Skip to main content

Recent Advances in Camptothecin Drug Design and Delivery Strategies

  • Chapter
  • 799 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Camptothecin (CPT) (Fig. 1) and its related analogs are an expanding class of anticancer agents that have the potential to effect a broad and significant clinical impact (115). Clinical interest in the CPTs is in large part based on their unique mode of action: these agents turn topoisomerase I (TOP-I), an enzyme that alleviates the torsional stress of supercoiled DNA, into an intracellular poison. The CPTs stabilize the covalent binding of TOP-I to its DNA substrate and the formation of these complexes leads to reversible, single-strand nicks. Initially, the nicks do not negatively affect the cellular viability; however, according to the fork collision model, the nicks are ultimately converted to irreversible and lethal double-strand breaks during DNA synthesis. As a result of this mechanism of action, the CPTs are regarded as being S-phase specific agents and are therefore toxic to cells that are actively replicating DNA (11,16,17). Because of their proliferating nature, cancerous cells spend more time in the S-phase relative to normal cells. Also, it has been shown that TOP-I is overexpressed in a variety of tumor lines (8,15). Logically, the accelerated rate of cell replication and the overexpression of TOP-I provide a limited basis for selectivity through which the CPTs can generate greater cytotoxicity against cancerous cells than against normal cells.

Camptothecin hydrolysis at physiological pH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takimoto CH, Wright J, Arbuck SG. 1998 Clinical applications of the camptothecins. Biochim Biophys Acta 1400:107–119.

    Google Scholar 

  2. Takimoto CH, Arbuck SG. The camptothecins. In: Cancer chemotherapy and biotherapy. Chabner BA, Longo DA, eds. Lippincott-Raven Publishers, Pennsylvania, 1996, 463–484.

    Google Scholar 

  3. Garcia-Carbonero R, Supko JG. 2002 Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661.

    Google Scholar 

  4. Wall ME, Wani MC, Cook CE, Palmer KH. 1966 Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca Acuminata. J Am Chem Soc 88: 3888–3889.

    Google Scholar 

  5. Wani MC, Nicholas AW, Manikumar G, Wall ME. 1987 Plant antitumor agents. 25. Total synthesis and antileukemic activity of ring A substituted camptothecin analogs. Structure-activity correlations. J Med Chem 30: 1774–1779.

    Google Scholar 

  6. Wani MC, Nicholas AW, Wall ME. 1987 Plant antitumor agents. 28. Resolution of a key tricyclic synthon, 5′(RS)-1,5-dioxo-5′-ethyl-5′-hydroxy-2′H,5′H,6′H-6′-oxopyrano[3′,4′-f]delta 6,8-tetrahydro-indolizine: total synthesis and antitumor activity of 20(S)-and 20(R)-camptothecin. J Med Chem 30:2317–2319.

    Google Scholar 

  7. Kaneda N, Nagata H, Furuta T, Yokokura T. 1990 Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res 50:1715–1720.

    Google Scholar 

  8. Giovanella BC, Stehlin JS, Wall ME, et al. 1989 DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science 246:1046–1048.

    Google Scholar 

  9. Kingsbury WD, Boehm JC, Jakas DR, et al. 1991 Synthesis of water-soluble (aminoalkyl)camptothecin analogs: inhibition of topoisomerase I and antitumor activity. J Med Chem 34:98–107.

    Google Scholar 

  10. Rowinsky EK, Grochow LB, Hendricks CB, et al. 1992 Phase I and pharmacologic study of topotecan: a novel topoisomerase I inhibitor. J Clin Oncol 10:647–656.

    Google Scholar 

  11. Houghton PJ, Cheshire PJ, Myers L, Stewart CF, Synold TW, Houghton JA. 1992 Evaluation of 9-dimethylaminomethyl-10-hydroxycamptothecin against xenografts derived from adult and childhood solid tumors. Cancer Chemother Pharmacol 31:229–239.

    Google Scholar 

  12. Blaney SM, Balis FM, Cole DE, et al. 1993 Pediatric phase I trial and pharmacokinetic study of topotecan administered as a 24-hour continuous infusion. Cancer Res 53:1032–1036.

    Google Scholar 

  13. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. 1993 Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53:4164–4168.

    Google Scholar 

  14. Hsiang YH, Hertzberg R, Hecht S, Liu LF. 1985 Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878.

    Google Scholar 

  15. Potmesil M, Hsiang YH, Liu LF, et al. 1988 Resistance of human leukemic and normal lymphocytes to drug-induced DNA cleavage and low levels of DNA topoisomerase II. Cancer Res 48:3537–3543.

    Google Scholar 

  16. Kessel D, Bosmann HB, Lohr K. 1972 Camptothecin effects on DNA synthesis in murine leukemia cells. Biochim Biophys Acta 269:210–216.

    Google Scholar 

  17. Li LH, Fraser TJ, Olin EJ, Bhuyan BK. 1972 Action of camptothecin on mammalian cells in culture. Cancer Res 32:2643–2650.

    Google Scholar 

  18. Jaxel C, Kohn KW, Wani MC, Wall ME, Pommier Y. 1989 Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity. Cancer Res 49:1465–1469.

    Google Scholar 

  19. Hertzberg RP, Caranfa MJ, Holden KG, et al 1989. Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J Med Chem 32:715–720.

    Google Scholar 

  20. Hsiang YH, Liu LF. 1988 Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48:1722–1726.

    Google Scholar 

  21. Mi Z, Burke TG. 1994 Differential interactions of camptothecin lactone and carboxylate forms with human blood components. Biochemistry 33:10325–10336.

    Google Scholar 

  22. Hochberg F, Grossman SA, Mikkelson T, Calabresi P, Fisher J, Piantadosi S. For the NABTT CNS Consortium, Baltimore, MD. 1998 Efficacy of 9-aminocamptothecin (9-AC) in adults with newly diagnosed glioblastoma multiforme (GBM) and recurrent high grade astrocytomas (HGA). Proc Am Soc Clin Oncol 17:388.

    Google Scholar 

  23. Takimoto CH, Dahut W, Harold N, et al. 1996 Clinical pharmacology of 9-aminocamptothecin. Ann NY Acad Sci 803:324–326.

    Google Scholar 

  24. Mi Z, Malak H, Burke TG. 1995 Reduced albumin binding promotes the stability and activity of topotecan in human blood. Biochemistry 34:13722–13728.

    Google Scholar 

  25. Zimmer SG, Burke TG. 2000 Human serum albumin markedly diminishes the blood stabilities and anticancer activities of several clinically relevant camptothecins. Proc Am Soc Clin Oncol 19:200A.

    Google Scholar 

  26. Burke TG, Mi Z. 1993 Preferential binding of the carboxylate form of camptothecin by human serum albumin. Anal Biochem 212:285–287.

    Google Scholar 

  27. Burke TG, Mi Z. 1994 The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37:40–46.

    Google Scholar 

  28. Bom D, Curran DP, Kruszewski S, et al. 2000 The novel silatecan 7-tert-butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity. J Med Chem 43:3970–3980.

    Google Scholar 

  29. Josien H, Ko S-B, Bom D, Curran DP.. 1998 A general synthetic approach to the (20S)-camptothecin family of antitumor agents by a regiocontrolled cascade radical cyclization of aryl isonitriles. Chem Eur J 4: 67–83.

    Google Scholar 

  30. Josien H, Bom D, Curran DP, Zheng YH, Chou TC. 1997 7-Silylcamptothecins (silatecans): a new family of camptothecin antitumor agents. Bioorg Med Chem Lett 7:3189–3194.

    Google Scholar 

  31. Burke TG, Munshi CB, Mi Z, Jiang Y. 1995 The important role of albumin in determining the relative human blood stabilities of the camptothecin anticancer drugs [letter] [published erratum appears in J Pharm Sci 1995 Dec; 84(12):1492]. J Pharm Sci 84:518–519.

    Google Scholar 

  32. Mi Z, Burke TG. 1994 Marked interspecies variations concerning the interactions of camptothecin with serum albumins: a frequency-domain fluorescence spectroscopic study. Biochemistry 33:12540–12545.

    Google Scholar 

  33. Burke TG, Staubus AE, Mishra AK. 1992 Liposomal stabilization of camptothecin’s lactone ring. J Am Chem Soc 114:8318–8319.

    Google Scholar 

  34. Burke TG, Mishra AK, Wani MC, Wall ME. 1993 Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry 32:5352–5364.

    Google Scholar 

  35. Burke TG, Mi Z. 1993 Ethyl substitution at the 7 position extends the half-life of 10-hydroxycamptothecin in the presence of human serum albumin. J Med Chem 36:2580–2582.

    Google Scholar 

  36. Pollack IF, Erff M, Bom D, Burke TG, Strode JT, Curran DP. 1999 Potent topoisomerase I inhibition by novel silatecans eliminates glioma proliferation in vitro and in vivo. Cancer Res 59:4898–4905.

    Google Scholar 

  37. Lavergne O, Lesueur-Ginot L, Pla Rodas F, Bigg DCH. 1997 BN80245: an E-ring modified camptothecin with potent antiproliferative and topoisomerase I inhibitory activities. Bioorg Med Chem Lett 7:2235–2238.

    Google Scholar 

  38. Lavergne O, Lesueur-Ginot L, Pla Rodas F, et al.. 1998 Homocamptothecins: synthesis and antitumor activity of novel E-ring-modified camptothecin analogs. J Med Chem 41:5410–5419.

    Google Scholar 

  39. Chauvier D, Morjani H, Manfait M. 2002 Ceramide involvement in homocamptothecin-and camptothecin-induced cytotoxicity and apoptosis in colon HT29 cells. Int J Oncol 20:855–863.

    Google Scholar 

  40. Bailly C, Laine W, Baldeyrou B, et al. 2001 A novel B-ring modified homocamptothecin, 12-Cl-hCPT, showing antiproliferative and topoisomerase I inhibitory activities superior to SN-38. Anticancer Drug Des 16:27–36.

    Google Scholar 

  41. Lansiaux A, Facompre M, Wattez N, et al. 2001 Apoptosis induced by the homocamptothecin anticancer drug BN80915 in HL-60 cells. Mol Pharmacol 60:450–461.

    Google Scholar 

  42. Demarquay D. 2001 The homocamptothecin BN 80915 is an higly potent orally active topoisomerase I poison. Anticancer Drugs 12:9–19.

    Google Scholar 

  43. Chauvier D, Chourpa I, Bigg DC, Manfait M. 2000 Kinetics of in vitro hydrolysis of homocamptothecins as measured by fluorescence. Ann N Y Acad Sci 922: 314–316.

    Google Scholar 

  44. Demarquay D, Coulomb H, Huchet M, et al. 2000 The homocamptothecin, BN 80927, is a potent topoisomerasse I poison and topoisomerase II catalytic inhibitor. Ann N Y Acad Sci 922:301–302.

    Google Scholar 

  45. Lavergne O. 2000 Homocamptothecins: E-ring modified CPT analogs. Ann N Y Acad Sci 922:100–111.

    Google Scholar 

  46. Urasaki Y. 2000 Activity of a novel camptothecin analogue, homocamptothecin, in camptothecin-resistant cell lines with topoisomerase I alterations. Cancer Res 60:6577–6580.

    Google Scholar 

  47. Lavergne O, Demarquay D, Bailly C, et al. 2000 Topoisomerase I-mediated antiproliferative activity of enantiomerically pure fluorinated homocamptothecins. J Med Chem 43:2285–2289.

    Google Scholar 

  48. Philippart P. 2000 Homocamptothecin, an E-ring-modified camptothecin, exerts more potent antiproliferative activity than other topoisomerase I inhibitors in human colon cancers obtained from surgery and maintained in vitro under histotypical culture conditions. Clin Cancer Res 6:1557–1562.

    Google Scholar 

  49. Bailly C, Lansiaux A, Dassonneville L, et al. 1999 Homocamptothecin, an E-ringmodified camptothecin analogue, generates new topoisomerase I-mediated DNA breaks. Biochemistry 38:15556–15563.

    Google Scholar 

  50. Lavergne O, Harnett J, Rolland A, et al. 1999 BN 80927: a novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II. Bioorg Med Chem Lett 9:2599–2602.

    Google Scholar 

  51. Lesueur-Ginot L, Demarquay D, Kiss R, et al. 1999 Homocamptothecin, an E-ring modified camptothecin with enhanced lactone stability, retains topoisomerase Itargeted activity and antitumor properties. Cancer Res 59: 2939–2943.

    Google Scholar 

  52. Hsiang YH, Liu LF, Wall ME, et al.. 1989 DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogs [published erratum appears in Cancer Res 1989 Dec 1;49(23):6868]. Cancer Res 49: 4385–4389.

    Google Scholar 

  53. Bom D, Curran DP, Chavan AJ, et al. 1999 Novel A,B,E-ring-modified camptothecins displaying high lipophilicity and markedly improved human blood stabilities. J Med Chem 42:3018–3022.

    Google Scholar 

  54. Du W, Curran DP, Bevins RL, Zimmer SG, Zhang J, Burke TG. 2002 Synthesis and evaluation of a novel E-ring modified alpha-hydroxy keto ether analogue of camptothecin. Bioorg Med Chem 10:103–110.

    Google Scholar 

  55. Ratain MJ. 2002 Irinotecan dosing: does the CPT in CPT-11 stand for “can’t predict toxicity”? J Clin Oncol 20:7–8.

    Google Scholar 

  56. Iver L, King CD, Whitington PF. 1998 Genetic predisposition to the metabolism of irinotecan (CPT-11): Role of uridine diphosphated glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854.

    Google Scholar 

  57. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. 1994 Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 54:3723–3725.

    Google Scholar 

  58. Kehrer DF, Sparreboom A, Verweij J, et al. 2001 Modulation of irinotecaninduced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res 7:1136–1141.

    Google Scholar 

  59. Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME. 2000 Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 60:1189–1192.

    Google Scholar 

  60. Bleiberg H, Cvitkovic E. 1996 Characterisation and clinical management of CPT-11 (irinotecan)-induced adverse events: the European perspective. Eur J Cancer 32A(Suppl. 13):S18–S23.

    Google Scholar 

  61. Arun B, Frenkel EP. 2001 Topoisomerase I inhibition with topotecan: pharmacologic and clinical issues. Expert Opin Pharmacother 2:491–505.

    Google Scholar 

  62. Barenholz Y. 2001 Liposome application: problems and prospects. Curr Opin Coll Inter Sci 6:66–77.

    Google Scholar 

  63. Liu X, Lynn BC, Zhang J, et al. 2002 A versatile prodrug approach for liposomal core-loading of water-insoluble camptothecin anticancer drugs. J Am Chem Soc 124:7650–7651.

    Google Scholar 

  64. Tardi P, Choice E, Masin D, Redelmeier T, Bally M, Madden TD. 2000 Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res 60:3389–3393.

    Google Scholar 

  65. Sadzuka Y, Hirotsu S, Hirota S. 1999 Effective irinotecan (CPT-11)-containing liposomes: intraliposomal conversion to the active metabolite SN-38. Jpn J Cancer Res 90:226–232.

    Google Scholar 

  66. Cao Z, Harris N, Kozielski A, Vardeman D, Stehlin JS, Giovanella B. 1998 Alkyl esters of camptothecin and 9-nitrocamptothecin: synthesis, in vitro pharmacokinetics, toxicity, and antitumor activity. J Med Chem 41: 31–37.

    Google Scholar 

  67. Cao Z, Pantazis P, Mendoza J, et al. 2000 Structure-activity relationship of alkyl camptothecin esters. Ann N Y Acad Sci 922:122–135.

    Google Scholar 

  68. Ertl B, Platzer P, Wirth M, Gabor F. 1999 Poly(D,L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin. J Control Rel 61:305–317.

    Google Scholar 

  69. Shenderova A, Burke TG, Schwendeman SP. 1999 The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm Re 16:241–248.

    Google Scholar 

  70. Shenderova A, Burke TG, Schwendeman SP. 1997 Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm Res 14:1406–1414.

    Google Scholar 

  71. Underberg WJ, Goossen RM, Smith BR, Beijnen JH. 1990 Equilibrium kinetics of the new experimental anti-tumour compound SK&F 104864-A in aqueous solution. J Pharm Biomed Anal 8:681–683.

    Google Scholar 

  72. Kosak KM. 2001 Cyclodextrin polymer compositions as drug carriers. US patent 6,048,736.

    Google Scholar 

  73. Rubinfeld J, Wrenn SM. 2001 Preparation of camptothecin complexes with cyclodextrins for pharmaceuticals. PCT Int. Appl. WO 20010744401.

    Google Scholar 

  74. Kang J, Kumar V, Yang D, Chowdhury PR, Hohl RJ 2002. Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Euro J Pharm Sci 15: 169–170.

    Google Scholar 

  75. Xiang TX, Anderson BD. 2002 Stable supersaturated aqueous solutions of silatecan 7-t-butyldimethylsilyl-10-hydroxycamptothecin via chemical conversion in the presence of a chemical modified b-cyclodextrin. Pharm Res 19:1215–1222.

    Google Scholar 

  76. Darrington RT, Xiang TX, Anderson BD. 1990 Inclusion complexes of purine nucleoside with cyclodextrins. I. Complexation and stabilization of a dideoxypurine nucleoside with 2-hydroxypropyl-beta-cyclodextrin. Int J Pharm 59:35–44.

    Google Scholar 

  77. Tinwalla AY, Hoesterey BL, Xiang TX, Lim K, Anderson BD. 1993 Solubilization of thiazolobenzimidazole using a combination of pH adjustment and complexation with 2-hydroxypropyl-beta-cyclodextrin. Pharm Res 10: 1136–1143.

    Google Scholar 

  78. Thompson DO. 1997 Cyclodextrins-enabling expcipients: their present and future status. Crit Rev Ther Drug Carrier Sys 14:1–104.

    Google Scholar 

  79. Szente L, Szetjili J. 1999 Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev 36:17–28.

    Google Scholar 

  80. Li P, Zhao L, Yalkowsky SH. 1999 Combined effect of cosolvent and cyclodextrin on solubilization of nonpolar drugs. J Pharm Sci 88:1107–1111.

    Google Scholar 

  81. Zhao L, Li P, Yalkowsky SH. 1999 Solubilization of fluasterone. J Pharm Sci 88:967–969.

    Google Scholar 

  82. Loftsson T, Gudmundsdottir H, Sigurjonsdottir JF, et al. 2001 Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int J Pharm 212:29–40.

    Google Scholar 

  83. Papahadjopoulos D, Allen TM, Gabizon A, et al. 1991 Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464.

    Google Scholar 

  84. Gabizon A, Papahadjopoulos D. 1988 Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953.

    Google Scholar 

  85. Woodle MC, Newman MS, Working PK. 1995 Biological properties of sterically stabilized liposomes. CRC Press, Florida.

    Google Scholar 

  86. Forssen EA, MaleBrune R, AdlerMoore JP, et al. 1996 Fluorescence imaging studies for the disposition of daunorubicin liposomes (daunoxome) within tumor tissue. Cancer Res 56:2066–2075.

    Google Scholar 

  87. Colbern GT, Dykes DJ, Engbers C, et al. 1998 Encapsulation of the topoisomerase I inhibitor GL147211C in pegylated (STEALTH) liposomes: pharmacokinetics and antitumor activity in HT29 colon tumor xenografts. Clin Cancer Res 4:3077–3082.

    Google Scholar 

  88. Madden TD, Demir AS, Zimmer S, Redelmeier TE, Bally MB, Burke T. 1998 Encapsulation of camptothecin class topoisomerase I inhibitors in lipid-based delivery systems. Physical formulation, evaluation of drug stability and plasma elimination in a murine model, and comparison of antitumor efficacy against murine L1210 and B16 tumors. Pharmaceut Res 15:S–140.

    Google Scholar 

  89. Dancey J, Eisenhauer EA. 1996 Current perspectives on camptothecins in cancer treatment [editorial]. Br J Cancer 74:327–338.

    Google Scholar 

  90. Gerrits CJ, Creemers GJ, Schellens JH, et al. 1996 Phase I and pharmacological study of the new topoisomerase I inhibitor GI147211, using a daily x 5 intravenous administration. Br J Cancer 73:744–750.

    Google Scholar 

  91. Eckhardt SG, Baker SD, Eckardt JR, et al. 1998 Phase I and pharmacokinetic study of GI147211, a water-soluble camptothecin analogue, administered for five consecutive days every three weeks. Clin Cancer Res 4: 595–604.

    Google Scholar 

  92. Eckhardt SG, Baker SD, Eckhardt JR, et al. 1995 Phase I and pharmacokinetic study of the topoisomerase I inhibitor GG211. Proc. Am Soc Clin Oncol 14:476.

    Google Scholar 

  93. O’Dwyer P, Cassidy J, Kunka R, et al. 1995 Phase I trial of GG211, a new topoisomerase inhibitor, using a 72 hour continuos infusion. Proc Am Soc Clin Oncol 14:471.

    Google Scholar 

  94. Knight V, Koshkina NV, Waldrep JC, Giovanella BC, Gilbert BE. 1999 Anticancer effect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemother Pharmacol 44: 177–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Burke, T.G., Xiang, TX., Anderson, B.D., Latus, L.J. (2005). Recent Advances in Camptothecin Drug Design and Delivery Strategies. In: Adams, V.R., Burke, T.G. (eds) Camptothecins in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-866-8:171

Download citation

  • DOI: https://doi.org/10.1385/1-59259-866-8:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-027-4

  • Online ISBN: 978-1-59259-866-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics