Skip to main content

Biology of Bone Grafts

  • Chapter

Abstract

The need for bone grafting to replace skeletal defects or augment bony reconstruction has become more prevalent recently because of enhanced capability to salvage major bone loss. There are many bone graft options available for the surgeon, including autografts or allografts, either of a cortical or cancellous structure, each of which has specific biological and mechanical properties. Some grafts are more dependent on the host bed for successful incorporation, such as freeze-dried allografts, while others, such as vascularized autografts, are capable of incorporating into the host bone under adverse physiological conditions. An understanding of the biological events and biomechanical aspects of autografts and allografts is important in understanding the processes that influence the incorporation of the bone graft into the host skeleton.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burchardt, H. (1987) Biology of bone transplantation. Orthop. Clin. N. Am. 18(2), 187–196.

    CAS  Google Scholar 

  2. Goldberg, V. M. (2001) Bone grafts and their substitutes: facts, fiction and failures. Orthopaedics 24, 875–876.

    CAS  Google Scholar 

  3. Urist, M. (1980) Bone transplants and implants, in Fundamental and Clinical Bone Physiology (Urist, M., ed.), Lippincott, Philadelphia, pp. 331–368.

    Google Scholar 

  4. Gray, J. and Elves, M. (1982) Donor cells’ contribution to osteogenesis in experimental cancellous bone grafts. Clin. Orthop. 163–261.

    Google Scholar 

  5. Gray, J. and Elves, M. (1979) Early osteogenesis in compact isografts: a quantitative study of contributions of the different graft cells. Calcif. Tissue Int. 29, 225–237.

    Article  PubMed  CAS  Google Scholar 

  6. Bonfiglio, M. (1958) Repair of bone-transplant fractures. J. Bone Joint Surg. 40A, 446–456.

    Google Scholar 

  7. Bassett, C. (1972) Clinical implications of cell function in bone grafting. Clin. Orthop. 87, 49–59.

    PubMed  CAS  Google Scholar 

  8. Muschler, G., Hyodo, A., and Manning, T. (1994) Evaluation of human bone morphogenic protein 2 in a canine fusion model. Clin. Orthop. 308, 229–240.

    PubMed  Google Scholar 

  9. Cook, S., et al. (1995) Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J. Bone Joint Surg. 77a, 734–750.

    Google Scholar 

  10. Long, M., et al. (1995) Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J. Clin. Invest. 95, 881–887.

    Article  PubMed  CAS  Google Scholar 

  11. Mizutani, H. and Urist, M. (1982) The nature of bone morphogenic protein fractions derived from bovine bone matrix gelatin. Clin. Orthop. 171, 213.

    PubMed  CAS  Google Scholar 

  12. Stevenson, S., Emery, S., and Goldberg, V. (1996) Factors affecting bone graft incorporation. Clin. Orthop. 323, 66–74.

    Google Scholar 

  13. Stevenson, S., et al. (1997) Critical biological determinants of incorporation of non-vascularized cortical bone grafts. J. Bone Joint Surg. 79A, 1–6.

    Google Scholar 

  14. Younger, E. and Chapman, M. (1989) Morbidity of bone graft donor sites. J. Orthop. Trauma 3(3), 192–195.

    Article  PubMed  CAS  Google Scholar 

  15. Axhausen, W. (1956) The osteogenesitic phase of regeneration of bone. J. Bone Joint Surg. 38, 593–600.

    PubMed  Google Scholar 

  16. Goldberg, V. and Lance, E. (1972) Revascularization and accretion in transplantation. J. Bone Joint Surg. 54A, 807–816.

    Google Scholar 

  17. Burchardt, H., Busbee, G., and Enneking, W. (1975) Repair of experimental autologous grafts of cortical bone. J. Bone Joint Surg. 57A, 814.

    Google Scholar 

  18. Heiple, K., Chase, S., and Herndon, C. (1963) A comparative study of the healing process following different types of bone transplantation. J. Bone Joint Surg. 45A, 1593–1616.

    Google Scholar 

  19. Chase, S. and Herndon, C. (1955) The fate of autogenous and homogenous bone grafts. A historical review. J. Bone Joint Surg. 37A, 809–841.

    Google Scholar 

  20. Enneking, W. and Campanacci, D. (2001) Retrieved human allografts: a clinicopathological study. J. Bone Joint Surg. 83A(7), 971–986.

    Google Scholar 

  21. Abbott, L., et al. (1947) The evaluation of cortical and cancellous bone as grafting material: a clinical and experimental study. J. Bone Joint Surg. 29A, 391.

    Google Scholar 

  22. Enneking, W., et al. (1975) Physical and biological aspects of repair in dog cortical-bone transplants. J. Bone Joint Surg. 57A, 237–252.

    Google Scholar 

  23. Gazdag, A., et al. (1995) Alternatives to autogenous graft: efficacy and indications. J. Am. Acad. Orthop. Surg. 3, 1–8.

    PubMed  Google Scholar 

  24. Doi, K., Tominaga, S., and Shibata, T. (1977) Bone grafts with microvascular anastomoses of vascular pedicles. J. Bone Joint Surg. 59A, 809–815.

    Google Scholar 

  25. Goldberg, V., et al. (1990) Biological and physical properties of autogenous vascularized fibular grafts in dogs. J. Bone Joint Surg. 72A, 801–810.

    Google Scholar 

  26. Bos, G., et al. (1983) The effect of histocompatibility matching on canine frozen bone allograft. J. Bone Joint Surg. 65A, 89–96.

    Google Scholar 

  27. Goldberg, V., et al. (1984) Improved acceptance of frozen bone allografts in genetically mismatched dogs by immunosuppression. J. Bone Joint Surg. 66, 937–950.

    PubMed  CAS  Google Scholar 

  28. Goldberg, V., et al. (1985) Bone grafting: role of histocompatibility in transplantation. J. Orthop. Res. 3(4), 389–404.

    Article  PubMed  CAS  Google Scholar 

  29. Bos, D., et al. (1985) The long-term fate of fresh and frozen orthotopic bone allografts in genetically defined rats. Clin. Orthop. 197, 245–254.

    PubMed  Google Scholar 

  30. Stevenson, S. (1987) The immune response to osteochondral allografts in dogs. J. Bone Joint Surg. 69A, 573–582.

    Google Scholar 

  31. Stevenson, S, Li, S., Martin, B. (1991) The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs. J. Bone Joint Surg. 73A, 1143–1156.

    Google Scholar 

  32. Stevenson, S. and Horowitz, M. (1992) Current concepts review: the response to bone allografts. J. Bone Joint Surg. Am. 74A, 939–950.

    Google Scholar 

  33. Friedlaender, G., Strong, D., and Sell, K. (1976) Studies on the antigenicity of bone. J. Bone Joint Surg. 58A, 854–858.

    Google Scholar 

  34. Stevenson, S., Shaffer, J., and Goldberg, V. (1996) The humoral response to vascular and nonvascular allografts of bone. Clin. Orthop. 323, 86–95.

    Google Scholar 

  35. Burchardt, H., et al. (1978) Freeze-dried allogeneic segmental cortical-bone grafts in dogs. J. Bone Joint Surg. 60A, 1082–1090.

    Google Scholar 

  36. Tomford, W. and Mankin, H. (1999) Bone banking—update in methods and materials. Orthop. Clin. N. Am. 30(4), 565–570.

    Article  CAS  Google Scholar 

  37. Burchardt, H., Glowczewskie, F., and Enneking, W. (1977) Allogenic segmental fibular transplants in azathioprineimmunosuppressed dogs. J. Bone Joint Surg. 59A, 881.

    Google Scholar 

  38. Enneking, W. and Mindell, E. (1991) Observations on massive retrieved human allografts. J. Bone Joint Surg. 73A, 1123–1142.

    Google Scholar 

  39. Pelker, R. and Friedlaender, G. (1987) Biomechanical aspsects of bone autografts and allografts. Orthop. Clin. N. Am. 18, 235–239.

    CAS  Google Scholar 

  40. Delloye, C., et al. (2002) Perforations of cortical bone allografts improve their incorporation. Clin. Orthop. 396, 240–247.

    Article  PubMed  Google Scholar 

  41. Lewandrowski, K., et al. (1997) Improved osteoinduction of cortical bone allografts: a study of the effects of laser perforation and partial demineralization. J. Orthop. Res. 15(5), 748–756.

    Article  PubMed  CAS  Google Scholar 

  42. Brooks, D., Burstein, A., and Frankel, V. (1970) The biomechanics of torsional fractures: the stress concentration effect of a drill hole. J. Bone Joint Surg. 52A, 507–514.

    Google Scholar 

  43. Burstein, A., et al. (1972) Bone strength: the effect of screw holes. J. Bone Joint Surg. 54A, 1143–1156.

    Google Scholar 

  44. Davy, D. (1999) Biomechanical issues in bone transplantation. Orthop. Clin. N. Am. 30(4), 553–563.

    Article  CAS  Google Scholar 

  45. Goldberg, V. (2000) Selection of bone grafts for revision total hip arthroplasty. Clin. Orthop. 381, 68–76.

    Article  PubMed  Google Scholar 

  46. Carter, D. and Hayes, W. (1977) The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. 59A, 954.

    Google Scholar 

  47. Pelker, R., Friedlaneder, G., and Markham, T. (1983) Biomechanical properties of bone allograft. Clin. Orthop. 174, 54.

    PubMed  Google Scholar 

  48. Taguchi, R., et al. (1995) Autoclaved autograft bone combined with vascularized bone and bone marrow. Clin. Orthop. 320, 220.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Goldberg, V.M., Akhavan, S. (2005). Biology of Bone Grafts. In: Lieberman, J.R., Friedlaender, G.E. (eds) Bone Regeneration and Repair. Humana Press. https://doi.org/10.1385/1-59259-863-3:057

Download citation

  • DOI: https://doi.org/10.1385/1-59259-863-3:057

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-847-9

  • Online ISBN: 978-1-59259-863-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics