Skip to main content

Mechanism of Action of Topoisomerase 1 Poisons

  • Chapter
Camptothecins in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 813 Accesses

Abstract

DNA topoisomerases are important nuclear enzymes involved in many aspects of DNA metabolism, such as DNA replication, RNA transcription, chromosome condensation, and segregation (15). They perform their topological transformation reactions on DNA via a concerted breakage/religation mechanism (4,68). Because of their delicate act on DNA, topoisomerases can be double-edged swords. It is now well established that many xenobiotics, DNA lesions, and physiological stresses (e.g., oxidative stress, acidic pH stress, thiol stress) can interfere with the breakage/religation reactions of topoisomerases, resulting in topoisomerase-mediated DNA damage (914). Among the five human DNA topoisomerases (hTOP1, hTOP2α, hTOP2β, hTOP3α, and hTOP3β), the first three have been identified to be molecular targets of anticancer drugs (1,9,11,1522).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu LF. 1989 DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58:351–375.

    Google Scholar 

  2. Castano IB, Brzoska PM, Sadoff BU, Chen H, Christman MF. 1996 Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev 10:2564–2576.

    Google Scholar 

  3. Champoux JJ, Dulbecco R. 1972 An activity from mammalian cells that untwists superhelical DNA—a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc Natl Acad Sci USA 69:143–146.

    Google Scholar 

  4. Wang JC. 1996 DNA topoisomerases. Annu Rev Biochem 65:635–692.

    Google Scholar 

  5. Zhang CX, Chen AD, Gettel NJ, Hsieh TS. 2000 Essential functions of DNA topoisomerase I in Drosophila melanogaster. Dev Biol 222:27–40.

    Google Scholar 

  6. Halligan BD, Davis JL, Edwards KA, Liu LF. 1982 Intra-and intermolecular strand transfer by HeLa DNA topoisomerase I. J Biol Chem 257:3995–4000.

    Google Scholar 

  7. Porter SE, Champoux JJ. 1989 The basis for camptothecin enhancement of DNA breakage by eukaryotic topoisomerase I. Nucleic Acids Res 17:8521–8532.

    Google Scholar 

  8. Hsiang YH, Hertzberg R, Hecht S, Liu LF. 1985 Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878.

    Google Scholar 

  9. Li TK, Liu LF. 2001 Tumor cell death induced by topoisomerase-targeting drugs. Ann Rev Pharmacol Toxicol 41:53–77.

    Google Scholar 

  10. Li TK, Chen AY, Yu C, Mao Y, Wang H, Liu LF. 1999 Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev 13:1553–1560.

    Google Scholar 

  11. Chen AY, Liu LF. 1994 DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218

    Google Scholar 

  12. Kingma PS, Corbett AH, Burcham PC, Marnett LJ, Osheroff N. 1995 Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II. DNA lesions as endogenous topoisomerase II poisons. J Biol Chem 270:21441–21444.

    Google Scholar 

  13. Frydman B, Marton LJ, Sun JS, Neder K, Witiak DT, Liu AA, et al. 1997 Induction of DNA topoisomerase II-mediated DNA cleavage by beta-lapachone and related naphthoquinones. Cancer Res 57:620–627.

    Google Scholar 

  14. Vizan JL, Hernandez-Chico C, del CI, Moreno F. 1991 The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J 10:467–476.

    Google Scholar 

  15. Hsiang YH, Liu LF. 1988 Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48:1722–1726.

    Google Scholar 

  16. Mao Y, Yu C, Hsieh TS, Nitiss JL, Liu AA, Wang H, et al. 1999 Mutations of human topoisomerase II alpha affecting multidrug resistance and sensitivity. Biochemistry 38:10793–10800.

    Google Scholar 

  17. Kupfer G, Bodley AL, Liu LF. 1987 Involvement of intracellular ATP in cytotoxicity of topoisomerase II-targetting antitumor drugs. NCI Monogr 4:37–40.

    Google Scholar 

  18. Nitiss JL, Wang JC. 1996 Mechanisms of cell killing by drugs that trap covalent complexes between DNA topoisomerases and DNA. Mol Pharmacol 50:1095–1102.

    Google Scholar 

  19. Goulaouic H, Roulon T, Flamand O, Grondard L, Lavelle F, Riou JF. 1999 Purification and characterization of human DNA topoisomerase IIIalpha. Nucleic Acids Res 27:2443–2450.

    Google Scholar 

  20. Seki T, Seki M, Onodera R, Katada T, Enomoto T. 1998 Cloning of cDNA encoding a novel mouse DNA topoisomerase III (Topo IIIbeta) possessing negatively supercoiled DNA relaxing activity, whose message is highly expressed in the testis. J Biol Chem 27:28553–28556.

    Google Scholar 

  21. Bennett RJ, Noirot-Gros MF, Wang JC. 2000 Interaction between yeast sgs1 helicase and DNA topoisomerase III. J Biol Chem 275:26898–26905.

    Google Scholar 

  22. Hanai R, Caron PR, Wang JC. 1996 Human TOP3: a single-copy gene encoding DNA topoisomerase III. Proc Natl Acad Sci USA 93:3653–3657.

    Google Scholar 

  23. Wall ME, Wani MC, Cook CE, Palmer KH, Mc Phail AT, Sim GM. 1966 Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890.

    Google Scholar 

  24. Wani MC, Wall ME. 1969 Plant antitumor agents. II. The structure of two new alkaloids from Camptotheca acuminata. J Org Chem 34:1364–1367.

    Google Scholar 

  25. Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, et al. 1989 DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science 246:1046–1048.

    Google Scholar 

  26. Pantazis P, Early JA, Kozielski AJ, Mendoza JT, Hinz HR, Giovanella BC. 1993 Regression of human breast carcinoma tumors in immunodeficient mice treated with 9-nitrocamptothecin: differential response of nontumorigenic and tumorigenic human breast cells in vitro. Cancer Res 53:1577–1582.

    Google Scholar 

  27. Pantazis P, Kozielski AJ, Mendoza JT, Early JA, Hinz HR, Giovanella BC. 1993 Camptothecin derivatives induce regression of human ovarian carcinomas grown in nude mice and distinguish between non-tumorigenic and tumorigenic cells in vitro. Int J Cancer 53:863–871.

    Google Scholar 

  28. Ogawa M. Novel anticancer drugs in Japan. 1999 J Cancer Res Clin Oncol 125:134–140.

    Google Scholar 

  29. Rosen LS. 1998 Irinotecan in lymphoma, leukemia, and breast, pancreatic, ovarian, and small-cell lung cancers. Oncology (Huntingt) 12:103–109.

    Google Scholar 

  30. Chang AY. 1997 The potential role of topotecan in the treatment of advanced breast cancer. Semin Oncol 24:S20.

    Google Scholar 

  31. Davis PL, Shaiu WL, Scott GL, Iglehart JD, Hsieh TS, Marks JR. 1998 Complex response of breast epithelial cell lines to topoisomerase inhibitors. Anticancer Res 18:2919–2932

    Google Scholar 

  32. Bom D, Curran DP, Kruszewski S, Zimmer SG, Thompson SJ, Kohlhagen G, et al. 2000 The novel silatecan 7-tert-butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity. J Med Chem 43:3970–3980.

    Google Scholar 

  33. Urasaki Y, Takebayashi Y, Pommier Y. 2000 Activity of a novel camptothecin analogue, homocamptothecin, in camptothecin-resistant cell lines with topoisomerase I alterations. Cancer Res 60:6577–6580.

    Google Scholar 

  34. Lavergne O, Harnett J, Rolland A, Lanco C, Lesueur-Ginot L, Demarquay D, et al. 1999 BN 80927: a novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II. Bioorg Med Chem Lett 9: 2599–2602.

    Google Scholar 

  35. Lesueur-Ginot L, Demarquay D, Kiss R, Kasprzyk PG, Dassonneville L, Bailly C, et al. 1999 Homocamptothecin, an E-ring modified camptothecin with enhanced lactone stability, retains topoisomerase I-targeted activity and antitumor properties. Cancer Res 59:2939–2943.

    Google Scholar 

  36. Philippart P, Harper L, Chaboteaux C, Decaestecker C, Bronckart Y, Gordover L, et al. 2000 Homocamptothecin, an E-ring-modified camptothecin, exerts more potent antiproliferative activity than other topoisomerase I inhibitors in human colon cancers obtained from surgery and maintained in vitro under histotypical culture conditions. Clin Cancer Res 6:1557–1562.

    Google Scholar 

  37. Lavergne O, Lesueur-Ginot L, Pla RF, Kasprzyk PG, Pommier J, Demarquay D, et al. 1998 Homocamptothecins: synthesis and antitumor activity of novel E-ring-modified camptothecin analogues. J Med Chem 41:5410–5419.

    Google Scholar 

  38. Demarquay D, Coulomb H, Huchet M, Lesueur-Ginot L, Camara J, Lavergne O, et al. 2000 The homocamptothecin, BN 80927, is a potent topoisomerase I poison and topoisomerase II catalytic inhibitor. Ann N Y Acad Sci 922:301–302.

    Google Scholar 

  39. Lavergne O, Demarquay D, Bailly C, Lanco C, Rolland A, Huchet M, et al. 2000 Topoisomerase I-mediated antiproliferative activity of enantiomerically pure fluorinated homocamptothecins. J Med Chem 43:2285–2289.

    Google Scholar 

  40. Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJ. 1998 A model for the mechanism of human topoisomerase I. Science 279:1534–1541.

    Google Scholar 

  41. Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. 1998 Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279:1504–1513.

    Google Scholar 

  42. Stevnsner T, Mortensen UH, Westergaard O, Bonven BJ. 1989 Interactions between eukaryotic DNA topoisomerase I and a specific binding sequence. J Biol Chem 264:10110–10113.

    Google Scholar 

  43. Krogh S, Mortensen UH, Westergaard O, Bonven BJ. 1991 Eukaryotic topoisomerase I-DNA interaction is stabilized by helix curvature. Nucleic Acids Res 19:1235–1241.

    Google Scholar 

  44. Koo HS, Wu HM, Crothers DM. 1986 DNA bending at adenine thymine tracts. Nature 320:501–506.

    Google Scholar 

  45. Chan SS, Breslauer KJ, Austin RH, Hogan ME. 1993 Thermodynamics and premelting conformational changes of phased (dA)5 tracts. Biochemistry 32:11776–11784.

    Google Scholar 

  46. Christiansen K, Svejstrup AB, Andersen AH, Westergaard O. 1993 Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. Cleavage of DNA substrates containing strand interruptions implicates a role for topoisomerase I in illegitimate recombination. J Biol Chem 268:9690–9701.

    Google Scholar 

  47. Pommier Y, Kohlhagen G, Kohn KW, Leteurtre F, Wani MC, Wall ME. 1995 Interaction of an alkylating camptothecin derivative with a DNA base at topoisomerase I-DNA cleavage sites. Proc Natl Acad Sci USA 92:8861–8865.

    Google Scholar 

  48. Fan Y, Weinstein JN, Kohn KW, Shi LM, Pommier Y. 1998 Molecular modeling studies of the DNA-topoisomerase I ternary cleavable complex with camptothecin. J Med Chem 41:2216–2226.

    Google Scholar 

  49. Kerrigan JE, Pilch DS. 2001 A structural model for the ternary cleavable complex formed between human topoisomerase I, DNA and camptothecin. Biochemistry 40:9792–9798.

    Google Scholar 

  50. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L. 2002 The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Nat Acad Sci USA 99:15387–15392.

    Google Scholar 

  51. Sim SP, Gatto B, Yu C, Liu AA, Li TK, Pilch DS, et al. 1997 Differential poisoning of topoisomerases by menogaril and nogalamycin dictated by the minor groove-binding nogalose sugar. Biochemistry 36:13285–13291.

    Google Scholar 

  52. Leteurtre F, Fujimori A, Tanizawa A, Chhabra A, Mazumder A, Kohlhagen G, et al. 1994 Saintopin, a dual inhibitor of DNA topoisomerases I and II, as a probe for drug-enzyme interactions. J Biol Chem 269:28702–28707.

    Google Scholar 

  53. Chen AY, Yu C, Bodley A, Peng LF, Liu LF. 1993 A new mammalian DNA topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures. Cancer Res 53:1332–1337.

    Google Scholar 

  54. Chen AY, Yu C, Gatto B, Liu LF. 1993 DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc Natl Acad Sci USA 90:8131–8135.

    Google Scholar 

  55. Sun Q, Gatto B, Yu C, Liu A, Liu LF, LaVoie EJ. 1995 Synthesis and evaluation of terbenzimidazoles as topoisomerase I inhibitors. J Med Chem 38:3638–3644.

    Google Scholar 

  56. Kim JS, Gatto B, Yu C, Liu A, Liu F, LaVoie EJ. 1996 Substituted 2,5′-Bi-1H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. J Med Chem 39:992–998.

    Google Scholar 

  57. Kim JS, Sun Q, Gatto B, Yu C, Liu A, Liu LF, et al. 1996 Structure-activity relationships of benzimidazoles and related heterocycles as topoisomerase I poisons. Bioorg Med Chem 4:621–630.

    Google Scholar 

  58. Gatto B, Sanders MM, Yu C, Wu HY, Makhey D, LaVoie EJ, et al. 1996 Identification of topoisomerase I as the cytotoxic target of the protoberberine alkaloid coralyne. Cancer Res 56:2795–2800.

    Google Scholar 

  59. Xu Z, Li TK, Kim JS, LaVoie EJ, Breslauer KJ, Liu LF, et al. 1998 DNA minor groove binding-directed poisoning of human DNA topoisomerase I by terbenzimidazoles. Biochemistry 37:3558–3566.

    Google Scholar 

  60. Makhey D, Gatto B, Yu C, Liu A, Liu LF, LaVoie EJ. 1996 Coralyne and related compounds as mammalian topoisomerase I and topoisomerase II poisons. Bioorg Med Chem 4:781–791.

    Google Scholar 

  61. Li TK, Bathory E, LaVoie EJ, Srinivasan AR, Olson WK, Sauers RR, et al. 2000 Human topoisomerase I poisoning by protoberberines: potential roles for both drug-DNA and drug-enzyme interactions. Biochemistry 39:7107–7116.

    Google Scholar 

  62. Pilch DS, Xu Z, Sun Q, LaVoie EJ, Liu LF, Breslauer KJ. 1997 A terbenzimidazole that preferentially binds and conformationally alters structurally distinct DNA duplex domains: a potential mechanism for topoisomerase I poisoning. Proc Natl Acad Sci USA 94:13565–13570.

    Google Scholar 

  63. Pilch DS, Yu C, Makhey D, LaVoie EJ, Srinivasan AR, Olson WK, et al. 1997 Minor groove-directed and intercalative ligand-DNA interactions in the poisoning of human DNA topoisomerase I by protoberberine analogs. Biochemistry 36:12542–12553.

    Google Scholar 

  64. Sim SP, Pilch DS, Liu LF. 2000 Site-specific topoisomerase I-mediated DNA cleavage induced by nogalamycin: a potential role of ligand-induced DNA bending at a distal site. Biochemistry 39:9928–9934.

    Google Scholar 

  65. Li LH, Krueger WC. 1991 The biochemical pharmacology of nogalamycin and its derivatives. Pharmacol Ther 51:239–255.

    Google Scholar 

  66. Liaw YC, Gao YG, Robinson H, van der Marel GA, van Boom JH, Wang AH. 1989 Antitumor drug nogalamycin binds DNA in both grooves simultaneously: molecular structure of nogalamycin-DNA complex. Biochemistry 28:9913–9918.

    Google Scholar 

  67. Gao YG, Liaw YC, Robinson H, Wang AH. 1990 Binding of the antitumor drug nogalamycin and its derivatives to DNA: structural comparison. Biochemistry 29:10307–10316.

    Google Scholar 

  68. Searle MS, Hall JG, Denny WA, Wakelin LP. 1988 NMR studies of the interaction of the antibiotic nogalamycin with the hexadeoxyri bonucleotide duplex d(5′-GCATGC)2. Biochemistry 27:4340–4349.

    Google Scholar 

  69. Zhang XL, Patel DJ. 1990 Solution structure of the nogalamycin-DNA complex. Biochemistry 29:9451–9466.

    Google Scholar 

  70. Pourquier P, Takebayashi Y, Urasaki Y, Gioffre C, Kohlhagen G, Pommier Y. 2000 Induction of topoisomerase I cleavage complexes by 1-beta-D-arabino-furanosylcytosine (ara-C) in vitro and in ara-C-treated cells. Proc Natl Acad Sci USA 97:1885–1890.

    Google Scholar 

  71. Pommier Y, Kohlhagen G, Pourquier P, Sayer JM, Kroth H, Jerina DM. 2000 Benzo[a]pyrene diol epoxide adducts in DNA are potent suppressors of a normal topoisomerase I cleavage site and powerful inducers of other topoisomerase I cleavages. Proc Natl Acad Sci USA 97:2040–2045.

    Google Scholar 

  72. Pourquier P, Ueng LM, Kohlhagen G, Mazumder A, Gupta M, Kohn KW, et al. 1997 Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and relegation activities of mammalian topoisomerase I. J Biol Chem 272:7792–7796.

    Google Scholar 

  73. Pourquier P, Pilon AA, Kohlhagen G, Mazumder A, Sharma A, Pommier Y. 1997 Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J Biol Chem 272:26441–26447.

    Google Scholar 

  74. Pourquier P, Bjornsti MA, Pommier Y. 1998 Induction of topoisomerase I cleavage complexes by the vinyl chloride adduct 1,N6-ethenoadenine. J Biol Chem 273:27245–27249.

    Google Scholar 

  75. Pourquier P, Ueng LM, Fertala J, Wang D, Park HJ, Essigmann JM, et al. 1999 Induction of reversible complexes between eukaryotic DNA topoisomerase I and DNA-containing oxidative base damages. 7,8-dihydro-8-oxoguanine and 5-hydroxycytosine. J Biol Chem 274:8516–8523.

    Google Scholar 

  76. Barsky D, Foloppe N, Ahmadia S, Wilson DM, MacKerell AD. 2000 New insights into the structure of abasic DNA from molecular dynamics simulations. Nucleic Acids Res 28:2613–2626.

    Google Scholar 

  77. Cline SD, Jones WR, Stone MP, Osheroff N. DNA abasic lesions in a different light: solution structure of an endogenous topoisomerase II poison. Biochemistry 1999;38:15500–15507.

    Google Scholar 

  78. Gmeiner WH, Skradis A, Pon RT, Liu J. 1999 Cytarabine-induced destabilization and bending of a model Okazaki fragment. Nucleosides Nucleotides. 18:1577–1578.

    Google Scholar 

  79. Hogan ME, Dattagupta N, Whitlock JP. 1981 Carcinogen-induced alteration of DNA structure. J Biol Chem 256:4504–4513.

    Google Scholar 

  80. Kahn JD, Yun E, Crothers DM. 1994 Detection of localized DNA flexibility. Nature 368:163–166.

    Google Scholar 

  81. Pietrasanta LI, Smith BL, MacLeod MC. 2000 A novel approach for analyzing the structure of DNA modified by Benzo[a]pyrene diol epoxide at single-molecule resolution. Chem Res Toxicol 13:351–355.

    Google Scholar 

  82. Roll C, Ketterle C, Faibis V, Fazakerley GV, Boulard Y. 1998 Conformations of nicked and gapped DNA structures by NMR and molecular dynamic simulations in water. Biochemistry 37:4059–4070.

    Google Scholar 

  83. Wang CI, Taylor JS. 1991 Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications. Proc Natl Acad Sci USA 88:9072–9076.

    Google Scholar 

  84. Yamaguchi H, van Aalten DM, Pinak M, Furukawa A, Osman R. 1998 Essential dynamics of DNA containing a cis.syn cyclobutane thymine dimer lesion. Nucleic Acids Res 26:1939–1946.

    Google Scholar 

  85. Ribas G, Xamena N, Creus A, Marcos R. 1996 Sister-chromatid exchanges (SCE) induction by inhibitors of DNA topoisomerases in cultured human lymphocytes. Mutat Res 368:205–211.

    Google Scholar 

  86. Frei H, Wurgler FE. 1996 Induction of somatic mutation and recombination by four inhibitors of eukaryotic topoisomerases assayed in the wing spot test of Drosophila melanogaster. Mutagenesis 11: 315–325.

    Google Scholar 

  87. Pommier Y, Jenkins J, Kohlhagen G, Leteurtre F. 1995 DNA recombinase activity of eukaryotic DNA topoisomerase I; effects of camptothecin and other inhibitors. Mutat Res 337:135–145.

    Google Scholar 

  88. Huang TT, Wuerzberger-Davis SM, Seufzer BJ, Shumway SD, Kurama T, Boothman DA, et al. 2000 NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem 275:9501–9509.

    Google Scholar 

  89. Nelson WG, Kastan MB. 1994 DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14:1815–1823.

    Google Scholar 

  90. Piret B, Piette J. 1996 Topoisomerase poisons activate the transcription factor NF-kappaB in ACH-2 and CEM cells. Nucleic Acids Res 24:4242–4248.

    Google Scholar 

  91. Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. 1999 Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18:1397–1406.

    Google Scholar 

  92. Wan S, Capasso H, Walworth NC. 1999 The topoisomerase I poison camptothecin generates a Chk1-dependent DNA damage checkpoint signal in fission yeast. Yeast 15:821–828.

    Google Scholar 

  93. Tolis C, Peters G, Ferreira CG, Pinedo HM, Giaccone G. 1999 Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer 35:796–780.

    Google Scholar 

  94. Gradzka I, Skierski J, Szumiel I. 1998 DNA repair, cell cycle progression and cell death following camptothecin treatment in two murine lymphoma L5178Y sublines. Cell Biochem Funct 16:239–252.

    Google Scholar 

  95. Kaufmann WK, Kies PE. 1998 DNA signals for G2 checkpoint response in diploid human fibroblasts. Mutat Res. 400:153–167.

    Google Scholar 

  96. Maity A, Hwang A, Janss A, Phillips P, McKenna W G, Muschel RJ. 1996 Delayed cyclin B1 expression during the G2 arrest following DNA damage. Oncogene 13:1647–1657.

    Google Scholar 

  97. Goldwasser F, Shimizu T, Jackman J, Hoki Y, O’Connor PM, Kohn KW, et al. 1996 Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res 56:4430–4437.

    Google Scholar 

  98. Tsao YP, D’Arpa P, Liu LF. 1992 The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 52:1823–1829.

    Google Scholar 

  99. D’Arpa P, Beardmore C, Liu LF. 1990 Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50:6919–6924.

    Google Scholar 

  100. Zhang H, D’Arpa P, Liu LF. 1990 A model for tumor cell killing by topoisomerase poisons. Cancer Cells 2:23–27.

    Google Scholar 

  101. Hsiang YH, Lihou MG, Liu LF. 1989 Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082.

    Google Scholar 

  102. Yang L, Wold MS, Li JJ, Kelly TJ, Liu LF. 1987 Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci USA 84:950–954.

    Google Scholar 

  103. Tsao YP, D’Arpa P, Liu LF. 1993 Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in cell free SV40 DNA replication system. Cancer Res 53:5908–5914.

    Google Scholar 

  104. Pourquier P, Jensen AD, Gong SS, Pommier Y, Rogler CE. 1999 Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro. Nucleic Acid Res 27:1919–1925.

    Google Scholar 

  105. D’Arpa P, Liu LF. 1989 Topoisomerase-targeting antitumor drugs. Biochim Biophys Acta 989:163–177.

    Google Scholar 

  106. Eng WK, Faucette L, Johnson RK, Sternglanz R. 1988 Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol Pharmacol 34:755–760.

    Google Scholar 

  107. Nitiss J, Wang JC. 1988 DNA topoisomerase-targeting antitumor drugs. Proc Natl Acad Sci USA 85:7501–7505.

    Google Scholar 

  108. Nitiss JL, Rose A, Sykes KC, Harris J, Zhou J. 1996 Using yeast to understand drugs that target topoisomerase. Ann N Y Acad Sci 803:32–43.

    Google Scholar 

  109. Nitiss J, Wang JC. 1991 Yeast as a Genetic System in the Dissection of the Mechanism of Cell-Killing by Topoisomerase-Targeting Anticancer Drugs. In: DNA Topoisomerase in Cancer. Potmesil M, Kohn KW, eds. Oxford University Press, New York, 77–90.

    Google Scholar 

  110. Wu J, Liu LF. 1997 Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 25:4181–4186.

    Google Scholar 

  111. Mao Y, Desai SD, Liu LF. 2000 SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem 275:26066–26073.

    Google Scholar 

  112. Mao Y, Sun M, Desai SD, Liu LF. 2000 SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci USA 97:4046–4051.

    Google Scholar 

  113. Duann P, Sun M, Lin CT, Zhang H, Liu LF. 1999 Plasmid linking umber change induced by topoisomerase I-mediated DNA damage. Nucleic Acids Res 27:2905–2911.

    Google Scholar 

  114. Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P. 1997 Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem 272: 24159–24164.

    Google Scholar 

  115. Mao Y, Desai SD, Ting CY, Hwang J, Liu LF. 2001 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem 276:40652–40658.

    Google Scholar 

  116. Hochstrasser M. 2000 Biochemistry. All in the ubiquitin family. Science 289:563–564.

    Google Scholar 

  117. Hochstrasser M. 1996 Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439.

    Google Scholar 

  118. Hochstrasser M. 1992 Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol 4:1024–1031.

    Google Scholar 

  119. Haas AL, Siepmann TJ. 1997 Pathways of ubiquitin conjugation. FASEB J 11:1257–68.

    Google Scholar 

  120. Pickart CM. 1997 Targeting of substrates to the 26S proteasome. FASEB J 11:1055–1066.

    Google Scholar 

  121. Hershko A, Ciechanover A, Varshavsky A. 2000 The ubiquitin system. Nat Med 6:1073–1081.

    Google Scholar 

  122. Melchior F. 2000 Sumo nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626.

    Google Scholar 

  123. Schwienhorst I, Johnson ES, Dohmen RJ. 2000 SUMO conjugation and deconjugation. Mol Gen Genet 263:771–786.

    Google Scholar 

  124. Yeh ET, Gong L, Kamitani T. 2000 Ubiquitin-like proteins: new wines in new bottles. Gene 248:1–14.

    Google Scholar 

  125. Kretz-Remy C, Tanguay RM. 1999 SUMO/sentrin: protein modifiers regulating important cellular functions. Biochem Cell Biol 77:299–309.

    Google Scholar 

  126. Saitoh H, Pu RT, Dasso M. 1997 SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem Sci 22:374–376.

    Google Scholar 

  127. Roca J, Ishida R, Berger JM, Andoh T, Wang JC. 1994 Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci USA 91:1781–1785.

    Google Scholar 

  128. Hamatake M, Andoh T, Ishida R. 1997 Effects of ICRF-193, a catalytic inhibitor of DNA topoisomerase II, on sister chromatid exchange. Anticancer Drugs 8:637–642.

    Google Scholar 

  129. Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L. 2000 Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670–2675.

    Google Scholar 

  130. Wyttenbach A, Carmichael J, Swartz J, Furlong RA, Narain Y, Rankin J, et al. 2000 Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci USA 97:2898–2903.

    Google Scholar 

  131. Kaye FJ, Modi S, Ivanovska I, Koonin EV, Thress K, Kubo A, et al. 2000 A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Lett 467:348–355.

    Google Scholar 

  132. Luders J, Demand J, Hohfeld J. 2000 The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617.

    Google Scholar 

  133. Tongaonkar P, Beck K, Shinde UP, Madura K. 1999 Characterization of a temperature-sensitive mutant of a ubiquitin-conjugating enzyme and its use as a heat-inducible degradation signal. Anal. Biochem 272:263–269.

    Google Scholar 

  134. Sharp FR, Massa SM, Swanson RA. 1999 Heat-shock protein protection. Trends Neurosci 22:97–99.

    Google Scholar 

  135. Kim D, Kim SH, Li GC. 1999 Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254:264–268.

    Google Scholar 

  136. Mathew A, Mathur SK, Morimoto RI. 1998 Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091–5098.

    Google Scholar 

  137. Saitoh H, Hinchey J. 2000 Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258.

    Google Scholar 

  138. Murren JR, Beidler DR, Cheng YC. 1996 Camptothecin resistance related to drug-induced down-regulation of topoisomerase I and to steps occurring after the formation of protein-linked DNA breaks. Ann N Y Acad Sci 803:74–92.

    Google Scholar 

  139. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. 2000 Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10.

    Google Scholar 

  140. Desai SD, Mao Y, Sun M, Li TK, Wu J, Liu LF. 2000 Ubiquitin, SUMO-1 and UCRP in camptothecin sensitivity and resistance. Ann N Y Acad Sci 922:306–308.

    Google Scholar 

  141. Desai SD, Li TK, Rodriguez-Bauman A, Rubin E, Liu LF. 2001 Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res 61:5926–5932.

    Google Scholar 

  142. Desai SD, Zhang H, Rodriguez-Bauman A, Yang JM, Wu X, Gounder MK, et al. 2003 Transcription-dependent degradation of topoisomerase I-DNA covalent complexes. Mol Cell Biol 23:2341–2350.

    Google Scholar 

  143. Eder JP, Rubin E, Stone R, Bryant M, Xi G-X, Supko J, et al. 1996 Trials of 9-amino-20(S)-camptothecin in Boston. Ann N Y Acad Sci 803:247–255.

    Google Scholar 

  144. Rubin E, Wood V, Bharati A, Trites D, Lynch C, Hurwitz S, et al. 1995 A phase I and pharmacokinetic study of a new camptothecin derivative, 9-amino-camptothecin. Clin Cancer Res 1:269–276.

    Google Scholar 

  145. Narasimhan J, Potter JL, Haas AL. 1996 Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem 271:324–330.

    Google Scholar 

  146. Haas AL, Ahrens P, Bright PM, Ankel H. 1987 Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262:11315–11323.

    Google Scholar 

  147. Loeb KR, Haas AL. 1992 The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813.

    Google Scholar 

  148. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ. 1996 Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37:183–186.

    Google Scholar 

  149. Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS. 1996 PIC1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13:971–982.

    Google Scholar 

  150. Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, et al. 1996 Protection against Fas/APO-1-and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157:4277–4281.

    Google Scholar 

  151. Matunis MJ, Coutavas E, Blobel G. 1996 A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470.

    Google Scholar 

  152. Lapenta V, Chiurazzi P, van der Spek P, Pizzuti A, Hanaoka F, Brahe C. 1997 SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family. Genomics 40:362–366.

    Google Scholar 

  153. Gong L, Li B, Millas S, Yeh ET. 1999 Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448:185–189.

    Google Scholar 

  154. Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H. 1999 In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254:693–698.

    Google Scholar 

  155. Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S. 1998 The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci USA 95:560–564.

    Google Scholar 

  156. Desterro JM, Thomson J, Hay RT. 1997 Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417:297–300.

    Google Scholar 

  157. Johnson ES, Blobel G. 1997 Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272:26799–26802.

    Google Scholar 

  158. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G. 1997 The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519.

    Google Scholar 

  159. Desterro JM, Rodriguez MS, Kemp GD, Hay RT. 1999 Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274:10618–10624.

    Google Scholar 

  160. Desterro JM, Thomson J, Hay RT. 1997 Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417:297–300.

    Google Scholar 

  161. Johnson ES, Blobel G. 1997 Ubc9p is the conjugating enzyme for the biquitin-like protein Smt3p. J Biol Chem 272:26799–26802.

    Google Scholar 

  162. Li SJ, Hochstrasser M. 2000 The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20:2367–2377.

    Google Scholar 

  163. Li SJ, Hochstrasser M. 1999 A new protease required for cell-cycle progression in yeast. Nature 398:246–151.

    Google Scholar 

  164. Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z. 2000 SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101:753–762.

    Google Scholar 

  165. Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A. 2000 c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275:13321–13329.

    Google Scholar 

  166. Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP. 2000 Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752.

    Google Scholar 

  167. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, et al. 1999 Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18:6462–6471.

    Google Scholar 

  168. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT. 1999 SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461.

    Google Scholar 

  169. Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, et al. 1999 PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol 19:5170–5178.

    Google Scholar 

  170. Muller S, Dejean A. 1999 Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73:5137–5143.

    Google Scholar 

  171. Desterro JM, Rodriguez MS, Hay RT. 1998 SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239.

    Google Scholar 

  172. Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, Mohun TJ, et al. 1998 Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8:121–124.

    Google Scholar 

  173. Matunis MJ, Wu, J, Blobel G. 1998 SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1 to the nuclear pore complex. J Cell Biol 140:499–509.

    Google Scholar 

  174. Kamitani T, Nguyen HP, Yeh ET. 1997 Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem 272:14001–14004.

    Google Scholar 

  175. Cho Y, Lee I, Maul GG, Yu E. 1998 A novel nuclear substructure, ND10: distribution in normal and neoplastic human tissues. Int J Mol Med 1:717–724.

    Google Scholar 

  176. Maul GG. 1998 Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20:660–667.

    Google Scholar 

  177. Sternsdorf T, Grotzinger T, Jensen K, Will H. 1997 Nuclear dots: actors on many stages. Immunobiology 198:307–331.

    Google Scholar 

  178. Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z. 2000 SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101:753–762.

    Google Scholar 

  179. Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A, et al. 2001 Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As(2)O(3)-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193:1361–1372.

    Google Scholar 

  180. Rallabhandi P, Hashimoto K, Mo YY, Beck WT, Moitra PK, D’Arpa P. 2002 Sumoylation of topoisomerase I is involved in its partitioning between nucleoli and nucleoplasm and its clearing from nucleoli in response to camptothecin. J Biol Chem 277:40020–40026.

    Google Scholar 

  181. Mao YY, Yu Y, Shen Z, Beck WT. 2002 Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 277:2958–2964.

    Google Scholar 

  182. Horie K, Tomida A, Sugimoto Y, Yasugi T, Yoshikawa H, Taketani Y, et al. 2002 SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 21:7913–7922.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Liu, L.F., Desai, S.D. (2005). Mechanism of Action of Topoisomerase 1 Poisons. In: Adams, V.R., Burke, T.G. (eds) Camptothecins in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-866-8:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-866-8:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-027-4

  • Online ISBN: 978-1-59259-866-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics