Combinations of Chemotherapy and G3139, an Antisense Bcl-2 Oligonucleotide

  • Luba Benimetskaya
  • Sridhar Mani
  • C. A. Stein
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Apoptosis, or programmed cell death, is essential for maintaining homeostasis in multicellular organisms (1). It plays an important role in many physiological processes, especially in the immune and nervous systems, and in development (2,3). Deregulation of apoptosis can lead to autoimmune diseases, cancer, and the clinical manifestations of acquired immunodeficiency syndrome (AIDS) (2).


Antisense Oligonucleotide Combination Index Liposomal Doxorubicin Phosphorothioate Oligonucleotide External Guide Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci USA 1996;93:2239–2244.PubMedCrossRefGoogle Scholar
  2. 2.
    Krammer PH. CD95 (APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol 1999;71:163–210.PubMedCrossRefGoogle Scholar
  3. 3.
    Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999;96:245–254.PubMedCrossRefGoogle Scholar
  4. 4.
    Raff MC. Social controls on cell survival and cell death. Nature 1992;356:397–400.PubMedCrossRefGoogle Scholar
  5. 5.
    Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985;82:7439–7443.PubMedCrossRefGoogle Scholar
  6. 6.
    Bakhshi A, Jensen JP, Goldman P, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985;41:899–906.PubMedCrossRefGoogle Scholar
  7. 7.
    Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000;69:217–245.PubMedCrossRefGoogle Scholar
  8. 8.
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911.PubMedGoogle Scholar
  9. 9.
    Tsujimoto Y, and Shimizu S. Bcl-2 family: life-or-death switch. FEBS Lett 2000;466:6–10.PubMedCrossRefGoogle Scholar
  10. 10.
    McDonnell TJ, Deane N, Platt FM, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989;57:79–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Vaux DL, Cory S, and Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988;335:440–502.PubMedCrossRefGoogle Scholar
  12. 12.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.PubMedGoogle Scholar
  13. 13.
    Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997;3:614–620.PubMedCrossRefGoogle Scholar
  14. 14.
    de Jong D, Prins FA, Mason DY, et al. Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells. Cancer Res 1994;54:256–260.PubMedGoogle Scholar
  15. 15.
    Schlesinger PH, Gross A, Yin XM, et al. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 1997;94:11357–11362.PubMedCrossRefGoogle Scholar
  16. 16.
    Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74:609–619.PubMedCrossRefGoogle Scholar
  17. 17.
    Sato T, Hanada M, Bodrug S, et al. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 1994;91:9238–9242.PubMedCrossRefGoogle Scholar
  18. 18.
    Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994;369:321–323.PubMedCrossRefGoogle Scholar
  19. 19.
    Chittenden T, Flemington C, Houghton AB, et al. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 1995;14:5589–5596.PubMedGoogle Scholar
  20. 20.
    Zha H, Aime-Sempe C, Sato T, et al. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996;271:7440–7444.PubMedCrossRefGoogle Scholar
  21. 21.
    Ficazzola MA, Taneja SS. Prospects for gene therapy in human prostate cancer. Mol Med Today 1998;4:494–504.PubMedCrossRefGoogle Scholar
  22. 22.
    Tonkinson JL, and Stein CA. Antisense oligodeoxynucleotides as clinical therapeutic agents. Cancer Invest 1996;14:54–65.PubMedGoogle Scholar
  23. 23.
    Bower M, Waxman J. Gene therapy for prostate cancer. Semin Cancer Biol 1997;8:3–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Hrouda D, Dalgleish AG. Gene therapy for prostate cancer. Gene Ther 1996;3:845–852.PubMedGoogle Scholar
  25. 25.
    Harrington KJ, Spitzweg C, Bateman AR, et al. Gene therapy for prostate cancer: current status and future prospects. J Urol 2001;166:1220–1233.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuss B, Cotter F. Antisense—time to shoot the messenger. Ann Oncol 1999;10:495–503.PubMedCrossRefGoogle Scholar
  27. 27.
    Galderisi U, Cascino A, and Giordano A. Antisense oligonucleotides as therapeutic agents. J Cell Physiol 1999;181:251–257.PubMedCrossRefGoogle Scholar
  28. 28.
    Wraight CJ, White PJ. Antisense oligonucleotides in cutaneous therapy. Pharmacol Ther 2001;90:89–104.PubMedCrossRefGoogle Scholar
  29. 29.
    Crooke ST. Potential roles of antisense technology in cancer chemotherapy. Oncogene 2000;19:6651–6659.PubMedCrossRefGoogle Scholar
  30. 30.
    Khuri FR, Kurie JM. Antisense approaches enter the clinic. Clin Cancer Res 2000;6:1607–1610.PubMedGoogle Scholar
  31. 31.
    Lebedeva I, Stein CA. Antisense oligonucleotides: promise and reality. Annu Rev Pharmacol Toxicol 2001;41:403–419.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyake H, Hara I, Kamidono S, et al. Novel therapeutic strategy for advanced prostate cancer using antisense oligodeoxynucleotides targeting anti-apoptotic genes upregulated after androgen withdrawal to delay androgen-independent progression and enhance chemosensitivity. Int J Urol 2001;8:337–349.PubMedCrossRefGoogle Scholar
  33. 33.
    Morris MJ, Scher HI. Novel strategies and therapeutics for the treatment of prostate carcinoma. Cancer 2000;89:1329–1348.PubMedCrossRefGoogle Scholar
  34. 34.
    Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science 1993;261:1004–1012.PubMedCrossRefGoogle Scholar
  35. 35.
    Wagner RW, Flanagan WM. Antisense technology and prospects for therapy of viral infections and cancer. Mol Med Today 1997;3:31–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Nellen W, Lichtenstein C. What makes an mRNA anti-sense-itive? Trends Biochem Sci 1993;18:419–423.PubMedCrossRefGoogle Scholar
  37. 37.
    Marshall P, Thompson JB, Eckstein F. Inhibition of gene expression with ribozymes. Cell Mol Neurobiol 1994;14:5523–5538.Google Scholar
  38. 38.
    Belikova AM, Zarytova VF, Grineva NI. Synthesis of ribonucleosides and diribonucleo-side phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett 1967;37:3557–3562.PubMedCrossRefGoogle Scholar
  39. 39.
    Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 1984;81:1966–1970.PubMedCrossRefGoogle Scholar
  40. 40.
    Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978;75:280–284.PubMedCrossRefGoogle Scholar
  41. 41.
    Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978;75:285–288.PubMedCrossRefGoogle Scholar
  42. 42.
    Eder PS, DeVine RJ, Dagle JM, et al. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3’ exonuclease in plasma. Antisense Res Dev 1991;1:141–151.PubMedGoogle Scholar
  43. 43.
    Stec W, Zon G, Egan V. Automated solid-phase synthesis, separation and stereochemistry of phosphorothioate analoges of oligodeoxyribonucleotides. J Amer Chem Soc 1984;106:6077–6079.CrossRefGoogle Scholar
  44. 44.
    Stein CA, Subasinghe C, Shinozuka K, et al. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1988;16:3209–3221.PubMedCrossRefGoogle Scholar
  45. 45.
    Crooke ST. Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol 1992;32:329–376.PubMedCrossRefGoogle Scholar
  46. 46.
    Stein CA, Tonkinson JL, Yakubov L. Phosphorothioate oligodeoxynucleotides—anti-sense inhibitors of gene expression? Pharmacol Ther 1991;52:365–384.PubMedCrossRefGoogle Scholar
  47. 47.
    Miller PS, Ts’o PO. A new approach to chemotherapy based on molecular biology and nucleic acid chemistry: Matagen (masking tape for gene expression). Anticancer Drug Des 1987;2:117–128.PubMedGoogle Scholar
  48. 48.
    Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997;7:187–195.PubMedGoogle Scholar
  49. 49.
    Nielsen PE, Egholm M, Berg RH, et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991;254:1497–1500.PubMedCrossRefGoogle Scholar
  50. 50.
    Dash P, Lotan I, Knapp M, et al. Selective elimination of mRNAs in vivo: complementary oligodeoxynucleotides promote RNA degradation by an RNase H-like activity. Proc Natl Acad Sci USA 1987;84:7896–7900.PubMedCrossRefGoogle Scholar
  51. 51.
    Ma M, Benimetskaya L, Lebedeva I, et al. Intracellular mRNA cleavage induced through activation of RNase P by nuclease-resistant external guide sequences. Nat Biotechnol 2000;18:58–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Wu H, MacLeod AR, Lima WF, et al. Identification and partial purification of human double strand RNase activity. A novel terminating mechanism for oligoribonucleotide antisense drugs. J Biol Chem 1998;273:2532–2542.PubMedCrossRefGoogle Scholar
  53. 53.
    Torrence PF, Xiao W, Li G, et al. Recruiting the 2-5A system for antisense therapeutics. Antisense Nucleic Acid Drug Dev 1997;7:203–206.PubMedGoogle Scholar
  54. 54.
    Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 1993;90:8673–8677.PubMedCrossRefGoogle Scholar
  55. 55.
    McManaway ME, Neckers LM, Loke SL, et al. Tumour-specific inhibition of lymphoma growth by an antisense oligodeoxynucleotide. Lancet 1990;335:808–811.PubMedCrossRefGoogle Scholar
  56. 56.
    Agrawal S, Goodchild J, Civeira MP, et al. Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Natl Acad Sci USA 1988;85:7079–7083.PubMedCrossRefGoogle Scholar
  57. 57.
    Westermann P, Gross B, Hoinkis G. Inhibition of expression of SV40 virus large T-antigen by antisense oligodeoxyribonucleotides. Biomed Biochim Acta 1989;48:85–93.PubMedGoogle Scholar
  58. 58.
    Baker BF, Miraglia L, Hagedorn CH. Modulation of eucaryotic initiation factor-4E binding to 5′-capped oligoribonucleotides by modified anti-sense oligonucleotides. J Biol Chem 1992;267:11,495–11,499.PubMedGoogle Scholar
  59. 59.
    Itaya M, Kondo K. Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme thermophile Thermus thermophilus HB8: a thermostable RNase H can functionally replace the Escherichia coli enzyme in vivo. Nucleic Acids Res 1991;19:4443–4449.PubMedCrossRefGoogle Scholar
  60. 60.
    Crooke ST, Lemonidis KM, Neilson L, et al. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes. Biochem J 1995;312:599–608.PubMedGoogle Scholar
  61. 61.
    Guvakova MA, Yakubov LA, Vlodavsky I, et al. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995;270:2620–2627.PubMedCrossRefGoogle Scholar
  62. 62.
    Fennewald SM, Rando RF. Inhibition of high affinity basic fibroblast growth factor binding by oligonucleotides. J Biol Chem 1995;270:21,718–21,721.PubMedCrossRefGoogle Scholar
  63. 63.
    Rockwell P, O’Connor WJ, King K, et al. Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 1997;94:6523–6528.PubMedCrossRefGoogle Scholar
  64. 64.
    Yakubov L, Khaled Z, Zhang LM, et al. Oligodeoxynucleotides interact with recombinant CD4 at multiple sites. J Biol Chem 1993;268:18,818–18,823.PubMedGoogle Scholar
  65. 65.
    Dorai T, Goluboff ET, Olsson CA, et al. Development of a hammerhead ribozyme against BCL-2. II. Ribozyme treatment sensitizes hormone-resistant prostate cancer cells to apoptotic agents. Anticancer Res 1997;17:3307–3312.PubMedGoogle Scholar
  66. 66.
    Benimetskaya L, Loike JD, Khaled Z, et al. Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nat Med 1997;3:414–420.PubMedCrossRefGoogle Scholar
  67. 67.
    Khaled Z, Benimetskaya L, Zeltser R, et al. Multiple mechanisms may contribute to the cellular anti-adhesive effects of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1996;24:737–745.PubMedCrossRefGoogle Scholar
  68. 68.
    Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995;374:546–549.PubMedCrossRefGoogle Scholar
  69. 69.
    Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996;157:1840–1845.PubMedGoogle Scholar
  70. 70.
    Wang Y, Patel DJ. Solution structure of a parallel-stranded G-quadruplex DNA. J Mol Biol 1993;234:1171–1183.PubMedCrossRefGoogle Scholar
  71. 71.
    Sen D, Gilbert W. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 1992;31:65–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Wyatt JR, Stein CA. G-quartet inhibitory effects of phosphorothioate oligonucleotides. In: (Rabbani R, ed). Applications of antisense therapies to restenosis. Kluwer Academic, Norwell, MA: 1999.Google Scholar
  73. 73.
    Vilenchik M, Benimetsky L, Kolbanovsky A, et al. Evidence for higher-order structure formation by the c-myb 18-mer phosphorothioate antisense (codons 2-7) oligodeoxynucleotide: potential relationship to antisense c-myb inhibition. Antisense Nucleic Acid Drug Dev 2001;11:87–97.PubMedCrossRefGoogle Scholar
  74. 74.
    Wagner RW, Matteucci MD, Grant D, et al. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nat Biotechnol 1996;14:840–844.PubMedCrossRefGoogle Scholar
  75. 75.
    Stein CA. Is irrelevant cleavage the price of antisense efficacy? Pharmacol Ther 2000;85:231–236.PubMedCrossRefGoogle Scholar
  76. 76.
    Benimetskaya L, Takle GB, Vilenchik M, et al. Cationic porphyrins: novel delivery vehicles for antisense oligodeoxynucleotides. Nucleic Acids Res 1998;26:5310–5317.PubMedCrossRefGoogle Scholar
  77. 77.
    Kitada S, Takayama S, De Riel K, et al. Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 1994;4:71–79.PubMedGoogle Scholar
  78. 78.
    Kitada S, Miyashita T, Tanaka S, et al. Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res Dev 1993;3:157–169.PubMedGoogle Scholar
  79. 79.
    Cotter FE, Johnson P, Hall P, et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994;9:3049–3055.PubMedGoogle Scholar
  80. 80.
    Gleave M, Tolcher A, Miyake H, et al. Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin Cancer Res 1999;5:2891–2898.PubMedGoogle Scholar
  81. 81.
    Miyake H, Tolcher A, Gleave ME. Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Cancer Res 1999;59:4030–4034.PubMedGoogle Scholar
  82. 82.
    Miyake H, Tolcher A, Gleave ME. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J. Natl. Cancer Inst. 1999;92:34–41.CrossRefGoogle Scholar
  83. 83.
    Zangemeister-Wittke U, Leech SH, Olie RA, et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000;6:2547–2555.PubMedGoogle Scholar
  84. 84.
    Klasa RJ, Bally MB, Ng R, et al. Eradication of human non-Hodgkin’s lymphoma in SCID mice by BCL-2 antisense oligonucleotides combined with low-dose cyclophosphamide. Clin Cancer Res 2000;6:2492–2500.PubMedGoogle Scholar
  85. 85.
    Lacy J, Loomis R. Bcl-2 antisense (G3139, Genasense) enhances the in vitro and in vivo response of EBV-associated lymphoproliferative disease to rituximab. Proc Am Assoc Cancer Res 2002;43:575 [Abstract 2853].Google Scholar
  86. 86.
    Tauchi T, Nakajima A, Sumi M, et al. G3139 (Bcl-2 antisense oligonucleotide) is active against Glleevec-resistant Bcr-Abl-positive cells. Proc Am Assoc Cancer Res 2002;43:949 [Abstract 4702].Google Scholar
  87. 87.
    Gazitt Y, Liu QY, Vesole D. Bcl-2 antisense oligonucleotides (ASO) enhances apoptosis and cytotoxicity in drug-resistant myeloma cells. Blood 2001;98:641a [Abstract 2688].Google Scholar
  88. 88.
    Konopleva M, Tari AM, Estrov Z, et al. Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 2000;95:3929–3938.PubMedGoogle Scholar
  89. 89.
    Jansen B, Schlagbauer-Wadl H, Brown BD, et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998;4:232–234.PubMedCrossRefGoogle Scholar
  90. 90.
    Gleave ME, Miayake H, Goldie J, et al. Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 1999;54:36–46.PubMedCrossRefGoogle Scholar
  91. 91.
    Miayake H, Tolcher A, Gleave ME. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J Natl Cancer Inst 2000;92:34–41.PubMedCrossRefGoogle Scholar
  92. 92.
    Leung S, Miyake H, Zellweger T, et al. Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int J Cancer 2001;91:846–850.PubMedCrossRefGoogle Scholar
  93. 93.
    Tolcher A, Miayake H, Gleave M. Downregulation of Bcl-2 expression by antisense-oligonucleotide (AS-ODN) treatment enhanced mitoxantrone cytotoxicity in the androgen-dependent Shionogi tumor model. Proc Am Assoc Cancer Res 1999;40:484 [Abstract 3198].Google Scholar
  94. 94.
    Chi KC, Wallis AE, Lee CH, et al. Effects of Bcl-2 modulation with G3139 antisense oligonucleotide on human breast cancer cells are independent of inherent Bcl-2 protein expression. Breast Cancer Res Treat 2000;63:199–212.PubMedCrossRefGoogle Scholar
  95. 95.
    Lopes de Menezes DE, Mayer LD. Combination of Bcl-2 antisense oligodeoxynucleotide (3139), p-glycoprotein inhibitor (PSC833) and liposomal doxorubicin can supress the growth of drug-resistant human breast cancer xenografts in SCID mice. Proc Am Assoc Cancer Res 2001;42:375 [Abstract 2018].Google Scholar
  96. 96.
    Lopes de Menezes DE, Hudon N, McIntosh N, et al. Molecular and pharmacokinetic properties associated with the therapeutics of bcl-2 antisense oligonucleotide G3139 combined with free and liposomal doxorubicin. Clin Cancer Res 2000;6:2891–2902.PubMedGoogle Scholar
  97. 97.
    Lopes de Menezes DE, Mayer LD. Pharmacokinetics of Bcl-2 antisense oligonucleotide (3139) combined with doxorubicin in SCID mice bearing human breast cancer solid tumor xenografts. Cancer Chemother Pharmacol 2002;49:57–68.PubMedCrossRefGoogle Scholar
  98. 98.
    Vrignaud P, Lejeune P, Klem RE, et al. Combination of G3139 (Genasense), a Bcl-2 antisense oligonucleotide, with docetaxel (Taxotere) is active in a murine xenograft model of human non-small cell lung cancer. Proc Am Assoc Cancer Res 2002;43:578 [Abstract 2865].Google Scholar
  99. 99.
    Zangemeister-Wittke U, Schenker T, Luedke GH, et al. Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br J Cancer 1998;78:1035–1042.PubMedGoogle Scholar
  100. 100.
    Wacheck V, Heere-Ress E, Halaschek-Wiener J, et al. Bcl-2 antisense oligonucleotides chemosensitize human gastric cancer in a SCID mouse xenotransplantation model. J Mol Med 2001;79:587–593.PubMedCrossRefGoogle Scholar
  101. 101.
    Wacheck V, Heere-Ress E, Halaschek-Wiener J, et al. Bcl-2 antisense therapy prolongs survival of gastric cancer in a SCID mice. Proc Am Assoc Cancer Res 2001;43:848 [Abstract 4552].Google Scholar
  102. 102.
    Luo D, Cheng SC, Xie H, et al. Chemosensitivity of human hepatocellular carcinoma cell line QGY-7703 is related to bcl-2 protein levels. Tumour Biol 1999;20:331–340.PubMedCrossRefGoogle Scholar
  103. 103.
    Shi XB, Gumerlock PH, Muenzer JT, et al. BCL2 antisense transcripts decrease intracellular Bcl2 expression and sensitize LNCaP prostate cancer cells to apoptosis-inducing agents. Cancer Biother Radiopharm 2001;16:421–429.PubMedCrossRefGoogle Scholar
  104. 104.
    Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000;18:1812–1823.PubMedGoogle Scholar
  105. 105.
    Jansen B, Wacheck V, Heere-Ress E, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000;356:1728–1733.PubMedCrossRefGoogle Scholar
  106. 106.
    Chi KN, Gleave ME, Klasa R, et al. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001;7:3920–3927.PubMedGoogle Scholar
  107. 107.
    Morris MJ, Tong WP, Cordon-Cardo C, et al. Phase I Trial of BCL-2 Antisense Oligonucleotide (G3139) Administered by Continuous Intravenous Infusion in Patients with Advanced Cancer. Clin Cancer Res 2002;8:679–683.PubMedGoogle Scholar
  108. 108.
    Wasan EK, Waterhouse D, Sivak O, et al. Plasma protein binding, lipoprotein distribution and uptake of free and lipid-associated BCL-2 antisense oligodeoxynucleotides (G3139) in human melanoma cells. Int J Pharm 2002;241:57–64.PubMedCrossRefGoogle Scholar
  109. 109.
    Benimetskaya L, Miller P, Benimetsky S, et al. Inhibition of potentially anti-apoptotic proteins by antisense protein kinase C-alpha (Isis 3521) and antisense bcl-2 (G3139) phosphorothioate oligodeoxynucleotides: relationship to the decreased viability of T24 bladder and PC3 prostate cancer cells. Mol Pharmacol 2001;60:1296–1307.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Luba Benimetskaya
    • 1
  • Sridhar Mani
    • 1
  • C. A. Stein
    • 1
  1. 1.Department of Medical Oncology/Medicine, Montefiore Medical CenterAlbert Einstein College of MedicineBronx, New York

Personalised recommendations