Skip to main content

Biophysical Stimulation Using Electrical, Electromagnetic, and Ultrasonic Fields

Effects on Fracture Healing and Spinal Fusion

  • Chapter
Book cover Bone Regeneration and Repair

Abstract

The development of biophysical technologies for use in orthopedics is based on the discovery of the electrical properties of bone tissue in the 1950s and 1960s. The landmark study, first reported in 1954, on bone piezoelectric properties was conducted in Japan by Fukada and Yasuda (1). These authors measured an electric potential on deformation of dry bone. This work stimulated many research groups to investigate these findings further. By the early 1960s, several groups, notably those led by Bassett at Columbia University and Brighton at the University of Pennsylvania, reported the generation of electrical potentials in wet bone on mechanical deformation (25). Similar observations were subsequently made in other tissues including collagen and cartilaginous tissues under mechanical stress (68).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukada, E. and Yasuda, I. (1957) On the piezoelectric effect of bone. J. Phys. Soc. Japan 12, 121–128.

    Google Scholar 

  2. Bassett, C. A. L. and Becker, R. O. (1962) Generation of electric potentials in bone in response to mechanical stress. Science 137, 1063–1064.

    Article  PubMed  CAS  Google Scholar 

  3. Friedenberg, Z. B. and Brighton, C. T. (1966) Bioelectric potentials in bone. J. Bone Joint Surg. 48A, 915–923.

    Google Scholar 

  4. Shamos, M. H. and Lavine, L. S. (1967) Piezoelectricity as a fundamental property of biological tissues. Nature 212, 267–268.

    Article  Google Scholar 

  5. Williams, W. S. and Perletz, L. (1971) P-n junctions and the piezoelectric response of bone. Nat. New. Biol. 233, 58–59.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson, J. C. and Eriksson, C. (1968) Electrical properties of wet collagen. Nature 227, 166–168.

    Article  Google Scholar 

  7. Bassett, C. A. L. and Pawluk, R. J. (1974) Electrical behavior of cartilage during loading. Science 814, 575–577.

    Google Scholar 

  8. Grodzinsky, A. J., Lipshitz, H., and Glimcher, M. J. (1978) Electromechanical properties of articular cartilage during compression and stress relaxation. Nature 275, 448–450.

    Article  PubMed  CAS  Google Scholar 

  9. Duncan, R. L. and Turner, C. H. (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57, 344–358.

    Article  PubMed  CAS  Google Scholar 

  10. Luben, R. A. (1991) Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Phys. 61, 15–28.

    PubMed  CAS  Google Scholar 

  11. Pilla, A. A. and Markov, M. S. (1994) Bioeffects of weak electromagnetic fields. Rev. Environ. Health 10, 155–169.

    PubMed  CAS  Google Scholar 

  12. Ryaby, J. T. (1998) Clinical effects of electromagnetic and electrical fields on fracture healing. Clin. Orthop. Rel. Res. 355S, S205–S215.

    Article  Google Scholar 

  13. Aaron, R. K., Lennox, D., Bunce, G. E., and Ebert, T. (1989) The conservative treatment of osteonecrosis of the femoral head. A comparison of core decompression and pulsing electromagnetic fields. Clin. Orthop. Rel. Res. 249, 209–218.

    Google Scholar 

  14. Steinberg, M. E., Brighton, C. T., Corces, A., et al. (1989) Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clin. Orthop. Rel. Res. 249, 199–208.

    Google Scholar 

  15. Binder, A., Parr, G., Hazelman, B., and Fitton-Jackson, S. (1984) Pulsed electromagnetic field therapy of persistent rotator cuff tendinitis: a double blind controlled assessment. Lancet 1(8379), 695–697.

    Article  PubMed  CAS  Google Scholar 

  16. Zizik, T. M., Hoffman, K. C., Holt, P. A., et al. (1995) The treatment of osteoarthritis of the knee with pulsed electrical stimulation. J. Rheumat. 22, 1757–1761.

    Google Scholar 

  17. Otter, M. W., McLeod, K. J., and Rubin, C. T. (1988) Effects of electromagnetic fields in experimental fracture repair. Clin. Orthop. Rel. Res. 355S, 90–104.

    Google Scholar 

  18. McLeod, B. R. and Liboff, A. R. (1987) Cyclotron resonance in cell membranes: the theory of the mechanism, in Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems (Blank, M. J. and Findl, E., eds.), Plenum, New York, pp. 97–108.

    Google Scholar 

  19. Fitzsimmons, R. J., Strong, D., Mohan, S., and Baylink, D. J. (1992) Low amplitude, low frequency electric fieldstimulated bone cell proliferation may in part be mediated by increased IGF-II release. J. Cell. Physiol. 150, 84–89.

    Article  PubMed  CAS  Google Scholar 

  20. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., and Baylink, D. J. (1994) Combined magnetic fields increase net calcium flux in bone cells. Calcif. Tissue Int. 55, 376–380.

    Article  PubMed  CAS  Google Scholar 

  21. Fitzsimmons, R. J., Baylink, D. J., Ryaby, J. T., and Magee, F. P. (1993) EMF-stimulated bone cell proliferation, in Electricity and Magnetism in Biology and Medicine (Blank, M. J., ed.), San Francisco Press, San Francisco, pp. 899–902.

    Google Scholar 

  22. Fitzsimmons, R. J., Ryaby, J. T., Mohan, S., Magee, F. P., and Baylink, D. J. (1995) Combined magnetic fields increase IGF-II in TE-85 human bone cell cultures. Endocrinology 136, 3100–3106.

    Article  PubMed  CAS  Google Scholar 

  23. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., and Baylink, D. J. (1995) IGF-II receptor number is increased in TE-85 cells by low-amplitude, low-frequency combined magnetic field (CMF) exposure. J. Bone Miner. Res. 10, 812–819.

    Article  PubMed  CAS  Google Scholar 

  24. Ryaby, J. T., Fitzsimmons, R. J., Khin, N. A., et al. (1994) The role of insulin-like growth factor in magnetic field regulation of bone formation. Bioelectrochem. Bioenerg. 35, 87–91.

    Article  CAS  Google Scholar 

  25. Diebert, M. C., McLeod, B. R., Smith, S. D., and Liboff, A. R. (1994) Ion resonance electromagnetic field stimulation of fracture healing in rabbits with a fibular ostectomy. J. Orthop. Res. 12, 878–885.

    Article  Google Scholar 

  26. Ryaby, J. T., Magee, F. P., Haupt, D. L., and Kinney, J. H. (1996) Reversal of osteopenia in ovariectomized rats with combined magnetic fields as assessed by x-ray tomographic microscopy. J. Bone Miner. Res. 11, S564.

    Google Scholar 

  27. Ryaby, J. T., Cai, F. F., and DiDonato, J. A. (1997) Combined magnetic fields inhibit IL-1 and TNF-dependent NF-kB activation in osteoblast-like cells. Trans. Orthop. Res. Soc. 22, 180.

    Google Scholar 

  28. Aaron, R. K., Wang, S., and Ciombor, D. M. (2002) Upregulation of basal TGF-1 levels by EMF coincident with chondrogenesis-implications for skeletal repair and tissue engineering. J. Orthop. Res. 20, 233–240.

    Article  PubMed  CAS  Google Scholar 

  29. Aaron, R. K. and Ciombor, D. M. (1996) Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J. Orthop. Res. 14, 582–589.

    Article  PubMed  CAS  Google Scholar 

  30. Ciombor, D. M., Lester, G., Aaron, R. K., Neame, P., and Caterson, B. (2002) Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J. Orthop. Res. 20, 40–50.

    Article  PubMed  CAS  Google Scholar 

  31. Aaron, R. K., Ciombor, D. M., and Jolly, G. (1989) Stimulation of experimental endochondral ossification by lowenergy pulsing electromagnetic fields. J. Bone Miner. Res. 4, 227–233.

    Article  PubMed  CAS  Google Scholar 

  32. Lohmann, C. H., Schwartz, Z., Liu, Y., et al. (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J. Orthop. Res. 18, 637–646.

    Article  PubMed  CAS  Google Scholar 

  33. Lohmann, C. H., Schwartz, Z., Liu, Y., et al. (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J. Orthop. Res. 21, 326–334.

    Article  PubMed  CAS  Google Scholar 

  34. Guerkov, H. H., Lohmann, C. H., Liu, Y., et al. (2001) Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin. Orthop. Rel. Res. 180, 265–279.

    Google Scholar 

  35. Zhuang, H., Wang, W., Seldes, R. M., Tahernia, A. D., Fan, H., and Brighton, C. T. (1997) Electrical stimulation induces the level of TGF-B1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem. Biophys. Res. Commun. 237, 225–229.

    Article  PubMed  CAS  Google Scholar 

  36. Bodamyali, T., Bhatt, B., Hughes, F. J., et al. (1998) Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250, 458–461.

    Article  PubMed  CAS  Google Scholar 

  37. Brighton, C. T., Wang, W., Seldes, R., Zhang, G., and Pollack, S. R. (2001) Signal transduction in electrically stimulated bone cells. J. Bone Joint Surg. 83A, 1514–1523.

    Google Scholar 

  38. Cane, V., Botti, P., Farnetti, P., and Soana, S. (1991) Electromagnetic stimulation of bone repair: a histomorphometric study. J. Orthop. Res. 9, 908–917.

    Article  PubMed  CAS  Google Scholar 

  39. Cane, V., Botti, P., and Soana, S. (1993) Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J. Orthop. Res. 11, 664–670.

    Article  PubMed  CAS  Google Scholar 

  40. Fini, M., Cadossi, R., Cane, V., et al. (2002) The effect of pulsed electromagnetic fields on the osseointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J. Orthop. Res. 20, 756–763.

    Article  PubMed  CAS  Google Scholar 

  41. Brighton, C. T., Katz, M. J., Goll, S. R., Nichols, C. E., 3rd, and Pollack, S. R. (1985) Prevention and treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Bone 6, 87–97.

    Article  PubMed  CAS  Google Scholar 

  42. Brighton, C. T., Luessenhop, C. P., Pollack, S. R., Steinberg, D. R., Petrik, M. E., and Kaplan, F. S. (1989) Treatment of castration induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae. J. Bone Joint Surg. 71A, 228–236.

    Google Scholar 

  43. Skerry, T. M., Pead, M. J., and Lanyon, L. E. (1991) Modulation of bone loss during disuse by pulsed electromagnetic fields. J. Orthop. Res. 9, 600–608.

    Article  PubMed  CAS  Google Scholar 

  44. Ryaby, J. T., Haupt, D. L., and Kinney, J. H. (1996) Reversal of osteopenia in ovariectomized rats with combined magnetic fields as assessed by x-ray tomographic microscopy. J. Bone Miner. Res. 11, S231.

    Google Scholar 

  45. McLeod, K. J. and Rubin, C. T. (1992) The effect of low-frequency electrical fields on osteogenesis. J. Bone Joint Surg. 74A, 920–929.

    Google Scholar 

  46. Pilla, A. A., Kaufman, J. J., and Ryaby, J. T. (1987) Electrochemical kinetics at the cell membrane: the physiochemical link for electromagnetic bioeffects, in Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems (Blank, M. and Findl, E., eds.), Plenum, New York, pp. 39–53.

    Google Scholar 

  47. Inoue, N., Ohnishi, I., Chen, D., Deitz, L. W., Schwardt, J. D., and Chao, E. Y. S. (2002) Effect of a pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J. Orthop. Res. 20, 1106–1114.

    Article  PubMed  Google Scholar 

  48. Brighton, C. T., Friedenberg, Z. B., Mitchell, E. I., and Booth, R. E. (1977) Treatment of nonunion with constant direct current. Clin. Orthop. Rel. Res. 124, 106–123.

    Google Scholar 

  49. Patterson, D. (1984) Treatment of nonunion with a constant direct current: a totally implantable system. Orthop. Clin. N. Am. 15, 47–59.

    Google Scholar 

  50. Black, J. (1987) Electrical Stimulation: Its Role in Growth, Repair, and Remodeling of the Musculoskeletal System. Praeger, New York.

    Google Scholar 

  51. Bassett, C. A. L., Pawluk, R. J., and Pilla, A. A. (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184, 575–577.

    Article  PubMed  CAS  Google Scholar 

  52. Hinsenkamp, M., Ryaby, J., and Burny, F. (1985) Treatment of non-union by pulsing electromagnetic fields: European multicenter study of 308 cases. Reconstr. Surg. Traumatol. 19, 147–156.

    PubMed  CAS  Google Scholar 

  53. Heckman, J. D., Ingram, A. J., Lloyd, R. D., Luck, J. V., and Mayer, P. W. (1981) Nonunion treatment with pulsed electromagnetic fields. Clin. Orthop. Rel. Res. 161, 58–66.

    Google Scholar 

  54. Bassett, C. A. L., Mitchell, S. N., and Gaston, S. R. (1981) Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone Joint Surg. 63A, 511–523.

    Google Scholar 

  55. Bassett, C. A. L. (1989) Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFS). CRC Crit. Rev. Biomed. Eng. 17, 451–529.

    CAS  Google Scholar 

  56. Gossling, H. R., Bernstein, R. A., and Abbott, J. (1992) Treatment of ununited tibial fractures: a comparison of surgery and pulsed electromagnetic fields. Orthopedics 16, 711–717.

    Google Scholar 

  57. Hinsenkamp, M. (1982) Treatment of non-unions by electromagnetic stimulation. Acta Orthop. Scand. Suppl. 196, 63–79.

    PubMed  CAS  Google Scholar 

  58. Brighton, C. T. and Pollack, S. R. (1985) Treatment of recalcitrant nonunion with a capacitively coupled electric field. J. Bone Joint Surg. 67A, 577–585.

    Google Scholar 

  59. Longo, J. A. (1998) The management of recalcitrant nonunions with combined magnetic field stimulation. Orthop. Trans. 22, 408–409.

    Google Scholar 

  60. Laupacis, A., Rorabeck, C. H., Bourne, R. B., Feeny, D., Tugwell, P., and Sim, D. A. (1989) Randomized trials in orthopaedics: why, how, and when? J. Bone Joint Surg. 71A, 535–543.

    Google Scholar 

  61. Freedman, K. B., Back, S., and Bernstein, J. (2001) Sample size and statistical power of randomised, controlled trials in orthopaedics. J. Bone Joint Surg. 83B, 397–402.

    Article  Google Scholar 

  62. Borsalino, G., Bagnacani, M., Bettati, E., et al. (1988) Electrical stimulation of human femoral intertrochanteric osteotomies: double blind study. Clin. Orthop. Rel. Res. 237, 256–263.

    Google Scholar 

  63. Sharrard, W. J. W. (1990) A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J. Bone Joint Surg. 72B, 347–355.

    Google Scholar 

  64. Mammi, G. I., Rocchi, R., Cadossi, R., and Traina, G. C. (1993) Effect of PEMF on the healing of human tibial osteotomies: a double blind study. Clin. Orthop. Rel. Res. 288, 246–253.

    Google Scholar 

  65. Scott, G. and King, J. B. (1994) A prospective double blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J. Bone Joint Surg. 76A, 820–826.

    Google Scholar 

  66. Simonis, R. B., Parnell, E. J., Ray, P. S., and Peacock, J. L. (2003) Electrical treatment of tibial non-union: a prospective, randomized, double-blind trial. Injury 34, 357–362.

    Article  PubMed  CAS  Google Scholar 

  67. Akai, M., Kawashima, N., Kimura, T., and Hayashi, K. (2002) Electrical stimulation as an adjunct to spinal fusion: a meta-analysis of controlled clinical trials. Bioelectromagnetics 23, 496–504.

    Article  PubMed  Google Scholar 

  68. Dwyer, A. F., Yau, A. C., and Jeffcoat, K. W. (1974) The use of direct current in spine fusion. J. Bone Joint Surg. 56A, 442–446.

    Google Scholar 

  69. Kane, W. J. (1988) Direct current electrical bone growth stimulation for spinal fusion. Spine 13, 363–365.

    Article  PubMed  CAS  Google Scholar 

  70. Meril, A. J. (1994) Direct current stimulation of allograft in anterior and posterior interbody fusions. Spine 19, 2393–2398.

    Article  PubMed  CAS  Google Scholar 

  71. Tejano, N. A., Puno, R., and Ignacio, J. M. P. (1996) The use of implantable direct current stimulation in multilevel fusion without instrumentation. Spine 21, 1904–1908.

    Article  PubMed  CAS  Google Scholar 

  72. Mooney, V. (1990) A randomized double blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15, 708–715.

    Article  PubMed  CAS  Google Scholar 

  73. Goodwin, C. B., Brighton, C. T., Guyer, R. D., Johnson, J. R., Light, K. I., and Yuan, H. A. (1999) A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24, 1349–1357.

    Article  PubMed  CAS  Google Scholar 

  74. Zdeblick, T. D. (1993) A prospective, randomized study of lumbar fusion: preliminary results. Spine 18, 983–991.

    Article  PubMed  CAS  Google Scholar 

  75. Linovitz, R., Pathria, M., Bernhardt, M., et al. (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine 27, 1383–1389.

    Article  PubMed  Google Scholar 

  76. Rubin, C. T., Bolander, M., Ryaby, J. P., and Hadjiargyrou, M. (2001) The use of low-intensity ultrasound to accelerate the healing of fractures. J. Bone Joint Surg. 83A, 259–270.

    Google Scholar 

  77. Lehmann, J. F., DeLateur, B. J., Warren, C. G., and Stonebridge, J. S. (1968) Heating produced by ultrasound in bone and soft tissue. Arch. Phys. Med. Rehab. 48A, 397–401.

    Google Scholar 

  78. Coakley, W. T. (1978) Biophysical effects of ultrasound at therapeutic intensities. Physiotherapy 64, 166–169.

    PubMed  CAS  Google Scholar 

  79. Hill, C. R., ed. (1986) Physical Principles of Medical Ultrasonics. Halstead, New York.

    Google Scholar 

  80. Dyson, M. and Pond, J. B. (1970) The effect of pulsed ultrasound on tissue regeneration. Physiotherapy 56, 136–142.

    PubMed  CAS  Google Scholar 

  81. Corradi, C. and Cozzolino, A. (1953) Gli ultrasuoni e l’evoluzione delle fratture sperimentali dei conigli. Arch. Ortop. 66, 77–98.

    PubMed  CAS  Google Scholar 

  82. Knoch, H. G., Dominok, G. W., and Schramm, H. (1971) Distant action of ultrasound upon callous tissue. Z. Exp. Chir. 4, 93–99.

    PubMed  CAS  Google Scholar 

  83. Goldblat, V. I. (1971) Effect of various methods of ultrasonic treatment on bone tissue regeneration (an experimental study). Ortop. Travmatol. Protez. 32, 59–63.

    CAS  Google Scholar 

  84. Klug, W., Franke, W. G., and Knoch, H. G. (1986) Scintigraphic control of bone-fracture healing under ultrasonic stimulation: an animal experimental study. Eur. J. Nuclear Med. 11, 494–497.

    CAS  Google Scholar 

  85. Dyson, M. and Brookes, M. (1983) Stimulation of bone repair by ultrasound. Ultrasound Med. Biol. 8(S2), 61–66.

    Google Scholar 

  86. Duarte, L. R. (1983) The stimulation of bone growth by ultrasound. Arch. Orthop. Trauma Surg. 101, 153–159.

    Article  PubMed  CAS  Google Scholar 

  87. Pilla, A. A., Mont, M. A., Nasser, P. R., et al. (1990). Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J. Orthop. Trauma 4, 246–253.

    Article  PubMed  CAS  Google Scholar 

  88. Pilla, A. A., Figueiredo, M., Nasser, P., et al. (1991) Acceleration of bone repair by pulsed sine wave ultrasound: animal, clinical, and mechanistic studies, in Electromagnetics in Biology and Medicine (Brighton, C. T. and Pollack, S. R., eds.), San Francisco Press, San Francisco, pp. 331–341.

    Google Scholar 

  89. Bonnarens, F. and Einhorn, T. A. (1984) Production of a standard closed fracture in laboratory animal bone. J. Orthop. Res. 2, 97–101.

    Article  PubMed  CAS  Google Scholar 

  90. Wang, S. J., Lewallen, D. G., Bolander, M. E., Chao, E. Y. S., Ilstrup, D. M., and Greenleaf, J. F. (1994) Low-intensity ultrasound treatment increases strength in a rat femoral fracture model. J. Orthop. Res. 12, 40–47.

    Article  PubMed  CAS  Google Scholar 

  91. Webster, D. F., Harvey, W., Dyson, M., and Pond, J. B. (1980) The role of ultrasound-induced cavitation in the “invitro” stimulation of collagen synthesis in human fibroblasts. Ultrasonics 18, 33–37.

    Article  PubMed  CAS  Google Scholar 

  92. Ryaby, J. T., Cai, F. F., Kaufman, J. J., and Lippiello, L. (1998) Mechanical stimulation of cartilage by ultrasound, in Electricity and Magnetism in Biology and Medicine (Bersani, F., ed.), Plenum, New York, pp. 947–950.

    Google Scholar 

  93. Ryaby, J. T., Duarte-Alves, P., Mathew, J., and Pilla, A. A. (1991) Low intensity pulsed ultrasound modulates adenylate cyclase activity and transforming growth factor beta synthesis, in Electromagnetics in Biology and Medicine (Brighton, C. T. and Pollack, S. R., eds.), San Francisco Press, San Francisco, pp. 95–100.

    Google Scholar 

  94. Yang, K. H., Parvizi, J., Wang, S. J., et al. (1996) Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J. Orthop. Res. 14, 802–809.

    Article  PubMed  CAS  Google Scholar 

  95. Parvizi, J., Wu, C. C., Lewallen, D. G., Greenleaf, J. F., and Bolander, M. E. (1999) Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J. Orthop. Res. 17, 488–494.

    Article  PubMed  CAS  Google Scholar 

  96. Parvizi, J., Parpura, V., Kinnick, R. R., Greenleaf, J. F., and Bolander, M. E. (1997) Low-intensity ultrasound increases intracellular concentration of calcium in chondrocytes. Trans. Orthop. Res. Soc. 22, 465.

    Google Scholar 

  97. Reher, P., Doan, N., Bradnock, B., Meghji, S., and Harris, M. (1999) Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine 11, 416–423.

    Article  PubMed  CAS  Google Scholar 

  98. Ito, M., Azuma, Y., Ohta, T., and Komoriya, K. (2000) Effects of ultrasound and 1,25-dihydroxyvitamin D3 on growth factor secretion in co-cultures of osteoblasts and endothelial cells. Ultrasound Med. Biol. 26, 161–166.

    Article  PubMed  CAS  Google Scholar 

  99. Shimazaki, A., Inui, K., Azuma, Y., Nishimura, N., and Yamano, Y. (2000) Low intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. J. Bone Joint Surg. 82B, 1077–1082.

    Article  Google Scholar 

  100. Mayr, E., Laule, A., Suger, G., Ruter, A., and Claes, L. (2002) Radiographic results of callus distraction aided by pulsed low-intensity ultrasound. J. Orthop. Trauma 15, 407–414.

    Article  Google Scholar 

  101. Tis, J. E., Meffert, R. H., Inoue, N., et al. (2002) The effect of low intensity pulsed ultrasound applied to rabbit tibiae during the consolidation phase of distraction osteogenesis. J. Orthop. Res. 20, 793–800.

    Article  PubMed  Google Scholar 

  102. Hippe, P. and Uhlmann, J. (1959) Die Anwendung des Ultraschalls bei schlecht heilenden Fracturen. Zent. Chirug. 28, 1105–1110.

    Google Scholar 

  103. Xavier, C. A. M. and Duarte, L. (1983) Estimulaca ultra-sonica de calo osseo: applicaca clinica. Rev. Brasil. Ortop. 18, 73–80.

    Google Scholar 

  104. Heckman, J. D., Ryaby, J. P., McCabe, J., Frey, J. J., and Kilcoyne, R. F. (1994) Acceleration of tibial fracturehealing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. 76A, 26–34.

    Google Scholar 

  105. Kristiansen, T. K., Ryaby, J. P., McCabe, J., Frey, J. J., and Roe, L. R. (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebocontrolled study. J. Bone Joint Surg. 79A, 961–973.

    Google Scholar 

  106. Emami, A., Petren-Mallmin, M., and Larsson, S. (1999) No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J. Orthop. Trauma 13, 252–257.

    Article  PubMed  CAS  Google Scholar 

  107. Tanzer, M., Harvey, E., Kay, A., Morton, P., and Bobyn, J. D. (1996) Effect of noninvasive low intensity ultrasound on bone growth into porous-coated implants. J. Orthop. Res. 14, 901–906.

    Article  PubMed  CAS  Google Scholar 

  108. Glazer, P. A., Heilmann, M. R., Lotz, J. C., and Bradford, D. S. (1998) Use of ultrasound in spinal arthrodesis. A rabbit model. Spine 23, 1142–1148.

    Article  PubMed  CAS  Google Scholar 

  109. Hanft, J. R., Goggin, J. P., Landsman, A., and Surprenant, M. (1998) The role of combined magnetic field bone growth stimulation as an adjunct in the treatment of neuroarthropathy/Charcot joint: an expanded pilot study. J. Foot Ankle Surg. 37, 510–515.

    Article  PubMed  CAS  Google Scholar 

  110. Strauss, E. and Gonya, G. (1998) Adjunct low intensity ultrasound in Charcot neuroarthropathy. Clin. Orthop. Rel. Res. 349, 132–138.

    Article  Google Scholar 

  111. Ieran, M., Zaffuto, S., Bagnacani, M., Annovi, M., Moratti, A., and Cadossi, R. (1990) Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study. J. Orthop. Res. 8, 276–282.

    Article  PubMed  CAS  Google Scholar 

  112. Stiller, M. J., Pak, G. H., Shupack, J. L., Thaler, S., Kenny, C., and Jondreau, L. (1992) A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: a double-blind, placebo-controlled clinical trial. Br. J. Dermatol. 127, 147–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ryaby, J.T. (2005). Biophysical Stimulation Using Electrical, Electromagnetic, and Ultrasonic Fields. In: Lieberman, J.R., Friedlaender, G.E. (eds) Bone Regeneration and Repair. Humana Press. https://doi.org/10.1385/1-59259-863-3:291

Download citation

  • DOI: https://doi.org/10.1385/1-59259-863-3:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-847-9

  • Online ISBN: 978-1-59259-863-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics