Skip to main content

Grafts and Bone Graft Substitutes

  • Chapter

Abstract

The value of bone transplantation is demonstrated by the frequency of its use today. Surgeons transplant bone at least 10 times more often than they do any other transplantable organ. The procedure has a rich history, dating back over 300 years to when Job van Meekeren performed the first bone graft using a canine xenograft to repair a cranial defect (138). Bone grafting became critical during World War II, prompting the US Navy to establish bone banks to better treat fractures sustained in battle (9). During that period a successful graft was thought to be one that could withstand the forces applied to it by the individual. Today we consider the bone graft to be a dynamic tool that should not only support normal forces, but also incorporate itself into the bed, revascularize as new bone forms, and assume the specific shape required for the healing defect. Furthermore, accelerating the normal healing process whenever possible is an obvious goal. Recombinant DNA technology might achieve this goal by allowing surgeons to apply growth factors to defects in therapeutic quantities in an effort to speed regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, J. G., Hoyland, J. A., Freemont, A. J., and Marsh, D. R. (1995) Platelet-derived growth factor expressed innormally healing human fractures. Bone 16, 455–460.

    PubMed  CAS  Google Scholar 

  2. Ashton, B. A., Allen, T. D., Howlett, C. R., et al. (1980) Formation of bone and cartilage by marrow stromal cells indiffusion chambers in vivo. Clin. Orthop. Rel. Res. 151, 294.

    Google Scholar 

  3. Beck, L. S., DeGuzman, L., and Lee, W. P. (1995) Transforming growth factor-beta 1 bound to tricalcium phosphatepersist at segmental radial defects and induces bone formation. Trans. Orthop. Res. Soc. 20, 593.

    Google Scholar 

  4. Beck, L. S., DeGuzman, L., and Lee, W. P. (1996) Bone marrow augments the activity of transforming growthfactor-beta 1 in critical sized defects. Trans. Orthop. Res. Soc. 21, 626.

    Google Scholar 

  5. Beresford, J. N. (1989) Osteogenic stem cells and the stromal system of bone and marrow. Clin. Orthop. Rel. Res. 240, 270.

    Google Scholar 

  6. Berrey, B. H., Lord, C. F., Gebhardt, M. C., and Mankin, H. J. (1990) Fractures in allografts. J. Bone Joint Surg. 72A,825–833.

    Google Scholar 

  7. Berrey, B. H., Lord, C. F., Gebhardt, M. C., and Mankin, H. J. (1990) Fractures of allografts. Frequency, treatment, andend-results. J. Bone Joint Surg. 72, 825–833.

    PubMed  Google Scholar 

  8. Bland, Y. S., Critchlow, M. A., and Ashhurst, D. E. (1995) Exogenous fibroblast growth factors-1 and-2 do notaccelerate fracture healing in the rabbit. Acta Orthop. Scand. 66, 543.

    PubMed  CAS  Google Scholar 

  9. Blitch, E. and Ricotta, P. (1996) Introduction to bone grafting. J. Foot Ankle Surg. 35, 458–462.

    PubMed  CAS  Google Scholar 

  10. Boden, S. D., Schimandle, J. H., and Hutton, W. C. (1995) Volvo award in basic science. the use of an osteoinductivegrowth factor for lumbar spinal fusion. Part I: Biology of spinal fusion. Spine 20, 2626–2632.

    PubMed  CAS  Google Scholar 

  11. Boden, S. D., Schimandle, J. H., and Hutton, W. C. (1995) Volvo award in basic science. the use of an osteoinductivegrowth factor for lumbar spinal fusion. Part II: Study of dose, carrier, and species. Spine 20, 2633–2644.

    PubMed  CAS  Google Scholar 

  12. Boden, S. D. (2001) Clinical application of the BMPs. J. Bone Joint Surg. 83A(Suppl 1, Pt 2), S161.

    Google Scholar 

  13. Boden, S. D., Zdeblick, T. A., Sandhu, H. S., and Heim, S. E. (2000) The use of rhBMP-2 in interbody fusion cages.Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25(3), 376–381.

    PubMed  CAS  Google Scholar 

  14. Bonucci, E. (1981) New knowledge of the origin, function and fate of osteoclasts. Clin. Orthop. Rel. Res. 158, 252–269.

    Google Scholar 

  15. Bruder, S. P., Fink, D. J., and Caplan, A. I. (1994) Mesenchymal stem cells in bone development, bone repair, andskeletal regeneration therapy. J. Cell Biol. 56, 283–294.

    CAS  Google Scholar 

  16. Bucholz, R. W. (1994) Development and clinical use of coral-derived hydroxyapatite bone graft substitutes, in BoneGrafts, Derivatives, and Substitutes (Urist, M. R., O’Connor, B. T., and Burwell, R. G., eds.), Butterworth-Heinemann,pp. 260–270.

    Google Scholar 

  17. Buck, B. E., Malinin, T., and Brown, M. D. (1989) Bone transplantation and human immunodeficiency virus. Clin.Orthop. 240, 129–136.

    PubMed  Google Scholar 

  18. Bugbee, W. D. and Convery, F. R. (1999) Osteochondral allograft transplantation. Clin. Sports Med. 18, 67–75.

    PubMed  CAS  Google Scholar 

  19. Buncke, H. J., Furnas, D. W., Gordon, L., and Achaner, B. (1977) Free osteocutaneous flap for the rib to the tibia.Plast. Reconstr. Surg. 59, 79–91.

    Google Scholar 

  20. Burchardt, H. (1983) The biology of bone graft repair. Clin. Orthop. Rel. Res. 174, 28–42.

    Google Scholar 

  21. Burchardt, H., Glowczewskie, F. P., and Ennecking, W. F. (1981) Short-term immunosupression with fresh segmentalfibular allografts in dogs. J. Bone Joint Surg. 63A, 411–415.

    Google Scholar 

  22. den Boer, F. C., Bramer, J. A., Blokhuis, T. J., et al. (2002) Effect of recombinant human osteogenic protein-1 on thehealing of a freshly closed diaphyseal fracture. Bone 31(1), 158–164.

    Google Scholar 

  23. Burgess, W. H. and Maciag, T. (1989) The heparin-binding (fibroblast) growth factor family of proteins. Ann. Rev.Cell Dev. Biol. 58, 575–606.

    CAS  Google Scholar 

  24. Burwell, R. G. (1985) The function of bone marrow in the incorporation of a bone graft. Clin. Orthop. 200, 125–141.

    PubMed  Google Scholar 

  25. Burwell, R. G. (1994) The Burwell theory on the importance of bone marrow in bone grafting, in Bone Grafts,Derivatives, and Substitutes (Urist, M. R., O’Connor, B. T., and Burwell, R. G., eds.), Butterworth-Heinemann,pp. 103–155.

    Google Scholar 

  26. Burwell, R. G., Friedlaender, G. E., and Mankin, H. J. (1985) Current perspectives and future directions: the 1983invitational conference on osteochondral allografts. Clin. Orthop. 200, 141–157.

    Google Scholar 

  27. Carringtion, J. L., Roberts, A. B., Falnders, K. C., et al. (1988) Accumulation, localization, and compartmentation oftransforming growth factor-B during endochondral bone development. J. Cell Biol. 107, 1969–1975.

    Google Scholar 

  28. Centrella, M., Horowitz, M. C., Wozney, J., and McCarthy, T. (1994) Transforming growth factor-beta gene familymembers and bone. Endocrinol. Rev. 15, 27.

    CAS  Google Scholar 

  29. Clark, R. A. F. (1996) The Molecular and Cellular Biology of Wound Repair. Plenum Press, New York.

    Google Scholar 

  30. Clarke, M. S. F., Khakee, R., and McNeil, P. L. (1993) Loss of cytoplasmic basic fibroblast growth factor forphysiologically wounded myofibers of normal and dystrophic muscle. J. Cell Sci. 106, 121–133.

    PubMed  CAS  Google Scholar 

  31. Connolly, J., Guse, R., Lippiello, L., and Dehne, R. (1989) Development of an osteogenic bone-marrow preparation.J. Bone Joint Surg. 71, 684–691.

    PubMed  CAS  Google Scholar 

  32. Connolly, J., Guse, R., Tiedeman, J., and Dehne, R. (1991) Autologous marrow injection as a substitute for operativegrafting of tibial nonunions. Clin. Orthop. 266, 259–270.

    PubMed  Google Scholar 

  33. Constantz, B. R., Ison, I. C., Fulmer, M. T., et al. (1995) Skeletal repair by in situ formation of the mineral phase ofbone (see comments). Science 267, 1796–1799.

    PubMed  CAS  Google Scholar 

  34. Cook, S. D., Baffes, G. C., Wolfe, M. W., Sampath, T. K., and Rueger, D. C. (1994) Recombinant human bonemorphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin. Orthop. 301, 304–312.

    Google Scholar 

  35. Cook, S. D., Baffes, G. C., Wolfe, M. W., et al. (1994) The effect of recombinant human osteogenic protein-1 onhealing of large segmental bone defects. J. Bone Joint Surg. 76, 827–838.

    PubMed  CAS  Google Scholar 

  36. Cook, S. D., Dalton, J. E., Tan, E. H., Whitecloud, T. S., and Rueger, D. C. (1994) In vivo evaluation of recombinanthuman osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine 19, 1655–1663.

    PubMed  CAS  Google Scholar 

  37. Cook, S. D., Wolfe, M. W., Salkeld, S. L., and Rueger, D. C. (1995) Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J. Bone Joint Surg. 77, 734–750.

    PubMed  CAS  Google Scholar 

  38. Critchlow, M. A., Bland, Y. S., and Ashhurst, D. E. (1995) The effect of exogenous transforming growth factor-beta2 on healing fractures in the rabbit. Bone 16, 521–527.

    PubMed  CAS  Google Scholar 

  39. Cuevas, P., Burgos, J., and Baird, A. (1988) Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo.Biochemical. Biophysical. Res. Commun. 156, 611–618.

    CAS  Google Scholar 

  40. Doi, K., Tominaga, S., and Shibata, T. (1977) Bone grafts with microvascular anastomoses of vascular pedicles. J.Bone Joint Surg. 59A, 809–815.

    Google Scholar 

  41. Dreesmann, H. (1892) Ueber Knochenplombierung. Beitr. Klin. Chir. 9, 804–810.

    Google Scholar 

  42. Dunstan, C. R., Boyce, R., Boyce, B. F., et al. (1999) Systemic administration of acidic fibroblast growth factor(FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J. Bone Miner. Res. 14, 953–959.

    PubMed  CAS  Google Scholar 

  43. Ekelund, A., Brosjo, O., and Nilsson, O. S. (1991) Experimental induction of heterotopic bone. Clin. Orthop. Rel.Res. 263, 102.

    Google Scholar 

  44. Enneking, W. F., Eady, J. L., and Burchardt, H. (1980) Autogenous cortical bone grafts in the reconstruction ofsegmental skeletal defects. J. Bone Joint Surg. 62A, 1039–1058.

    Google Scholar 

  45. Enneking, W. F. and Mindell, E. R. (1991) Observations on massive retrieved human allografts. J. Bone Joint Surg. 73A, 1123–1142.

    Google Scholar 

  46. Esch, F., Baird, A., Ling, N., et al. (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) andcomparison with the amino terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 82, 6507–6511.

    PubMed  CAS  Google Scholar 

  47. Fager, G., Hansson, G. K., Ottosson, P., Dahllof, B., and Bondjers, G. (1988) Human arterial smooth muscle cells inculture: effects of platelet derived growth factor and heparin on growth in vitro. Exp. Cell Res. 176, 319–335.

    PubMed  CAS  Google Scholar 

  48. Flynn, J. M., Springfield, D. S., and Mankin, H. J. (1994) Osteoarticular allografts to treat distal femoral osteonecrosis.Clin. Orthop. 303, 38–43.

    PubMed  Google Scholar 

  49. Friedlaender, G. E., Perry, C. R., Cole, J. D., et al. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) inthe treatment of tibial nonunions. J. Bone Joint Surg. American Volume 83A(Suppl 1, Pt 2), S151–S158.

    Google Scholar 

  50. Fujimori, Y., Nakamura, T., Ijiri, S., Shimizu, K., and Yamamuro, T. (1992) Heterotopic bone formation induced bybone morphogenetic protein in mice with collagen-induced arthritis. Biochem. Biophys. Res. Commun. 186, 1362–1367.

    PubMed  CAS  Google Scholar 

  51. Galzie, Z., Kinsella, A. R., and Smith, J. A. (1997) Fibroblast growth factors and their receptors. Biochem. Cell Biol. 75, 669–685.

    PubMed  CAS  Google Scholar 

  52. Geesink, R. G., Hoefnagels, N. H., and Bulstra, S. K. (1999) Osteogenic activity of OP-1 bone morphogenetic protein(BMP-7) in a human fibular defect. J. Bone Joint Surg. 81(4), 710–718.

    CAS  Google Scholar 

  53. Gerhart, T., Kirker-Head, C., Kriz, M., et al. (1991) Healing of large mid-femoral segmental defects in sheep usingrecombinant human bone morphogenetic protein (BMP-2). Trans. Orthop. Res. Soc. 16, 172.

    Google Scholar 

  54. Glowacki, J., Jasty, M., and Goldring, S. (1986) Comparison of multinucleated cells elicited in rats by particulatebone, polyethylene, or polymethylmethacrylate. J. Bone Miner. Res. 1, 327.

    PubMed  CAS  Google Scholar 

  55. Goel, S. C. and Tuli, S. M. (1994) Use of decalbone in healing of osseous cystic defects, in Bone Grafts, Derivatives,and Substitutes (Urist, M. R., O’Connor, B. T., and Burwell, R. G., eds.), Butterworth-Heinemann, pp. 210–219.

    Google Scholar 

  56. Gospodarowicz, D. (1974) Localisation of fibroblast growth factor and its effect alone and with hydrocortisone on3T3 cell growth. Nature 249, 123–129.

    PubMed  CAS  Google Scholar 

  57. Gospodarowicz, D., Bialecki, H., and Greenburg, G. (1978) Purification of fibroblast growth factor activity frombovine brain. J. Biol. Chem. 253, 3736–3743.

    PubMed  CAS  Google Scholar 

  58. Govender, S., Csimma, C., Genant, H. K., et al. (2002) BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT)Study Group. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective,controlled, randomized study of four hundred and fifty patients. J. Bone Joint Surg. 84A(12), 2123–2134.

    Google Scholar 

  59. Hammack, B. L. and Enneking, W. F. (1960) Comparative vascularization of autogenous and homogenous bone transplants. J. Bone Joint Surg. 42A, 811.

    Google Scholar 

  60. Han, C. S., Wood, M. B., Bishop, A. D., et al. (1992) Vascularized bone transfer. J. Bone Joint Surg. 74A, 1441–1449.

    Google Scholar 

  61. Heckman, J. D., Aufdemorte, T. B., and Athanasiou, K. A. (1995) Treatment of acute ostectomy defects in the dogradius with TGF-B1. Trans. Orthop. Res. Soc. 20, 590.

    Google Scholar 

  62. Hench, L. L. (1992) Bioactive bone substitutes, in Bone Grafts and Bone Graft Substitutes (Habal, M. B. and Reddi, A. H., eds.), Saunders, Philadelphia, pp. 263–275.

    Google Scholar 

  63. Hofmann, G. O., Kirschner, M. H., Wagner, F. D., Brauns, L., Gonschorek, O., and Buhren, V. (1998) Allogeneicvascularized transplantation of human femoral diaphyses and total knee joints-first clinical experiences. Transplant.Proc. 30, 2754–2761.

    PubMed  CAS  Google Scholar 

  64. Hollinger, J. O. and Wong, M. E. (1996) The integrated processes of hard tissue regeneration with special emphasison fracture healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodont. 82, 594–606.

    CAS  Google Scholar 

  65. Hughes, A. D., Clunn, C. F., Refson, J., and Demoliou-Mason, C. (1996) Platelet-derived growth factor: actions andmechanisms in vascular smooth muscle. Genet. Pharm. 27, 1079–1089.

    CAS  Google Scholar 

  66. Hurley, M. M., Lee, S. K., Raisz, L. G., Bernecker, P., and Lorenzo, J. (1998) Basic fibroblast growth factor inducesosteoclast formation in murine bone marrow cultures. Bone 22, 309–316.

    PubMed  CAS  Google Scholar 

  67. Ibbotson, K. J., Harrod, J., Gowen, M., et al. (1986) Human recombinant transforming growth factor alpha stimulatesbone resorption and inhibits formation in vitro. Proc. Natl. Acad. Sci. USA 83(7), 2228–2232.

    PubMed  CAS  Google Scholar 

  68. Iwata, H., Sakano, S., Itoh, T., and Bauer, T. W. (2002) Demineralized bone matrix and native bone morphogeneticprotein in orthopaedic surgery. Clin. Orthop. Rel. Res. 395, 99–109.

    Google Scholar 

  69. Jaye, M., Schlessinger, J., and Dionne, C. A. (1992) Fibroblast growth factor receptor tyrosine kinase-molecularanalysis and signal transduction. Biochem. Biophys. Acta 1135, 185–199.

    PubMed  CAS  Google Scholar 

  70. Jingushi, S., Heydemann, A., Kana, S. K., Macey, L. R., and Bolander, M. E. (1990) Acidic fibroblast growth factor(aFGF) injection stimulates cartilage enlargement and inhibits cartilage gene expression in rat fracture healing. J.Orthop. Res. 8, 364–371.

    PubMed  CAS  Google Scholar 

  71. Johnson, E. E., Urist, M. R., and Finerman, G. A. (1988) Bone morphogenetic protein augmentation grafting ofresistant femoral nonunions. A preliminary report. Clin. Orthop. 230, 257–265.

    PubMed  Google Scholar 

  72. Johnson, E. E., Urist, M. R., and Finerman, G. A. (1988) Repair of segmental defects of the tibia with cancellousbone grafts augmented with human bone morphogenetic protein. A preliminary report. Clin. Orthop. 236, 249–257.

    PubMed  Google Scholar 

  73. Johnson, E. E., Urist, M. R., and Finerman, G. A. (1992) Resistant nonunions and partial or complete segmentaldefects of long bones. Treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed,antigen-extracted, allogeneic (AAA) bone. Clin. Orthop. 277, 229–237.

    PubMed  Google Scholar 

  74. Joyce, M. E., Nemeth, G. G., Jingushi, S., et al. (1989) Expression and localization of transforming growth factor-Bin a model of fracture healing. Orthop. Trans. 13(2), 460.

    Google Scholar 

  75. Kato, T., Kawaguchi, H., Hanada, K., et al. (1988) Single local injection of recombinant fibroblast growth factor-2stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 16, 654–659.

    Google Scholar 

  76. Katthagen, B. D. and Mittelmeier, W. (1994) Clinical use of pyrost, in Bone Grafts, Derivatives, and Substitutes(Urist, M. R., O’Connor, B. T., and Burwell, R. G., eds.), Butterworth-Heinemann, pp. 220–234.

    Google Scholar 

  77. Kelly, C. M., Wilkins, R. M., Gitelis, S., Hartjen, C., Watson, J. T., and Kim, P. T. (2001) The use of a surgical gradecalcium sulfate as a bone graft substitute: results of a multicenter trial. Clin. Orthop. Rel. Res. 382, 42–50.

    Google Scholar 

  78. Khan, S. N. Sandhu, H. S., Lane, J. M., Cammisa, F. P. Jr., and Girardi, F. P. (2002) Bone morphogenetic proteins:elevance in spine surgery. Orthop. Clin. N. Am. 33(2), 447–463, ix.

    Google Scholar 

  79. Kimmelman, D., Abraham, J., Haaparanta, T., Palisi, T., and Kirschner, M. (1988) The presence of fibroblast growthfactor in the frog egg: its role as a natural mesoderm inducer. Science 242, 1053–1056.

    Google Scholar 

  80. Kimoto, T., Hosokawa, R., Kubo, T., et al. (1998) Continuous administration of basic fibroblast growth factor (FGF-2)accelerates bone induction on rat calvaria-an application of a new drug delivery system. J. Dental Res. 77, 1965–1969.

    CAS  Google Scholar 

  81. Kirker-Head, C., Gerhart, T., Schelling, S., et al. (1995) Long-term healing of bone using recombinant human bonemorphogenetic protein-2. Clin. Orthop. 318, 222–230.

    PubMed  Google Scholar 

  82. Kirschner, M. H., Wagner, F. D., Nerlich, A. L., Buhren, V., and Hofmann, G. O. (1998) Allogenic grafting of vascularizedbone segments under immunosuppression. Clinical results in the transplantation of femoral diaphyses.Transplant Int. 11, 195–203.

    CAS  Google Scholar 

  83. Kish, G., Modis, L., and Hangody, L. (1999) Osteochondral mosaicplasty for the treatment of focal chondral andosteochondral lesions of the knee and talus in the athlete. Rationale, indications, techniques, and results. Clin.Sports Med. 18, 45–66.

    PubMed  CAS  Google Scholar 

  84. Kopylov, P. (1999) Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in40 patients. Acta Orthop. Scand. 70, 1–5.

    PubMed  CAS  Google Scholar 

  85. Kumta, S. M., Leung, P. C., Griffith, J. F., et al. (1998) A technique for enhancing union of allograft to host bone. J.Bone Joint Surg. 80B, 994–998.

    Google Scholar 

  86. Kuznetsov, S. A. Krebsbach, P. H. Satomura, K., et al. (1997) Single-colony derived strains of human marrowstromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347.

    PubMed  CAS  Google Scholar 

  87. Lane, J. M., Yasko, A. W., Tomin, E., et al. (1999) Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair. Clin. Orthop. Rel. Res. 361, 261–272.

    Google Scholar 

  88. Lee, W. P., Rubin, J. P., Cober, S., Ierino, F., Randolph, M. A., and Sachs, D. H. (1998) Use of swine model intransplantation of vascularized skeletal tissue allografts. Transplant. Proc. 30, 2743–2745.

    PubMed  CAS  Google Scholar 

  89. Lexer, E. (1925) Joint transplantation and arthroplasty. Surg. Gynecol. Obstet. 40, 782–809.

    Google Scholar 

  90. Lind, M., Schumacker, B., Soballe, K., et al. (1993) Transforming growth factor-beta enhances fracture healing inrabbit tibiae. Acta Orthop. Scand. 64, 553.

    PubMed  CAS  Google Scholar 

  91. Lieberman, J. R., Daluiski, A., and Einhorn, T. A. (2002) The role of growth factors in the repair of bone. Biologyand clinical applications. J. Bone Joint Surg. 84A(6), 1032–1044.

    Google Scholar 

  92. Lorentzon, R., Alfredson, H., and Hildingsson, C. (1998) Treatment of deep cartilage defects of the patella with periostealtransplantation. Knee Surg. Sports Traum. Arthroscopy 6, 202–208.

    CAS  Google Scholar 

  93. Macewen, W. (1909) Intrahuman bone grafting and reimplantation of bone. Ann. Surg. 50, 959–968.

    PubMed  CAS  Google Scholar 

  94. Mankin, H. J., Springfield, D. S., Gebhardt, M. C., and Tomford, W. (1992) Current status of allografting for bonetumors. Orthopedics 15, 1147–1154.

    PubMed  CAS  Google Scholar 

  95. Marx, R. E., Carlson, E. R., Eichstaedt, R. M., Schimmele, S. R., Strauss, J. E., and Georgeff, K. R. (1998) Plateletrichplasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodont. 85, 638–646.

    CAS  Google Scholar 

  96. Meyers, M. H. and Chatterjee, S. N. (1978) Osteochondral transplantation. Surg. Clin. N. Am. 58, 429–434.

    PubMed  CAS  Google Scholar 

  97. Mirzayan, R., Panossian, V., Avedian, R., Forrester, D. M., and Menendez, L. R. (2001) The use of calcium sulfatein the treatment of benign bone lesions. A preliminary report. J. Bone Joint Surg. 83A(3), 355–358.

    Google Scholar 

  98. Moed, B. R., Willson Carr, S. E., Craig, J. G., and Watson, J. T. (2003) Calcium sulfate used as bone graft substitutein acetabular fracture fixation. Clin. Orthop. Rel. Res. 410, 303–309.

    Google Scholar 

  99. Morrison, S. J., Uchida, N., and Weissman, I. L. (1995) The biology of hematopoietic stem cells. Ann. Rev. Cell Dev.Biol. 11, 35–71.

    CAS  Google Scholar 

  100. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A., and Weissman, I. L. (1996) The aging of hematopoieticstem cells. Nat. Med. 2, 1011–1016.

    PubMed  CAS  Google Scholar 

  101. Muschler, G. F., Boehm, C., and Easley, K. (1997) Aspiration to obtain osteoblast progenitor cells from human bonemarrow: the influence of aspiration volume. J. Bone Miner. Res. 79, 1699–1709.

    CAS  Google Scholar 

  102. Muschler, G. F., Hyodo, A., Manning, T., Kambic, H., and Easley, K. (1994) Evaluation of recombinant human bonemorphogenetic protein-2 in a canine fusion model. Clin. Orthop. 308, 229–240.

    PubMed  Google Scholar 

  103. Nakahara, H., Goldberg, V. M., and Caplan, A. I. (1992) Culture-expanded periosteal-derived cells exhibit osteochondrogenicpotential in porous calcium in vivo. Clin. Orthop. 276, 291–298.

    PubMed  Google Scholar 

  104. Nakajima, F., Yamazaki, M., Ogasawara, A., et al. (1998) Enhancement of experimental fracture healing with a localinjection of basic fibroblast growth factor. Trans. Orthop. Res. Soc. 23, 596.

    Google Scholar 

  105. Nakamura, T., Hara, Y., Tagawa, M., et al. (1998) Recombinant human basic fibroblast growth factor acceleratesfracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 13, 942.

    PubMed  CAS  Google Scholar 

  106. Nash, T. J., Howlett, C. R., Martin, C., et al. (1994) Effect of platelet derived growth factor on tibial osteotomies inrabbits. Bone 15, 203.

    PubMed  CAS  Google Scholar 

  107. Nielsen, H. M., Andreassen, T. T., Ledet, T., and Oxlund, H. (1994) Local injection of TGF-beta increases thestrength of tibial fractures in the rat. Acta Orthop. Scand. 65, 37.

    PubMed  CAS  Google Scholar 

  108. Ohlendorf, C., Tomford, W., and Mankin, H. J. (1996) Chondrocyte survival in cryopreserved osteochondral articularcartilage. J. Orthop. Res. 14, 413–416.

    PubMed  CAS  Google Scholar 

  109. Ornitz, D. M., Yayon, A., Flanagan, J. G., et al. (1992) Heparin is required for cell free binding of basic fibroblastgrowth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell Biol. 12, 240–247.

    PubMed  CAS  Google Scholar 

  110. Owen, M. (1980) The origin of bone cells in the postnatal organism. Arthrit. Rheum. 23, 1074.

    Google Scholar 

  111. Paley, D., Young, M. C., Wiley, A. M., et al. (1986) Percutaneous bone marrow grafting of fractures and bonydefects: an experimental study in rabbits. Clin. Orthop. Rel. Res. 208, 300.

    Google Scholar 

  112. Partio, E. K., Tuompo, P., Hirvensalo, E., Bostman, O., and Rokkanen, P. (1997) Totally absorbable fixation in thetreatment of fractures of the distal femoral epiphyses. A prospective clinical study. Arch. Orthop. Trauma Surg. 116,213–216.

    PubMed  CAS  Google Scholar 

  113. Pasquale, E. B. and Singer, S. J. (1989) Identification of a developmentally regulated protein tyrosine kinase by usinganti-phosphotyrosine anitbodies to screen a cDNA expression library. Proc. Natl. Acad. Sci. USA 86, 5449–5453.

    PubMed  CAS  Google Scholar 

  114. Peltier, L. F. (1961) The use of plaster of paris to fill defects in bone. Clin. Orthop. 21, 1–31.

    PubMed  CAS  Google Scholar 

  115. Peltier, L. F. and Speer, D. (1992) Calcium sulfate, in Bone Grafts and Bone Graft Substitutes (Habal, M. B. and Reilly, M. J., eds.), Saunders, Philadelphia, pp. 243–246.

    Google Scholar 

  116. Peltier, L. F. (2001) The use of plaster of Paris to fill large defects in bone: a preliminary report. 1959. Clin. Orthop.Rel. Res. 382, 3–5.

    Google Scholar 

  117. Peterson, D. L., Glancy, T. P., and Bacon-Clarke, R. (1997) A study of delivery timing and duration of the transforminggrowth factor-beta 1 induced healing of critical-sized long bone defects. J. Bone Miner. Res. S304.

    Google Scholar 

  118. Pihlajamaki, H., Kinnunen, J., and Bostman, O. (1997) In vivo monitoring of the degradation process of bioresorbablepolymeric implants using magnetic resonance imaging. Biomaterials 18, 1311–1315.

    PubMed  CAS  Google Scholar 

  119. Praemer, M. A., Furner, S., and Rice, D. P. (1992) Musculoskeletal conditions in the united states. American Academyof Orthopaedic Surgeons, Park Ridge, IL.

    Google Scholar 

  120. Radomsky, M. L., Aufdemorte, T. B., Swain, L. D., et al. (1999) Novel formulation of fibroblast growth factor-2 ina hyaluronan gel accelerates fracture healing in nonhuman primates. J. Orthop. Res. 17, 607–614.

    PubMed  CAS  Google Scholar 

  121. Radomsky, M. L., Thompson, R. C., Spiro, R. C., and Poser, J. W. (1998) Potential role of fibroblast growth factorin enhancement of fracture healing. Clin. Orthop. 355S, 283.

    Google Scholar 

  122. Ray, R. D. (1972) Bone grafts and bone implants. Otolaryngol. Clin. N. Am. 5, 389.

    CAS  Google Scholar 

  123. Ray, R. D. (1972) Vascularization of bone graft and implants. Clin. Orthop. 87, 43–48.

    PubMed  CAS  Google Scholar 

  124. Ray, R. D. S. T. (1963) Bone grafts: cellular survival versus induction-an experimental study. J. Bone Joint Surg. 33A, 873.

    Google Scholar 

  125. Reddi, A. H. (1992) Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr. Opin.Cell Biol. 4, 850–855.

    PubMed  CAS  Google Scholar 

  126. Rifkin, D. B. and Moscatelli, D. (1989) Recent developments in the cell biology of basic fibroblast growth factor. J.Cell Biol. 109, 1–6.

    PubMed  CAS  Google Scholar 

  127. Rosier, R. N., O’Keefe, R. J., and Hicks, D. G. (1998) The potential role of transforming growth factor-beta in fracturehealing. Clin. Orthop. 355S, 294.

    Google Scholar 

  128. Rosier, R. N., O’Keefe, R. J., and Hicks, D. G. (1998) The potential role of transforming growth factor beta in fracturehealing. Clin. Orthop. 355S, 294–301.

    Google Scholar 

  129. Sakou, T. (1998) Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22, 591–603.

    PubMed  CAS  Google Scholar 

  130. Salama, R., Burwell, R. G., and Dickson, I. R. (1973) The beneficial effect upon osteogenesis of impregnated xenograft(heterograft) bone with autologous red marrow. J. Bone Joint Surg. 55B, 402–417.

    Google Scholar 

  131. Salama, R. and Weissman, I. L. (1978) The clinical use of combined xenografts of bone and autologous red marrow.J. Bone Joint Surg. 60B, 111–115.

    Google Scholar 

  132. Sandhu, D. J., Kanim, L. E., Kabo, J. M., et al. (1995) Evaluation of rhBMP-2 with an OPLA carrier in a canineposterolateral (transverse process) spinal fusion model. Spine 20, 2669–2682.

    PubMed  CAS  Google Scholar 

  133. Schaffer, J. W., Field, G. A., Goldberg, V. M., and Davy, D. (1985) Fate of vascularized and non-vascularized autografts.Clin. Orthop. 197, 32–43.

    Google Scholar 

  134. Schimandle, J. H. and Boden, S. D. (1994) The use of animal models to study spinal fusion. Spine 19, 1998–2006.

    PubMed  CAS  Google Scholar 

  135. Schimandle, J. H., Boden, S. D., and Hutton, W. C. (1995) Experimental spinal fusion with recombinant human bonemorphogenetic protein-2. Spine 20, 1326–1337.

    PubMed  CAS  Google Scholar 

  136. Schmitt, J. M., Hwang, K., Winn, S. R., and Hollinger, J. O. (1999) Bone morphogenetic proteins: an update onbasic biology and clinical relevance. J. Clin. Orthop. Res. 17, 269–278.

    CAS  Google Scholar 

  137. Seifert, R. A., Hart, C. E., Phillips, P. E., et al. (1989) Two different subunits associate to create isoform-specificplatelet derived growth factor receptors. J. Biol. Chem. 264, 8771–8778.

    PubMed  CAS  Google Scholar 

  138. Slack, J. M. W., Isaacs, H. V., and Darlington, B. G. (1988) Inductive effects of FGF and lithium ion on xenopusblastula ectoderm. Development 103, 581–590.

    PubMed  CAS  Google Scholar 

  139. Stevenson, S. (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin. Orthop.Rel. Res. 355S, S239–S246.

    Google Scholar 

  140. Takagi, K. I. and Urist, M. R. (1982) The role of bone marrow in bone morphogenetic protein-induced repair offemoral massive diaphyseal defects. Clin. Orthop. Rel. Res. 171, 224.

    Google Scholar 

  141. Takao, Y. (1994) Bone bonding behavior and clinical use of A-W glass-ceramic, in Bone Grafts, Derivatives andSubstitutes (Urist, M. R., O’Connor, B. T., and Burwell, R. G., eds.), Butterworth-Heinemann Ltd, pp. 245–259.

    Google Scholar 

  142. Taylor, G. I., Miller, G. D. H., and Ham, F. J. (1973) The free vascularized bone graft, a clinical extension of microvasculartechniques. Plast. Reconstr. Surg. 55, 533.

    Google Scholar 

  143. Thompson, R. C., Pickvance, E. A., and Garry, D. (1993) Fractures in large-segmented allografts. J. Bone Joint Surg. 75A, 1663–1673.

    Google Scholar 

  144. Tiedeman, J., Connolly, J., Strates, B. S., and Lippiello, L. (1991) Treatment of nonunion by percutaneous injectionsof bone marrow and demineralized bone matrix. An experimental study in dogs. Clin. Orthop. 268, 294–302.

    PubMed  Google Scholar 

  145. Tomford, W., Springfield, D. S., and Mankin, H. J. (1992) Fresh and frozen articular cartilage allografts. Orthopedics 15, 1183–1188.

    PubMed  CAS  Google Scholar 

  146. Tomford, W., Thongphasuk, J., Mankin, H. J., and Ferraro, M. J. (1990) Frozen musculoskeletal allografts. A studyof the clinical incidence and causes of infection associated with their use. J. Bone Joint Surg. 72, 1137–1143.

    PubMed  CAS  Google Scholar 

  147. Toriumu, D. M., Kotler, H. S., Luxenberg, D., Holtrop, M. E., and Wang, E. (1991) Mandibular reconstruction witha recombinant bone-inducing factor. functional, Histologic, and biomechanical evaluation. Arch. Otolaryngol. HeadNeck Surg. 117, 1101–1112.

    Google Scholar 

  148. Urist, M. R. (1965) Bone: formation by autoinduction. Science 150, 893–899.

    PubMed  CAS  Google Scholar 

  149. Urist, M. R. and Strates, B. S. (1971) Bone morphogenetic protein. J. Dental Res. 50, 1392–1406.

    CAS  Google Scholar 

  150. Urist, M. R., Hay, P. H., Dubuc, F., and Buring, K. (1969) Osteogenetic competence. Clin. Orthap. Rel. Res. 64,194–218.

    CAS  Google Scholar 

  151. Valentin-Opran, A., Wozney, J., Csimma, C., Lilly, L., and Riedel, G. E. (2002) Clinical evaluation of recombinanthuman bone morphogenetic protein-2. Clin. Orthop. Rel. Res. 395, 110–120.

    Google Scholar 

  152. van Meekeren, J. (1668) Heel-en Geneeskonstige Aanmerkingen. Commelijn.

    Google Scholar 

  153. Walsh, W. R., Morberg, P., Yu, Y., et al. (2003) Response of a calcium sulfate bone graft substitute in a confinedcancellous defect. Clin. Orthop. Rel. Res. 406, 228–236.

    Google Scholar 

  154. Weiland, A. J., Moore, J. R., and Daniel, R. K. (1983) Vascularized bone autografts, experience with 41 cases. Clin.Orthop. 174, 87–95.

    PubMed  Google Scholar 

  155. Wlodarski, K. H. (1990) Properties and origin of osteoblasts. Clin. Orthop. Rel. Res. 252, 276.

    Google Scholar 

  156. Wozney, J. (1992) The bone morphogenetic protein family and osteogensis. Mol. Reprod. Dev. 32, 160–167.

    PubMed  CAS  Google Scholar 

  157. Yamaguchi, J. P. and Rossant, J. (1995) Fibroblast growth factor in mammalian development. Curr. Opin. Genet.Dev. 5, 485–491.

    PubMed  CAS  Google Scholar 

  158. Yang, Z., Oemar, B. S., Carrel, T., et al. (1988) Different proliferation properties of smooth muscle cells of humanarterial and venous bypass vessels. Role of PDGF receptors mitogen-activated protein kinase, and cyclin-dependentkinase inhibitors. Circulation 97, 181–187.

    Google Scholar 

  159. Yasko, A. W., Lane, J. M., Fellinger, E. J., et al. (1992) The healing of segmental bone defects, induced by recombinanthuman bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats.J. Bone Joint Surg. 74, 659–670.

    PubMed  CAS  Google Scholar 

  160. Younger, E. M. and Chapman, M. (1989) Morbidity at bone graft donor sites. J. Orthop. Trauma 3, 192–195.

    PubMed  CAS  Google Scholar 

  161. Zellin, G., Alberius, P., and Linde, A. (1998) Autoclaved bone for craniofacial reconstruction: effects of supplementationwith bone marrow or recombinant human fibroblast growth factor-2. Plast. Reconstr. Surg. 102, 792–800.

    PubMed  CAS  Google Scholar 

  162. Zhang, A., Chen, J., and Jin, D. (1998) Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic boneresorption directly: the role of receptor beta. Biochem. Biophys. Res. Commun. 251, 190–194.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sutherland, D., Bostrom, M. (2005). Grafts and Bone Graft Substitutes. In: Lieberman, J.R., Friedlaender, G.E. (eds) Bone Regeneration and Repair. Humana Press. https://doi.org/10.1385/1-59259-863-3:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-863-3:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-847-9

  • Online ISBN: 978-1-59259-863-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics