, Kong Q, Erb L, et al. Functional P2Y2 nucleotide receptors mediate uridine 5′-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 2002; 106:2720–2726.

    PubMed  CAS  Google Scholar 

  247. Nishimoto S, Hamajima Y, Toda Y, et al. Identification of a novel smooth muscle associated protein, smap2, upregulated during neointima formation in a rat carotid endarterectomy model. Biochim Biophys Acta 2002; 1576:225–230.

    PubMed  CAS  Google Scholar 

  248. Brophy CM, Woodrum DA, Pollock J, et al. cGMP-dependent protein kinase expression restores contractile function in cultured vascular smooth muscle cells. J Vase Res 2002; 39:95–103.

    CAS  Google Scholar 

  249. Casco VH, Veinot JP, Kuroski de Bold ML, et al. Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem 2002; 50:799–809.

    PubMed  CAS  Google Scholar 

  250. Arkenbout EK, de Waard V, van Bragt M, et al. Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 2002; 106:1530–1535.

    PubMed  CAS  Google Scholar 

  251. Wada Y, Sugiyama A, Yamamoto T, et al. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions. Arterioscler Thromb Vase Biol 2002; 22:1712–1719.

    CAS  Google Scholar 

  252. Febbraio M, Guy E, Coburn C, et al. The impact of overexpression and deficiency of fatty acid translocase (FAT)/CD36. Mol Cell Biochem 2002; 239:193–197.

    PubMed  CAS  Google Scholar 

  253. Matsumoto K, Hirano K, Nozaki S, et al. Expression of macrophage (Mphi) scavenger receptor, CD36, in cultured human aortic smooth muscle cells in association with expression of peroxisome proliferator activated receptor-gamma, which regulates gain of Mphi-like phenotype in vitro, and its implication in atherogenesis. Arterioscler Thromb Vase Biol 2000; 20:1027–1032.

    CAS  Google Scholar 

  254. Nicholson AC, Han J, Febbraio M, Silversterin RL, Hajjar DP. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci 2001;947:224–228.

    PubMed  CAS  Google Scholar 

  255. Sata M. Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation. Trends Cardiovasc Med 2003; 13:249–253.

    PubMed  Google Scholar 

  256. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 2003; 108:457–463.

    PubMed  Google Scholar 

  257. Goldschmidt-Clermont PJ. Loss of bone marrow-derived vascular progenitor cells leads to inflammation and atherosclerosis. Am Heart J 2003; 146:S5–S12.

    PubMed  CAS  Google Scholar 

  258. Sidawy AN, Mitchell ME, Neville RF. Peptide growth factors and signal transduction. Semin Vase Surg 1998; 11:149–155.

    CAS  Google Scholar 

  259. Keidar S, Attias J, Heinrich R, Coleman R, Aviram M. Angiotensin II athero-genicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 1999; 146:249–257.

    PubMed  CAS  Google Scholar 

  260. Kaplan M, Aviram M, Knopf C, Keidar S. Angiotensin II reduces macrophage cholesterol efflux: a role for the AT-1 receptor but not for the ABC1 transporter. Biochem Biophys Res Commun 2002; 290:1529–1534.

    PubMed  CAS  Google Scholar 

  261. Keidar S, Heinrich R, Kaplan M, Hayek T, Aviram M. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of oxidized ldl: a possible role for interleukin-6. Arterioscler Thromb Vase Biol 2001; 21:1464–1469.

    CAS  Google Scholar 

  262. Bell L, Madri JA. Effect of platelet factors on migration of cultured bovine aortic endothelial and smooth muscle cells. Circ Res 1989; 65:1057–1065.

    PubMed  CAS  Google Scholar 

  263. Harrison DG, Cai H, Landmesser U, Griendling KK. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin Angiotensin Aldosterone Syst 2003; 4:51–61.

    PubMed  CAS  Google Scholar 

  264. Tham DM, Martin-McNulty B, Wang YX, et al. Angiotensin II is associated with activation of NF-kappaB-mediated genes and downregulation of PPARs. Physiol Genomics 2002; 11:21–30.

    PubMed  CAS  Google Scholar 

  265. Tham DM, Martin-McNulty B, Wang YX, et al. Angiotensin II injures the arterial wall causing increased aortic stiffening in apolipoprotein E-deficient mice. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1442–R1449.

    PubMed  CAS  Google Scholar 

  266. Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vase Biol 2003;23:483–488.

    CAS  Google Scholar 

  267. Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep 2003; 5:73–79.

    PubMed  Google Scholar 

  268. Nickenig G. Central role of the AT(1)-receptor in atherosclerosis. J Hum Hypertens 2002;16:S26–S33.

    PubMed  CAS  Google Scholar 

  269. Sodhi CP, Kanwar YS, Sahai A. Hypoxia and high glucose upregulate ATI receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am J Physiol Heart Circ Physiol 2003; 284:H846–H852.

    PubMed  CAS  Google Scholar 

  270. Daugherty A, Manning MW, Cassis LA, Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 2001; 134:865–870.

    PubMed  CAS  Google Scholar 

  271. Rajagopalan S, Duquaine D, King S, Pitt B, Patel P. Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 2002; 105:2212–2216.

    PubMed  CAS  Google Scholar 

  272. Keidar S, Hayek T, Kaplan M, et al. Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2003; 41:955–963.

    PubMed  CAS  Google Scholar 

  273. Mitani H, Bandoh T, Kimura M, Totsuka T, Hayashi S. Increased activity of vascular ACE related to atherosclerotic lesions in hyperlipidemic rabbits. Am J Physiol 1996; 271:H1065–H1071.

    PubMed  CAS  Google Scholar 

  274. McFarlane SI, Kumar A, Sowers JR. Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol 2003;91:30H–37H.

    PubMed  CAS  Google Scholar 

  275. Yang BC, Phillips MI, Mohuczy D, et al. Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1998; 18:1433–1439.

    PubMed  CAS  Google Scholar 

  276. Bornfeldt KE, Arngvist HJ, Norstedt G. Regulation of IGF-I gene expression by growth factors in cultured vascular VSMCs. J Endocrinol 1990; 125:381–386.

    PubMed  CAS  Google Scholar 

  277. Jawien A, Bowen-Pope DF, Lindner V, et al. PDGF promote smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 1992; 89:507–511.

    PubMed  CAS  Google Scholar 

  278. Kozaki K, Kaminski WE, Tang J, et al. Blockade of platelet-derived growth factor or its receptors transiently delays but does not prevent fibrous cap formation in ApoE null mice. Am J Pathol 2002; 161:1395–1407.

    PubMed  CAS  Google Scholar 

  279. Thyberg J, Hedin U, Sjolund M, et al. Regulation of differentiated properties and proliferation of arterial VSMC. Arteriosclerosis 1990; 10:966–990.

    PubMed  CAS  Google Scholar 

  280. Kanaki T, Bujo H, Mori S, et al. Functional analysis of aortic endothelial cells expressing mutant PDGF receptors with respect to expression of matrix metalloproteinase-3. Biochem Biophys Res Commun 2002; 294:231–237.

    PubMed  CAS  Google Scholar 

  281. Ferns GA, Motani AS, Änggord EE. The IGFs: Their putative role in atherogenesis. Artery 1991; 18:197–225.

    PubMed  CAS  Google Scholar 

  282. Sowers JR. Insulin and insulin-like growth factorin normal and pathological cardiovascular physiology. Hypertension 1997; 29:691–699.

    PubMed  CAS  Google Scholar 

  283. Sowers JR. Effects of insulin and IGF-I on vascular smooth muscle glucose and cation metabolism. Diabetes 1996; 45: S47–S51.

    PubMed  CAS  Google Scholar 

  284. Che W, Lerner-Marmarosh N, Huang Q, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gabl and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res 2002; 90:1222–1230.

    PubMed  CAS  Google Scholar 

  285. Murphy LJ, Ghahary A, Chakrabarti S. Insulin regulation of IGF-I expression in rat aorta. Diabetes 1990; 39:657–662.

    PubMed  CAS  Google Scholar 

  286. Stout RW. Insulin as a mitogenic factor: role in the pathogenesis of cardiovascular disease. Am J Med 1991; 90:62S–65S.

    PubMed  CAS  Google Scholar 

  287. Rich CB, Ewton DZ, Martin BM, et al. IGF-I regulation of elastogenesis: comparison of aortic and lung cells. Am J Physiol 1992; 263:L276–L282.

    PubMed  CAS  Google Scholar 

  288. Pfeifle B, Boeder H, Ditschuneit H. Interaction of receptors for insulin-like growth factor I, platelet-derivedgrowth factor, and fibroblast growth factor in rat aortic cells. Endocrinology 1987; 120:2251–2258.

    PubMed  CAS  Google Scholar 

  289. Sugimoto H, Franks DJ, Lecavalier L, Chiasson JL, Hamet P. Therapeutic modulation of growth-promoting activity in platelets from diabetics. Diabetes 1987; 36:667–672.

    PubMed  CAS  Google Scholar 

  290. Geffner ME, Bersch N, Nakamoto JM, et al. Use of in vitro clonogenic assays to differentiate acquired from genetic causesof insulin resistance. Diabetes 1991; 40:28–36.

    PubMed  CAS  Google Scholar 

  291. Wang R, Kudo M, Yokoyama M, Asano G. Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth muscle cell growth. J Nippon Med Sch 2001; 68:472–481.

    PubMed  CAS  Google Scholar 

  292. Janssen J A, Lamberts S W. The role of IGF-I in the development of cardiovascular disease in type 2 diabetes mellitus: is prevention possible? Eur JEndocrinol 2002; 146:467–477.

    CAS  Google Scholar 

  293. Juul A, Scheike T, Davidsen M, Gyllenborg J, Jorgensen T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 2002; 106:939–944.

    PubMed  CAS  Google Scholar 

  294. Zaina S, Pettersson L, Ahren B, et al. Insulin-like growth factor II plays a central role in atherosclerosis in a mouse model. J Biol Chem 2002; 277:4505–4511.

    PubMed  CAS  Google Scholar 

  295. Matsumoto S, Kishida K, Shimomura I, et al. Increased plasma HB-EGF associated with obesity and coronary artery disease. Biochem Biophys Res Commun 2002; 292:781–786. Erratum in: Biochem Biophys Res Commun 2002; 295:571.

    PubMed  CAS  Google Scholar 

  296. Bjorkerud S. Effects of TGF on human arterialVSMCs in vitro. Arteriosclerosis and Thrombosis 1991; 11:892–902.

    PubMed  CAS  Google Scholar 

  297. Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type P TGF by activated human macrophages. Proc Natl Acad Scien USA 1987; 84:6020–6024.

    CAS  Google Scholar 

  298. Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-P in human platelets: identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258:7155–7160.

    PubMed  CAS  Google Scholar 

  299. Mallat Z, Gojova A, Marchiol-Fournigault C, et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001; 89:930–934.

    PubMed  CAS  Google Scholar 

  300. Lutgens E, Gijbels M, Smook M, et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vase Biol 2002; 22:975–982.

    CAS  Google Scholar 

  301. Owens GK, Geisterfer AA, Yang YW, et al. TGF-induced growth inhibition and cellular hypertrophy in cultured vascular VSMCs. J Cell Biology 1988; 107:771–780.

    CAS  Google Scholar 

  302. Ozer NK, Boscoboinik D, Azzi A. New roles of low density lipoproteins and vitamin E in the pathogenesis of atherosclerosis. Biochem Mol Biol Int 1995; 35:117–124.

    PubMed  CAS  Google Scholar 

  303. Mansson PE, Malark M, Sawada H, Kan M, McKeehan WL. Heparin-binding (fibroblast) growth factors type one and two genes are co-expressed in proliferating normal human vascular endothelial and smooth muscle cells in culture. In Vitro Cell Dev Biol 1990; 26:209–212.

    PubMed  CAS  Google Scholar 

  304. Bakris GL, Fairbanks R, Traish AM. Arginine vasopressin stimulates human mesangial cell production of endothelin. J Clin Invest 1991; 87:1158–1164.

    PubMed  CAS  Google Scholar 

  305. Lonchampt MO, Pinelis S, Goulin J, Chabrier PE, Braquet P. Proliferation and Na+/H+ exchange activation by endothelin in vascular smooth muscle cells. Am JHypertens 1991; 4:776–779.

    CAS  Google Scholar 

  306. Clinton SK, Libby P. Cytokines and growth factors in atherogenesis. Arch Pathol Lab Med 1992; 116:1292–1300.

    PubMed  CAS  Google Scholar 

  307. Nathan CF. Secretory products of macrophages. J Clin Invest 1987; 79:319–326.

    PubMed  CAS  Google Scholar 

  308. Sawada H, Kan M, McKeehan WL. Opposite effects of monokines (interleukin-1 and tumor necrosis factor) on proliferation and heparin-binding (fibroblast) growth factor binding to human aortic endothelial and smooth muscle cells. In Vitro Cell Dev Biol 1990; 26:213–216.

    PubMed  CAS  Google Scholar 

  309. Anwar A, Zahid AA, Scheidegger KJ, Brink M, Delafontaine P. Tumor necrosis factor-alpha regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. Circulation 2002; 105:1220–1225.

    PubMed  CAS  Google Scholar 

  310. Ikeda U, Ikeda M, Oohara T, Kano S, Yaginuma T. Mitogenic action of interleukin-1 alpha on vascular smooth muscle cells mediated by PDGF. Atherosclerosis 1990; 84:183–188.

    PubMed  CAS  Google Scholar 

  311. Ikeda U, Ikeda M, Oohara T, et al. Interleukin 6 stimulates growth of vascular smooth muscle cells in a PDGF-dependent manner. Am J Physiol 1991; 260: H1713–1717.

    PubMed  CAS  Google Scholar 

  312. Morisaki N, Koyama N, Mori S, et al. Effects of smooth muscle cell derived growth factor (SDGF) in combination with other growth factors on smooth muscle cells. Atherosclerosis 1989;78:61–67.

    PubMed  CAS  Google Scholar 

  313. Diez-Roux AV, Nieto FJ, Tyroler HA, Crum LD, Szklo M. Social inequalities and atherosclerosis. The atherosclerosis risk in communities study. Am J Epidemiol 1995; 141:960–972.

    PubMed  CAS  Google Scholar 

  314. Matsumoto Y, Uyama O, Shimizu S, et al. Do anger and aggression affect carotid atherosclerosis? Stroke 1993;24:983–986.

    PubMed  CAS  Google Scholar 

  315. Kop WJ. The integration of cardiovascular behavioral medicine and psychoneuro-immunology: new developments based on converging research fields. Brain Behav Immun 2003; 17:233–237.

    PubMed  Google Scholar 

  316. Kendrick M. Does insulin resistance cause atherosclerosis in the post-prandial period? Med Hypotheses 2003; 60:6–11.

    PubMed  Google Scholar 

  317. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. JPsychosom Res 2002; 52:1–23.

    Google Scholar 

  318. Spieker LE, Hurlimann D, Ruschitzka F, et al. Mental stress induces prolonged endothelial dysfunction via endothelin-Areceptors. Qrculation 2002; 105:2817–2820.

    CAS  Google Scholar 

  319. Rronenberg F, Pereira MA, Schmitz MK, et al. Influence of leisure time physical activity and television watching on atherosclerosis risk factors in the NHLBI Family Heart Study. Atherosclerosis 2000; 153:433–443.

    Google Scholar 

  320. Hodgin JB, Maeda N. Minireview: estrogen and mouse models of atherosclerosis. Endocrinology 2002; 143:4495–4501.

    PubMed  CAS  Google Scholar 

  321. Sowers JR. Diabetes mellitus and cardiovascular disease in women. Arch Intern Med 1998; 158:617–621.

    PubMed  CAS  Google Scholar 

  322. Rajaratnam RA, Gylling H, Miettinen TA. Cholesterol absorption, synthesis, and fecal output in postmenopausal women with and without coronary artery disease. Arterioscler Thromb Vase Biol 2001; 21:1650–1655.

    CAS  Google Scholar 

  323. Bairey Merz CN, Johnson BD, Sharaf BL, et al. SE Study Group. Hypoestro-genemia of hypothalamic origin and coronary artery disease in premenopausal women: areport from the NHLBI-sponsored WISE study. JAm Coll Cardiol 2003; 41:413–419.

    Google Scholar 

  324. Koivu TA, Dastidar P, Jokela H, et al. The relation of oxidized LDL autoantibodies and long-term hormone replacement therapy to ultrasonographically assessed atherosclerotic plaque quantity and severity in postmenopausal women. Atherosclerosis 2001; 157:471–479.

    PubMed  CAS  Google Scholar 

  325. Miller AP, Chen YF, Xing D, Feng W, Oparil S. Hormone replacement therapy and inflammation: interactions in cardiovascular disease. Hypertension 2003; 42:657–663.

    PubMed  CAS  Google Scholar 

  326. Pervin S, Singh R, Rosenfeld ME, et al. Estradiol suppresses MCP-1 expression In vivo: implications for atherosclerosis. Arterioscler Thromb Vase Biol 1998; 18:1575–1582.

    CAS  Google Scholar 

  327. Alvarez A, Hermenegildo C, Issekutz AC, Esplugues JV, Sanz MJ. Estrogens inhibit angiotensin II-induced leukocyte-endothelial cell interactions in vivo via rapid endothelial nitric oxide synthase and cyclooxygenase activation. Circ Res 2002; 91:1142–1150.

    PubMed  CAS  Google Scholar 

  328. Amant C, Holm P, Xu Sh SH, et al. Estrogen receptor-mediated, nitric oxide-dependent modulation of the immunologic barrier function of the endothelium: regulation of fas ligand expression by estradiol. Circulation 2001; 104:2576–2581.

    PubMed  CAS  Google Scholar 

  329. Dimitrova KR, DeGroot K, Myers AK, Kim YD. Estrogen and homocysteine. Cardiovasc Res 2002; 53:577–588.

    PubMed  CAS  Google Scholar 

  330. Wagner AH, Schroeter MR, Hecker M. 17beta-estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 2001; 15:2121–2130.

    PubMed  CAS  Google Scholar 

  331. Murakami H, Harada N, Sasano H. Aromatase in atherosclerotic lesions of human aorta. J Steroid Biochem Mol Biol 2001; 19:67–74.

    Google Scholar 

  332. Nakamura Y, Miki Y, Suzuki T, Nakata T, Darnel AD, Moriya T, Tazawa C, Saito H, Ishibashi T, Takahashi S, Yamada S, Sasano H. Steroid sulfatase and estrogen sulfotransferase in the atherosclerotic human aorta. Am J Pathol 2003; 163:1329–1339.

    PubMed  CAS  Google Scholar 

  333. Carmody BJ, Arora S, Wakefield MC, et al. Progesterone inhibits human infragenicular arterial smooth muscle cell proliferation induced by high glucose and insulin concentrations. J Vase Surg 2002; 36:833–838.

    Google Scholar 

  334. Byington RP, Furberg CD, Herrington DM, et al.; Heart and Estrogen/Progestin Replacement Study Research Group. Effect of estrogen plus progestin on progression of carotid atherosclerosis in postmenopausal women withheart disease: HERS B-mode substudy. Arterioscler Thromb Vase Biol 2002; 22:1692–1697.

    CAS  Google Scholar 

  335. Dwyer KM, Nordstrom CK, Bairey Merz CN, Dwyer JH. Carotid wall thickness and years since bilateral oophorectomy: the Los Angeles Atherosclerosis Study. Am J Epidemiol 2002; 156:438–444.

    PubMed  Google Scholar 

  336. Uint L, Gebara OC, Pinto LB, et al. Hormone replacement therapy increases levels of antibodies against heat shock protein 65 and certain species of oxidized low density lipoprotein. Braz J Med Biol Res 2003; 36:491–494.

    PubMed  CAS  Google Scholar 

  337. Barton M, Dubey RK, Traupe T. Oral contraceptives and the risk of thrombosis and atherosclerosis. Expert Opin Investig Drugs 2002; 11:329–332.

    PubMed  CAS  Google Scholar 

  338. Balica M, Bostrom K, Shin V, Tillisch K, Demer LL. Calcifying subpopulation of bovine aortic smooth muscle cells is responsive to 17 beta-estradiol. Circulation 1997; 95:1954–1960.

    PubMed  CAS  Google Scholar 

  339. McCrohon JA, Death AK, Nakhla S, et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation 2000; 101:224–226.

    PubMed  CAS  Google Scholar 

  340. Ide T, Tsutsui H, Ohashi N, et al. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vase Biol 2002; 22:438–442.

    CAS  Google Scholar 

  341. Golden SH, Maguire A, Ding J, et al. Endogenous postmenopausal hormones and carotid atherosclerosis: a case-control study of the atherosclerosis risk in communities cohort. Am J Epidemiol 2002; 155:437–445.

    PubMed  Google Scholar 

  342. Barud W, Palusinski R, Beltowski J, Wojcicka G. Inverse relationship between total testosterone and anti-oxidized low density lipoprotein antibody levels in ageing males. Atherosclerosis 2002; 164:283–288.

    PubMed  CAS  Google Scholar 

  343. De Pergola G, Pannacciulli N, Ciccone M, et al. Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. IntJObes Relat Metab Disord 2003; 27:803–807.

    Google Scholar 

  344. Malkin CJ, Pugh PJ, Jones RD, Jones TH, Channer KS. Testosterone as a protective factor against atherosclerosis-immunomodulation and influence upon plaque development and stability. J Endocrinol 2003; 178:373–380.

    PubMed  CAS  Google Scholar 

  345. Okamoto K. Distribution of dehydroepiandrosterone sulfate and relationships between its level and serum lipid levels in a rural Japanese population. J Epidemiol 1998; 8:285–291.

    PubMed  CAS  Google Scholar 

  346. Savastano S, Valentino R, Belfiore A, et al. Early carotid atherosclerosis in nor-motensive severe obese premenopausal women with low DHEA(S). J Endocrinol Invest 2003; 26:236–243.

    PubMed  CAS  Google Scholar 

  347. Boren J, Gustafsson M, Skalen K, Flood C, Innerarity TL. Role of extracellular retention of low density lipoproteins in atherosclerosis. Curr Opin Lipidol 2000; 11:451–456.

    PubMed  CAS  Google Scholar 

  348. Andrews HE Bruckderfer KR, Dunn RC et al. LDL inhibits endothelium dependent relaxation in rabbit aorta. Nature 1987; 327:237–239.

    PubMed  CAS  Google Scholar 

  349. Kugiyama K, Kerns S A, Morrisett JD et al. Impairment of endothelium dependent arterial relaxation by lysolecithin in modified LDL. Nature 1990; 344:160–162.

    PubMed  CAS  Google Scholar 

  350. Brown MS, Goldstein JL. Lipoprotein Metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Ann Review Biochem 1983; 52:223–261.

    CAS  Google Scholar 

  351. Linton MF, Babaev VR, Gleaves LA, Fazio S. A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. JBiol Chem 1999; 274:19204–19210.

    CAS  Google Scholar 

  352. Takahashi K, Takeya M, Sakashita N. Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 2002; 35:179–203.

    PubMed  CAS  Google Scholar 

  353. Steinberg D, Parthasarathy S, Carew TE et al. Beyond Cholesterol. Modifications of LDL that increase its atherogenicity. N Engl J Med 1989; 320:915–924.

    PubMed  CAS  Google Scholar 

  354. Palinski W, Rosenfeld ME, Yla-Herttuala S et al. LDL undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86:1372–1376.

    PubMed  CAS  Google Scholar 

  355. Babaev VR, Gleaves LA, Carter KJ, et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vase Biol 2000; 20:2593–2599.

    CAS  Google Scholar 

  356. Van Eck M, De Winther MP, Herijgers N, et al. Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vase Biol 2000; 20:2600–2606.

    Google Scholar 

  357. Minami M, Kume N, Shimaoka T, et al. Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler Thromb Vase Biol 2001; 21:1796–1800.

    CAS  Google Scholar 

  358. Tanaka A, AI M, Kobayashi Y, et al. Metabolism of triglyceride-rich lipoproteins and their role in atherosclerosis. Ann N YAcad Sci 2001; 947:207–212; discussion 212–213.

    CAS  Google Scholar 

  359. Magoori K, Kang MJ, Ito MR, et al. Severe hypercholesterolemia, impaired fat tolerance, and advanced atherosclerosis in mice lacking both low density lipoprotein receptor-related protein 5 and apolipoprotein E. J Biol Chem 2003; 278:11,331–11,336.

    PubMed  CAS  Google Scholar 

  360. Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 2003; 300:329–332.

    PubMed  CAS  Google Scholar 

  361. Lindqvist P, Ostlund-Lindquist A, Witztum JL, et al. The role of LpL in the metabolism of TG-rich lipoproteins by macrophages. J Biol Chem 1983; 258:9086–9092.

    PubMed  CAS  Google Scholar 

  362. Schonfeld G, Patsch W, Pfleger B, et al. Lipolysis produces changes in the immu-noreactivity and cell reactivity of VLDL. J Clin Invest 1979; 64:1288–1297.

    PubMed  CAS  Google Scholar 

  363. Renier G, Skamene E, DeSanctis JB, Radzioch D. High macrophage lipoprotein lipase expression and secretion are associated in inbred murine strains with susceptibility to atherosclerosis. Arterioscler Thromb 1993; 13:190–196.

    PubMed  CAS  Google Scholar 

  364. Esenabhalu VE, Cerimagic M, Malli R, et al. Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. BrJ Pharmacol 2002; 135:143–154.

    CAS  Google Scholar 

  365. Dugi KA, Schmidt N, Brandauer K, et al. Activity and concentration of lipoprotein lipase in post-heparin plasma and the extent of coronary artery disease. Atherosclerosis 2002; 163:127–134.

    PubMed  CAS  Google Scholar 

  366. Fan J, Unoki H, Kojima N, et al. Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 2001; 276:40,071–40,079.

    PubMed  CAS  Google Scholar 

  367. de Andrade M, Thandi I, Brown S, et al. Relationship of the apolipoprotein E polymorphism with carotid artery atherosclerosis. Am J Hum Genet 1995; 56:1379–1390.

    PubMed  Google Scholar 

  368. Palinski W, Ord VA, Plump AS, et al. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 1994; 14:605–616.

    PubMed  CAS  Google Scholar 

  369. Fazio S, Babaev VR, Burleigh ME, et al. Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J Lipid Res 2002; 43:1602–1609.

    PubMed  CAS  Google Scholar 

  370. Conde-Knape K, Bensadoun A, Sobel JH, Cohn JS, Shachter NS. Overexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase. J Lipid Res 2002; 43:2136–2145.

    PubMed  CAS  Google Scholar 

  371. Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc Med 2002; 12:37–42.

    PubMed  CAS  Google Scholar 

  372. Li H, Junk P, Huwiler A, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation 2002; 106:2250–2256.

    PubMed  CAS  Google Scholar 

  373. Morel DW, DiCorleto PE, Chisolm GM. Endothelium and VSMC alter LDL in vitro by free radical oxidation. Arteriosclerosis 1984; 4:357–364.

    PubMed  CAS  Google Scholar 

  374. Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler Thromb Vase Biol 2002; 22:1162–1167.

    CAS  Google Scholar 

  375. Kuhn H, Heydeck D, Hugou I, Gniwotta C. In vivo action of 15-lipoxygenase in early stages of human atherogenesis. J Clin Invest 1997; 99:888–893.

    PubMed  CAS  Google Scholar 

  376. Reddy MA, Kim YS, Lanting L, Natarajan R. Reduced growth factor responses in vascular smooth muscle cells derived from 12/15-lipoxygenase-deficient mice. Hypertension 2003; 41:1294–1300.

    PubMed  CAS  Google Scholar 

  377. Sugiyama S, Okada Y, Sukhova GK, et al. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 2001; 158:879–891.

    PubMed  CAS  Google Scholar 

  378. Heinecke JW. Tyrosyl radical production by myeloperoxidase: a phagocyte pathway for lipid peroxidation and dityrosine cross-linking of proteins. Toxicology 2002; 177:11–22.

    PubMed  CAS  Google Scholar 

  379. Brennan ML, Anderson MM, Shih DM, et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest 2001; 107:419–430.

    PubMed  CAS  Google Scholar 

  380. Shimasaki H, Maeba R, Tachibana R, Ueta N. Lipid peroxidation and ceroid accumulation in macrophages cultured with oxidized low density lipoprotein. Gerontology 1995; 41:39–51.

    PubMed  CAS  Google Scholar 

  381. Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal 2003; 5:171–180.

    PubMed  CAS  Google Scholar 

  382. Morawietz H, Duerrschmidt N, Niemann B, et al. Augmented endothelial uptake of oxidized low-density lipoprotein in response to endothelin-1. Clin Sci 2002; 103:9S–12S.

    PubMed  CAS  Google Scholar 

  383. Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H. Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 2001; 104:1767–1772.

    PubMed  CAS  Google Scholar 

  384. Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 2001; 108:1513–1522.

    PubMed  CAS  Google Scholar 

  385. Witting P, Pettersson K, Ostlund-Lindqvist AM, et al. Dissociation of atherogen-esis from aortic accumulation of lipid hydro(pero)xides in Watanabe heritable hyperlipidemic rabbits. J Clin Invest 1999; 104:213–220.

    PubMed  CAS  Google Scholar 

  386. Tertov VV, Kaplun VV, Orekhov AN. In vivo oxidized low density lipoprotein: degree of lipoprotein oxidation does not correlate with its atherogenic properties. Mol Cell Biochem 1998; 183:141–146.

    PubMed  CAS  Google Scholar 

  387. Hoff HF, O’Neil J, Wu Z, Hoppe G, Salomon RL. Phospholipid hydroxyalkenals: biological and chemical properties of specific oxidized lipids present in atherosclerotic lesions. Arterioscler Thromb Vase Biol 2003; 23:275–282.

    CAS  Google Scholar 

  388. Tribble DL, Gong EL, Leeuwenburgh C, et al. Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Arterioscler Thromb Vase Biol 1997; 17:1734–1740.

    CAS  Google Scholar 

  389. Ferns GA, Lamb DJ, Taylor A. The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis 1997; 133:139–152.

    PubMed  CAS  Google Scholar 

  390. Bhakdi S, Dorweiler B, Kirchmann R, et al. On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety. J Exp Med 1995; 182:1959–1971.

    PubMed  CAS  Google Scholar 

  391. Hanasaki K, Yamada K, Yamamoto S, et al. Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. J Biol Chem 2002; 277:29116–29124.

    PubMed  CAS  Google Scholar 

  392. Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002; 95:89–100.

    PubMed  CAS  Google Scholar 

  393. Watanabe Y, Inaba T, Gotoda T, et al. Role of macrophage colony-stimulating factor in the initial process of atherosclerosis. Ann N Y Acad Sci 1995; 748:357–364; discussion 364–366.

    PubMed  CAS  Google Scholar 

  394. Huber J, Vales A, Mitulovic G, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vase Biol 2002; 22:101–107.

    CAS  Google Scholar 

  395. Lee C, Sigari F, Segrado T, et al. All ApoB-containing lipoproteins induce monocyte chemotaxis and adhesion when minimally modified. Modulation of lipoprotein bioactivity by platelet-activating factor acetylhydrolase. Arterioscler Thromb Vase Biol 1999; 19:1437–1446.

    CAS  Google Scholar 

  396. Unno N, Nakamura T, Kaneko H, et al. Plasma platelet-activating factor acetylhydrolase deficiency is associated with atherosclerotic occlusive disease in Japan. J Vase Surg 2000; 32:263–267.

    CAS  Google Scholar 

  397. Srivastava S, Liu SQ, Conklin DJ, et al. Involvement of aldose reductase in the metabolism of atherogenic aldehydes. Chem Biol Interact 2001; 130:563–571.

    PubMed  Google Scholar 

  398. Kawai Y, Saito A, Shibata N, et al. Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis. J Biol Chem 2003; 278:21,040–21,049.

    PubMed  CAS  Google Scholar 

  399. Banfi C, Camera M, Giandomenico G, et al. Vascular thrombogenicity induced by progressive LDL oxidation: protection by antioxidants. Thromb Haemost 2003; 89:544–553.

    PubMed  CAS  Google Scholar 

  400. Schonbeck U, Gerdes N, Varo N, et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation 2002; 106:2888–2893.

    PubMed  Google Scholar 

  401. Banfi C, Colli S, Eligini S, Mussoni L, Tremoli E. Oxidized LDLs influence thrombotic response and cyclooxygenase 2. Prostaglandins Leukot Essent Fatty Acids 2002; 67:169–173.

    PubMed  CAS  Google Scholar 

  402. Webb NR, Bostrom MA, Szilvassy SJ, et al. Macrophage-expressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice. Arterioscler Thromb Vase Biol 2003; 23:263–268.

    CAS  Google Scholar 

  403. Burton CA, Patel S, Mundt S, et al. Deficiency in sPLA(2) does not affect HDL levels or atherosclerosis in mice. Biochem Biophys Res Commun 2002; 294:88–94.

    PubMed  CAS  Google Scholar 

  404. Niessen HW, Krijnen PA, Visser CA, Meijer CJ, Erik Hack C. Type II secretory phospholipase A2 in cardiovascular disease: a mediator in atherosclerosis and ischemic damage to cardiomyocytes? Cardiovasc Res 2003; 60:68–77.

    PubMed  CAS  Google Scholar 

  405. Hurt-Camejo E, Camejo G, Sartipy P. Phospholipase A2 and small, dense low-density lipoprotein. Curr Opin Lipidol 2000; 11:465–471.

    PubMed  CAS  Google Scholar 

  406. Tertov VV, Kaplun VV, Sobenin IA, Orekhov AN. Low-density lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification. Atherosclerosis 1998; 138:183–195.

    PubMed  CAS  Google Scholar 

  407. Sobenin IA, Tertov VV, Orekhov AN. Atherogenic modified LDL in diabetes. Diabetes 1996; 45:S35–S39.

    PubMed  CAS  Google Scholar 

  408. Tulenko TN, Sumner AE. The physiology of lipoproteins. J Nucl Cardiol 2002; 9:638–649.

    PubMed  Google Scholar 

  409. Mcdowell A, Young IS, Wisdom GB. Measurement of asialylated LDL in the blood of patients with coronary artery disease by antibody-lectin sandwich assay. Ann Clin Biochem 2001; 38:499–508.

    PubMed  CAS  Google Scholar 

  410. Veniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice. Arterioscler Thromb Vase Biol 2001; 21:1567–1570.

    CAS  Google Scholar 

  411. Segrest JP. The role of non-LDL:non-HDL particles in atherosclerosis. CurrDiab Rep 2002; 2:282–288.

    Google Scholar 

  412. Takahashi M, Takahashi S, Shimpo M, et al. beta-very low density lipoprotein enhances inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells. Atherosclerosis 2002; 162:307–313.

    PubMed  CAS  Google Scholar 

  413. Kawakami A, Tanaka A, Chiba T, et al. Remnant lipoprotein-induced smooth muscle cell proliferation involves epidermal growth factor receptor transactivation. Circulation 2003; 108:2679–2688.

    PubMed  CAS  Google Scholar 

  414. Chen K, Thomas SR, Keaney JF Jr. Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med 2003; 35:117–132.

    PubMed  CAS  Google Scholar 

  415. Kaneda H, Taguchi J, Ogasawara K, Aizawa T, Ohno M. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis 2002; 162:221–225.

    PubMed  CAS  Google Scholar 

  416. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003; 91:7A–11A.

    PubMed  CAS  Google Scholar 

  417. Fukai T, Folz RJ, Landmesser U, Harrison DG. Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 2002; 55:239–249.

    PubMed  CAS  Google Scholar 

  418. Vassalle C, Botto N, Andreassi MG, Berti S, Biagini A. Evidence for enhanced 8-isoprostane plasma levels, as index of oxidative stress in vivo, in patients with coronary artery disease. Coron Artery Dis 2003; 14:213–218.

    PubMed  Google Scholar 

  419. Schisterman EF, Faraggi D, Browne R, et al. TBARS and cardiovascular disease in a population-based sample. J Cardiovasc Risk 2001; 8:219–225.

    PubMed  CAS  Google Scholar 

  420. Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002; 106:927–932.

    PubMed  CAS  Google Scholar 

  421. Ruef J, Moser M, Kubler W, Bode C. Induction of endothelin-1 expression by oxidative stress in vascular smooth muscle cells. Cardiovasc Pathol 2001; 10:311–315.

    PubMed  CAS  Google Scholar 

  422. Mashiba S, Wada Y, Takeya M, et al. In vivo complex formation of oxidized alpha(l)-antitrypsin and LDL. Arterioscler Thromb Vasc Biol 2001; 21:1801–1808.

    PubMed  CAS  Google Scholar 

  423. Miyata T. Alterations of non-enzymatic biochemistry in uremia, diabetes, and atherosclerosis (“carbonyl stress”). Bull Mem Acad R Med Belg 2002; 157:189–196; discussion 196–198.

    PubMed  CAS  Google Scholar 

  424. Okuda M, Inoue N, Azumi H, et al. Expression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis. Arterioscler Thromb Vase Biol 2001; 21:1483–1487.

    CAS  Google Scholar 

  425. Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S. Role of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice. Arterioscler Thromb Vase Biol 2001; 21:1681–1688.

    CAS  Google Scholar 

  426. D’Armiento FP, Bianchi A, de Nigris F, et al. Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial arteries in men without classic risk factors for atherosclerosis. Stroke 2001; 32:2472–2479.

    PubMed  CAS  Google Scholar 

  427. Blanc J, Alves-Guerra MC, Esposito B, et al. Protective role of uncoupling protein 2 in atherosclerosis. Circulation 2003; 107:388–390.

    PubMed  CAS  Google Scholar 

  428. Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 2003; 100:2112–2116.

    PubMed  CAS  Google Scholar 

  429. Jiang XC. The effect of phospholipid transfer protein on lipoprotein metabolism and atherosclerosis. Front Biosci 2002; 7:dl634–dl641.

    Google Scholar 

  430. O’Brien KD, Vuletic S, McDonald TO, et al. Cell-associated and extracellular phospholipid transfer protein in human coronary atherosclerosis. Circulation 2003; 108:270–274.

    PubMed  CAS  Google Scholar 

  431. Chiwata T, Aragane K, Fujinami K, et al. Direct effect of an acyl-CoA:cholesterol acyltransferase inhibitor, F-1394, on atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Br J Pharmacol 2001; 133:1005–1012.

    PubMed  CAS  Google Scholar 

  432. Sakashita N, Miyazaki A, Chang CC, et al. Acyl-coenzyme Axholesterol acyltransferase 2 (ACAT2) is induced in monocyte-derived macrophages: in vivo and in vitro studies. Lab Invest 2003; 83:1569–1581.

    PubMed  CAS  Google Scholar 

  433. Willner EL, Tow B, Buhman KK, et al. Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Proc NatlAcadSci USA 2003; 100:1262–1267.

    CAS  Google Scholar 

  434. Auge N, Rebai O, Lepetit-Thevenin J, et al. Pancreatic bile salt-dependent lipase induces smooth muscle cells proliferation. Circulation 2003; 108:86–91.

    PubMed  CAS  Google Scholar 

  435. Hui DY, Howies PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 2002; 43:2017–2030.

    PubMed  CAS  Google Scholar 

  436. Trougakos IP, Poulakou M, Stathatos M, et al. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Exp Gerontol 2002; 37:1175–1187.

    PubMed  CAS  Google Scholar 

  437. Gonzalez-Navarro H, Nong Z, Freeman L, et al. Identification of mouse and human macrophages as a site of synthesis of hepatic lipase. J Lipid Res 2002; 43:671–675.

    PubMed  CAS  Google Scholar 

  438. Dugi KA, Brandauer K, Schmidt N, et al. Low hepatic lipase activity is a novel risk factor for coronary artery disease. Circulation 2001; 104:3057–3062.

    PubMed  CAS  Google Scholar 

  439. Okazaki H, Osuga J, Tsukamoto K, et al. Elimination of cholesterol ester from macrophage foam cells by adenovirus-mediated gene transfer of hormone-sensitive lipase. J Biol Chem 2002; 277:31,893–31,899.

    PubMed  CAS  Google Scholar 

  440. Argmann CA, Van Den Diepstraten CH, Sawyez CG, et al. Transforming growth factor-betal inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vase Biol 2001; 21:2011–2018.

    CAS  Google Scholar 

  441. Kiechl S, Willeit J, Egger G, Poewe W, Oberhollenzer F. Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study. Circulation 1997; 96:3300–3307.

    PubMed  CAS  Google Scholar 

  442. Moore M, Folsom AR, Barnes RW, Eckfeldt JH. No association between serum ferritin and asymptomatic carotid atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol 1995; 141:719–723.

    PubMed  CAS  Google Scholar 

  443. Dabbagh AJ, Shwaery GT, Keaney JF Jr, Frei B. Effect of iron overload and iron deficiency on atherosclerosis in the hypercholesterolemic rabbit. Arterioscler Thromb Vase Biol 1997; 17:2638–2645.

    CAS  Google Scholar 

  444. Utermann G. The mysteries of Lp (a). Science 1989; 246:904–910.

    PubMed  CAS  Google Scholar 

  445. Nachman RL. Thrombosis andatherogenesis: Molecular Connections. Blood 1992; 79:1897–1906.

    PubMed  CAS  Google Scholar 

  446. Schreiner PJ. Lipoprotein(a) as a risk factor for preclinical atherosclerotic disease in abiracial cohort: the Atherosclerosis Risk in Communities (ARIC) Study. Chem Phys Lipids 1994; 67:405–410.

    PubMed  Google Scholar 

  447. Baldassarre D, Tremoli E, Franceschini G, Michelagnoli S, Sirtori CR. Plasma lipoprotein(a) is an independent factor associated with carotid wall thickening in severely but not moderately hypercholesterolemic patients. Stroke 1996; 27:1044–1049.

    PubMed  CAS  Google Scholar 

  448. Berg K, Svindland A, Smith AJ, et al. Spontaneous atherosclerosis in the proximal aorta of LPA transgenic mice on a normal diet. Atherosclerosis 2002; 163:99–104.

    PubMed  CAS  Google Scholar 

  449. Fu L, Jamieson DG, Usher DC, Lavi E. Gene expression of apolipoprotein(a) within the wall of human aorta and carotid arteries. Atherosclerosis 2001; 158:303–311.

    PubMed  CAS  Google Scholar 

  450. Scanu AM. Lipoprotein(a) and the atherothrombotic process: mechanistic insights and clinical implications. Curr Atheroscler Rep 2003; 5:106–113.

    PubMed  Google Scholar 

  451. Komai N, Morishita R, Yamada S, et al. Mitogenic activity of oxidized lipoprotein (a) on human vascular smooth muscle cells. Hypertension 2002; 40:310–314.

    PubMed  CAS  Google Scholar 

  452. Allen S, Khan S, Tarn Sp, et al. Expression of adhesion molecules by lp(a): a potential novel mechanism for its atherogenicity. FASEB 1998; 12:1765–1776.

    CAS  Google Scholar 

  453. Buechler C, Ullrich H, Aslanidis C, et al. Lipoprotein (a) downregulates lysosomal acid lipase and induces interleukin-6 in human blood monocytes. Biochim Biophys Acta 2003; 1642:25–31.

    PubMed  CAS  Google Scholar 

  454. Kostner KM, Kostner GM. Lipoprotein(a): still an enigma? Curr Opin Lipidol 2002; 13:391–396.

    PubMed  CAS  Google Scholar 

  455. Loscalzo J. Lipoprotein (a): a unique risk factor for atherothrombotic disease. Arteriosclerosis 1990; 10:672–679.

    PubMed  CAS  Google Scholar 

  456. Dahlen GH. Indications of an autoimmune component in LP(a) associated disorders. Eur JImmunogenet 1994; 21:301–312.

    CAS  Google Scholar 

  457. Scanu AM. Lp (a): Its inheritance and molecular basis of its atherothrombotic role. Mol Cell Biochem 1992; 113:127–131.

    PubMed  CAS  Google Scholar 

  458. Lippi G, Guidi G. Lipoprotein(a): an emerging cardiovascular risk factor. Crit Rev Clin Lab Sci 2003; 40:1–42.

    PubMed  CAS  Google Scholar 

  459. Burchfiel CM, Laws A, Benfante R, et al. Combined effects of HDL cholesterol, triglyceride, and total cholesterol concentrations on 18-year risk of atherosclerotic disease. Circulation 1995; 92:1430–1436.

    PubMed  CAS  Google Scholar 

  460. Rong JX, Li J, Reis ED, et al. Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 2001; 104:2447–2452.

    PubMed  CAS  Google Scholar 

  461. Dionyssiou-Asteriou A, Papastamatiou M, Vatalas IA, Bastounis E. Serum apolipoprotein AI levels in atherosclerotic and diabetic patients. Eur J Vase Endovasc Surg 2002; 24:161–165.

    CAS  Google Scholar 

  462. Schultz JR, Verstuyft JG, Gong EL, Nichols AV, Rubin EM. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature 1993; 365:762–764.

    PubMed  CAS  Google Scholar 

  463. Fruchart JC, De Geteire C, Delfly B, Castro GR. Apolipoprotein A-I-containing particles and reverse cholesterol transport: evidence for connection between cholesterol efflux and atherosclerosis risk. Atherosclerosis 1994; 110:S35–S39.

    PubMed  CAS  Google Scholar 

  464. Major AS, Dove DE, Ishiguro H, et al. Increased cholesterol efflux in apolipoprotein Al (ApoAI)-producing macrophages as a mechanism for reduced atherosclerosis in ApoAI((-/-)) mice. Arterioscler Thromb Vase Biol 2001; 21:1790–1795.

    CAS  Google Scholar 

  465. Ishiguro H, Yoshida H, Major AS, et al. Retrovirus-mediated expression of apolipoprotein A-I in the macrophage protects against atherosclerosis in vivo. JBiol Chem 2001; 276:36,742–36,748.

    CAS  Google Scholar 

  466. Marotti KR, Castle CK, Boyle TP, et al. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 1993; 364:73–75.

    PubMed  CAS  Google Scholar 

  467. Barter PJ, Brewer HB Jr, Chapman MJ, et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vase Biol 2003; 23:160–167.

    CAS  Google Scholar 

  468. Huang Z, Inazu A, Nohara A, Higashikata T, Mabuchi H. Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin Sci 2002; 103:587–594.

    PubMed  CAS  Google Scholar 

  469. Zhang Z, Yamashita S, Hirano K, et al. Expression of cholesteryl ester transfer protein in human atherosclerotic lesions and its implication in reverse cholesterol transport. Atherosclerosis 2001; 159:67–75.

    PubMed  CAS  Google Scholar 

  470. Furbee JW Jr, Sawyer JK, Parks JS. Lecithinxholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem 2002; 277:3511–3519.

    PubMed  CAS  Google Scholar 

  471. Ng DS, Maguire GF, Wylie J, et al. Oxidative stress is markedly elevated in lecithinxholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem 2002; 277:11,715–11,720.

    PubMed  CAS  Google Scholar 

  472. Tailleux A, Duriez P, Fruchart JC, Clavey V. Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis 2002; 164:1–13.

    PubMed  CAS  Google Scholar 

  473. Blanco-Vaca F, Escola-Gil JC, Martin-Campos JM, Julve J. Role of apoA-II in lipid metabolism and atherosclerosis: advances in the study of an enigmatic protein. J Lipid Res 2001; 42:1727–1739.

    PubMed  CAS  Google Scholar 

  474. Owen JS, Mulcahy JV. ATP-binding cassette A1 protein and HDL homeostasis. Atheroscler Suppl 2002; 3:13–22.

    PubMed  CAS  Google Scholar 

  475. Brousseau ME. ATP-binding cassette transporter A1, fatty acids, and cholesterol absorption. Curr Opin Lipidol 2003; 14:35–40.

    PubMed  CAS  Google Scholar 

  476. Feng B, Tabas I. ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem 2002; 277:43,271–43,280.

    PubMed  CAS  Google Scholar 

  477. van Dam MJ, de Groot E, Clee SM, et al. Association between increased arterial-wall thickness and impairment in ABCAl-driven cholesterol efflux: an observational study. Lancet 2002; 359:37–42.

    PubMed  Google Scholar 

  478. Singaraja RR, Fievet C, Castro G, et al. Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 2002; 110:35–42.

    PubMed  CAS  Google Scholar 

  479. Aiello RJ, Brees D, Bourassa PA, et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA 1 in macrophages. Arterioscler hromb Vase Biol 2002; 22:630–637.

    CAS  Google Scholar 

  480. Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem 2003; 278:23,699–23,705.

    PubMed  Google Scholar 

  481. Hullinger TG, Panek RL, Xu X, Karathanasis SK. p21-activated kinase-1 (PAK1) inhibition of the human scavenger receptor class B, type I promoter in macrophages is independent of PAK1 kinase activity, but requires the GTPase-binding domain. J Biol Chem 2001; 276:46,807–46,814.

    PubMed  CAS  Google Scholar 

  482. Sharma N, Desigan B, Ghosh S, et al. The role of oxidized HDL in monocyte/macrophage functions in the pathogenesis of atherosclerosis in Rhesus monkeys. Scand J Clin Lab Invest 1999; 59:215–225.

    PubMed  CAS  Google Scholar 

  483. Mackness B, Durrington PN, Mackness MI. The paraoxonase gene family and coronary heart disease. Curr Opin Lipidol 2002; 13:357–362.

    PubMed  CAS  Google Scholar 

  484. Mackness B, Davies GK, Turkie W, et al. Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vase Biol 2001; 21:1451–1457.

    CAS  Google Scholar 

  485. Shih DM, Gu L, Hama S, et al. Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J Clin Invest 1996; 97:1630–1639.

    PubMed  CAS  Google Scholar 

  486. Mackness M, Boullier A, Hennuyer N, et al. Paraoxonase activity is reduced by a pro-atherosclerotic diet in rabbits. Biochem Biophys Res Commun 2000; 269:232–236.

    PubMed  CAS  Google Scholar 

  487. Tward A, Xia YR, Wang XP, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 2002; 106:484–490.

    PubMed  CAS  Google Scholar 

  488. Rozenberg O, Shih DM, Aviram M. Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation. Arterioscler Thromb Vase Biol 2003; 23:461–467.

    CAS  Google Scholar 

  489. Rosenblat M, Draganov D, Watson CE, et al. Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress. Arterioscler Thromb Vase Biol 2003; 23:468–474.

    CAS  Google Scholar 

  490. Esterbauer H, Puhl H, Diber-Rotheneder M et al. Effects of antioxidants on oxidative modification of LDL. Ann Med 1991; 23:573–581.

    PubMed  CAS  Google Scholar 

  491. Rasmussen HS, Aurup P, Goldstein K et al. Influence of Mg substitution therapy on blood lipid composition in patients with Ischemic Heart Disease. Arch Intern Med 1989; 149:1050–1053.

    PubMed  CAS  Google Scholar 

  492. Benlian P, De Gennes JL, Foubert L, et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996; 335:848–854.

    PubMed  CAS  Google Scholar 

  493. Reymer PW, Gagne E, Groenemeyer BE, et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat Genet 1995; 10:28–34.

    PubMed  CAS  Google Scholar 

  494. Ishimoto Y, Yamada K, Yamamoto S, et al. Group V and X secretory phospholi-pase A(2)s-induced modification of high-density lipoprotein linked to the reduction of its antiatherogenic functions. Biochim Biophys Acta 2003; 1642:129–138.

    PubMed  CAS  Google Scholar 

  495. Choi SY, Hirata K, Ishida T, Quertermous T, Cooper AD. Endothelial lipase: a new lipase on the block. J Lipid Res 2002; 43:1763–1769.

    PubMed  CAS  Google Scholar 

  496. Ma K, Cilingiroglu M, Otvos JD, et al. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci USA 2003; 100:2748–2753.

    PubMed  CAS  Google Scholar 

  497. Jin W, Sun GS, Marchadier D, et al. Endothelial cells secrete triglyceride lipase and phospholipase activities in response to cytokines as a result of endothelial lipase. Circ Res 2003; 92:644–650.

    PubMed  CAS  Google Scholar 

  498. Miyake JH, Duong-Polk XT, Taylor JM, et al. Transgenic expression of cholesterol-7-alpha-hydroxylase prevents atherosclerosis in C57BL/6J mice. Arterioscler Thromb Vase Biol 2002; 22:121–126.

    CAS  Google Scholar 

  499. Nofer JR, Kehrel B, Fobker M, et al. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002; 161:1–16.

    PubMed  CAS  Google Scholar 

  500. Calabresi L, Gomaraschi M, Franceschini G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler Thromb Vase Biol 2003; 23:1724–1731.

    CAS  Google Scholar 

  501. Millatt LJ, Bocher V, Fruchart JC, Staels B. Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis. Biochim Biophys Acta 2003; 1631:107–118.

    PubMed  CAS  Google Scholar 

  502. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9:213–219.

    PubMed  CAS  Google Scholar 

  503. Tangirala RK, Bischoff ED, Joseph SB, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci USA 2002; 99:11,896–11,901.

    PubMed  CAS  Google Scholar 

  504. Schuster GU, Parini P, Wang L, et al. Accumulation of foam cells in liver X receptor-deficient mice. Circulation 2002; 106:1147–1153.

    PubMed  CAS  Google Scholar 

  505. Laffitte BA, Joseph SB, Chen M, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol 2003; 23:2182–2191.

    PubMed  CAS  Google Scholar 

  506. Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 2003; 278:10,443–10,449.

    PubMed  CAS  Google Scholar 

  507. Barbier O, Torra IP, Duguay Y, et al. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vase Biol 2002; 22:717–726.

    CAS  Google Scholar 

  508. Malerod L, Sporstol M, Juvet LK, et al. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor gamma and hepatocyte nuclear factor 4alpha. Biochem Biophys Res Commun 2003; 305:557–565.

    PubMed  CAS  Google Scholar 

  509. Chinetti G, Lestavel S, Fruchart JC, Clavey V, Staels B. Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res 2003; 92:212–217.

    PubMed  CAS  Google Scholar 

  510. Sugawara A, Uruno A, Kudo M, et al. Transcription suppression of thromboxane receptor gene by peroxisome proliferator-activated receptor-gamma via an interaction with Spl in vascular smooth muscle cells. J Biol Chem 2002; 277:9676–9683.

    PubMed  CAS  Google Scholar 

  511. Fu M, Zhu X, Wang Q, et al. Platelet-derived growth factor promotes the expression of peroxisome proliferator-activated receptor gamma in vascular smooth muscle cells by a phosphatidylinositol 3-kinase/Akt signaling pathway. Circ Res 2001; 89:1058–1064.

    PubMed  CAS  Google Scholar 

  512. Li L, Beauchamp MC, Renier G. Peroxisome proliferator-activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 2002; 165:101–110.

    PubMed  CAS  Google Scholar 

  513. Lee CH, Chawla A, Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 2003; 302:453–457. Erratum in: Science 2003; 302:1153.

    PubMed  CAS  Google Scholar 

  514. Layne MD, Patel A, Chen YH, et al. Role of macrophage-expressed adipocyte fatty acid binding protein in the development of accelerated atherosclerosis in hyperc-holesterolemic mice. FASEB J 2001; 15:2733–2735.

    PubMed  CAS  Google Scholar 

  515. Fu Y, Luo N, Lopes-Virella MF, Garvey WT. The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis 2002; 165:259–269.

    PubMed  CAS  Google Scholar 

  516. Bruemmer D, Collins AR, Noh G, et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest 2003; 112:1318–1331.

    PubMed  CAS  Google Scholar 

  517. Scott L, Kerr A, Hay dock D, Merrilees M. Subendothelial proteoglycan synthesis and transforming growth factor beta distribution correlate with susceptibility to atherosclerosis. J Vase Res 1997; 34:365–377.

    CAS  Google Scholar 

  518. Isoda K, Nishikawa K, Kamezawa Y, et al. Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ Res 2002; 91:77–82.

    PubMed  CAS  Google Scholar 

  519. Chiba S, Okamoto H, Kon S, et al. Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels 2002; 16:111–117.

    PubMed  Google Scholar 

  520. Kwak BR, Veillard N, Pelli G, et al. Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Circulation 2003; 107:1033–1039.

    PubMed  CAS  Google Scholar 

  521. Frank PG, Lee H, Park DS, et al. Genetic Ablation of Caveolin-1 Confers Protection Against Atherosclerosis. Arterioscler Thromb Vase Biol 2004; 24:98–105.

    CAS  Google Scholar 

  522. Plenz GA, Deng MC, Robenek H, Volker W. Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis 2003; 166:1–11.

    PubMed  CAS  Google Scholar 

  523. Onda M, Ishiwata T, Kawahara K, et al. Expression of lumican in thickened intima and smooth muscle cells in human coronary atherosclerosis. Exp Mol Pathol 2002; 72:142–149.

    PubMed  CAS  Google Scholar 

  524. Theocharis AD, Theocharis DA, De Luca G, Hjerpe A, Karamanos NK. Compositional and structural alterations of chondroitin and dermatan sulfates during the progression of atherosclerosis and aneurysmal dilatation of the human abdominal aorta. Biochimie 2002; 84:667–674.

    PubMed  CAS  Google Scholar 

  525. Chait A, Wight TN. Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 2000; 11:457–463.

    PubMed  CAS  Google Scholar 

  526. Skalen K, Gustafsson M, Rydberg EK, et al. Subendothelial retention of athero-genic lipoproteins in early atherosclerosis. Nature 2002; 417:750–754.

    PubMed  CAS  Google Scholar 

  527. Camejo G, Olsson U, Hurt-Camejo E, Baharamian N, Bondjers G. The extracellular matrix on atherogenesis and diabetes-associated vascular disease. Atheroscler Suppl 2002; 3:3–9.

    PubMed  CAS  Google Scholar 

  528. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002; 90:251–262.

    PubMed  CAS  Google Scholar 

  529. Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases. A review of their structure and role in acute coronary syndrome. Cardiovasc Res 2003; 59:812–823.

    PubMed  CAS  Google Scholar 

  530. Herman MP, Sukhova GK, Kisiel W, et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 2001; 107:1117–1126.

    PubMed  CAS  Google Scholar 

  531. Joseph J, Ranganathan S, Mehta JL. Low density lipoproteins modulate collagen metabolism in fibroblasts. J Cardiovasc Pharmacol Ther 2003; 8:161–166.

    PubMed  CAS  Google Scholar 

  532. Lemaitre V, O’Byrne TK, Borczuk AC, et al. ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 2001; 107:1227–1234.

    PubMed  CAS  Google Scholar 

  533. Galis ZS, Johnson C, Godin D, et al. Targeted disruption of the matrix metallo-proteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 2002; 91:852–859.

    PubMed  CAS  Google Scholar 

  534. Kalela A, Koivu TA, Sisto T, et al. Serum matrix metalloproteinase-9 concentration in angiographically assessed coronary artery disease. Scand J Clin Lab Invest 2002; 62:337–342.

    PubMed  CAS  Google Scholar 

  535. Saito S, Zempo N, Yamashita A, et al. Matrix metalloproteinase expressions in arteriosclerotic aneurysmal disease. Vase Endovascular Surg 2002; 36:1–7.

    CAS  Google Scholar 

  536. Jormsjo S, Wuttge DM, Sirsjo A, et al. Differential expression of cysteine and aspartic proteases during progression of atherosclerosis in apolipoprotein E-defi-cient mice. Am J Pathol 2002; 161:939–945.

    PubMed  Google Scholar 

  537. Sukhova GK, Zhang Y, Pan JH, et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 111:897–906.

    PubMed  CAS  Google Scholar 

  538. Silence J, Lupu F, Collen D, Lijnen HR. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vase Biol 2001; 21:1440–1445.

    CAS  Google Scholar 

  539. Cipollone F, Prontera C, Pini B, et al. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 2001; 104:921–927.

    PubMed  CAS  Google Scholar 

  540. Watson KE, Parhami F, Shin V, Demer LL. Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioscler Thromb Vase Biol 1998; 18:1964–1971.

    CAS  Google Scholar 

  541. Hunt JL, Fairman R, Mitchell ME, et al. Bone formation in carotid plaques: a clinicopathological study. Stroke 2002; 33:1214–1219.

    PubMed  Google Scholar 

  542. Dhore CR, Cleutjens JP, Lutgens E, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vase Biol 2001; 21:1998–2003.

    CAS  Google Scholar 

  543. Schoppet M, Sattler AM, Schaefer JR, et al. Increased osteoprotegerin serum levels in men with coronary artery disease. J Clin Endocrinol Metab 2003; 88:1024–1028.

    PubMed  CAS  Google Scholar 

  544. Fitzpatrick LA, Turner RT, Ritman ER. Endochondral bone formation in the heart: a possible mechanism of coronary calcification. Endocrinology 2003; 144:2214–2219.

    PubMed  CAS  Google Scholar 

  545. Sun H, Unoki H, Wang X, et al. Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a). J Biol Chem 2002; 277:47,486–47,492.

    PubMed  CAS  Google Scholar 

  546. Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL. High-density lipoprotein regulates calcification of vascular cells. Circ Res 2002; 91:570–576.

    PubMed  CAS  Google Scholar 

  547. Shioi A, Katagi M, Okuno Y, et al. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages. Circ Res 2002; 91:9–16.

    PubMed  CAS  Google Scholar 

  548. Takayama K, Garcia-Cardena G, Sukhova GK, et al. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J Biol Chem 2002; 277:44,147–44,154.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Basha, B.J., Bakris, G.L., Sowers, J.R. (2005). Pathogenesis of Atherosclerotic Vascular Disease. In: Caralis, D.G., Bakris, G.L. (eds) Lower Extremity Arterial Disease. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1385/1-59259-881-1:099

Download citation

  • DOI: https://doi.org/10.1385/1-59259-881-1:099

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-554-5

  • Online ISBN: 978-1-59259-881-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics