Advertisement

Gene Transfer Approaches to Enhancing Bone Healing

  • Oliver Betz
  • Mark Vrahas
  • Axel Baltzer
  • Jay R. Lieberman
  • Paul D. Robbins
  • Christopher H. Evans

Abstract

Although bone is one of the few organs in the body that can heal spontaneously and restore function without scarring, it has been recognized since the time of Hippocrates that repair is not always satisfactory.Bone healing is inadequate when the loss of bone through, for example, tumor resection or traumatic injury, is extensive enough to produce a critical-sized defect.Healing may also be impaired in much smaller defects, and nonunion following fracture occurs in 5–10%of cases (1, 2, 3).

Keywords

Gene Therapy Gene Transfer Bone Healing Adenovirus Vector Osseous Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fernandez, D. L., Ring, D., and Jupiter, J. B. (2001) Surgical management of delayed union and nonunion of distal radius fractures. J. Hand Surg. 26(2), 201–209.CrossRefGoogle Scholar
  2. 2.
    Rommens, P. M., Coosemans, W., and Broos, P. L. (1989) The difficult healing of segmental fractures of the tibial shaft. Arch. Orthop. Trauma Surg. 108(4), 238–242.PubMedCrossRefGoogle Scholar
  3. 3.
    Buchler, U. and Nagy, L. (1995) The issue of vascularity in fractures and non-union of the scaphoid. J. Hand Surg. [Br.] 20(6), 726–735.CrossRefGoogle Scholar
  4. 4.
    Einhorn, T. A. and Lane, J. M. (1998) Fracture Healing Enhancement. Clin. Orthop. Rel. Res. 335S, 365.Google Scholar
  5. 5.
    Arrington, E. D., et al. (1996) Complications of iliac crest bone graft harvesting. Clin. Orthop. 329, 300–309.PubMedCrossRefGoogle Scholar
  6. 6.
    Colterjohn, N. R. and Bednar, D. A. (1997) Procurement of bone graft from the iliac crest. An operative approach with decreased morbidity. J. Bone Joint Surg. 79(5), 756–759.PubMedGoogle Scholar
  7. 7.
    Kwong, L. M., Jasty, M., and Harris, W. H. (1993) High failure rate of bulk femoral head allografts in total hip acetabular reconstructions at 10 years. J. Arthroplasty 8(4), 341–346.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonnarens, F. and Einhorn, T. A. (1984) Production of a standard closed fracture in laboratory animal bone. J. Orthop. Res. 2(1), 97–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Einhorn, T. A. (1998) The cell and molecular biology of fracture healing. Clin. Orthop. 355(Suppl), S7–S21.PubMedGoogle Scholar
  10. 10.
    Reddi, A. H. (2001) Bone morphogenetic proteins:from basic science to clinical applications. J. Bone Joint Surg. 83A(Suppl 1, pt 1), S1–S6.Google Scholar
  11. 11.
    Li, R. H. and Wozney, J. M. (2001) Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol. 19(7), 255–265.PubMedCrossRefGoogle Scholar
  12. 12.
    Lieberman, J. R., Daluiski, A., and Einhorn, T. A. (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint Surg. 84A(6), 1032–1044.Google Scholar
  13. 13.
    Valentin-Opran, A., et al. (2002) Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin. Orthop. 395, 110–120.PubMedCrossRefGoogle Scholar
  14. 14.
    Salkeld, S. L., et al. (2001) The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. J. Bone Joint Surg. 83A(6), 803–816.Google Scholar
  15. 15.
    Bouxsein, M. L., et al. (2001) Recombinant human bone morphogenetic protein-2 accelerates healing in a rabbit ulnar osteotomy model. J. Bone Joint Surg. 83A(8), 1219–1230.Google Scholar
  16. 16.
    Uludag, H., et al. (2001) Delivery systems for BMPs:factors contributing to protein retention at an application site. J. Bone Joint Surg. 83A(Suppl 1, pt 2), S128–S135.Google Scholar
  17. 17.
    Talwar, R., et al. (2001) Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. J. Clin. Periodontol. 28(4), 340–347.PubMedCrossRefGoogle Scholar
  18. 18.
    Niyibizi, C., et al. (1998) Potential role for gene therapy in the enhancement of fracture healing. Clin. Orthop. 355 (Suppl), S148–S153.PubMedGoogle Scholar
  19. 19.
    Lieberman, J., Ghivizzani, S., and Evans, C. (2002) Gene transfer approaches to the healing of bone and cartilage. Mol. Ther. 6(2), 141.PubMedCrossRefGoogle Scholar
  20. 20.
    Lieberman, J. R. (2000) Orthopaedic gene therapy. Fracture healing and other nongenetic problems of bone. Clin. Orthop. 379(Suppl), S156–S158.PubMedGoogle Scholar
  21. 21.
    Makarov, S. S., et al. (1996) Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc. Natl. Acad. Sci. USA 93(1), 402–406.PubMedCrossRefGoogle Scholar
  22. 22.
    Baltzer, A. W. A. and Lieberman, J. (2004) Regional gene therapy to enhance bone repair. Gene Ther. 11, 344–350.PubMedCrossRefGoogle Scholar
  23. 23.
    Marshall, E. (2003) Gene therapy. Second child in French trial is found to have leukemia. Science 299(5605), 320.PubMedCrossRefGoogle Scholar
  24. 24.
    Evans, C. H., et al. (2004) Orthopaedic gene therapy. Clin. Orthop. Rel. Res. (in press).Google Scholar
  25. 25.
    Evans, C. H. and Robbins, P. D. (1999) Genetically augmented tissue engineering of the musculoskeletal system. Clin. Orthop. 367(Suppl), S410–S418.PubMedGoogle Scholar
  26. 26.
    Evans, C. H. and Robbins, P. D. (1995) Possible orthopaedic applications of gene therapy. J. Bone Joint Surg. 77A(7), 1103–1114.Google Scholar
  27. 27.
    Evans, C. H., et al. (2004) Gene therapy for the treatment of musculoskeletal diseases. J. Am. Acad. Orthop. Surg. (in press).Google Scholar
  28. 28.
    Oligino, T. J., et al. (2000) Vector systems for gene transfer to joints. Clin. Orthop. 379(Suppl), S17–S30.PubMedGoogle Scholar
  29. 29.
    Lieberman, J. R., et al. (1998) Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J. Orthop. Res. 16(3), 330–339.PubMedCrossRefGoogle Scholar
  30. 30.
    Lieberman, J. R., et al. (1999) The effect of regional gene therapy with bone morphogenetic protein-2-producing bonemarrow cells on the repair of segmental femoral defects in rats. J. Bone Joint Surg. 81A(7), 905–917.Google Scholar
  31. 31.
    Lee, J. Y., et al. (2002) Enhancement of bone healing based on ex vivo gene therapy using human musclederived cells expressing bone morphogenetic protein 2. Hum. Gene Ther. 13(10), 1201–1211.PubMedCrossRefGoogle Scholar
  32. 32.
    Gysin, R., et al. (2002) Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther. 9(15), 991–999.PubMedCrossRefGoogle Scholar
  33. 33.
    Alden, T. D., et al. (2000) The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J. Craniofac. Surg. 11(1), 24–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Dragoo, J. L., et al. (2003) Bone induction by BMP-2 transduced stem cells derived from human fat. J. Orthop. Res. 21(4), 622–629.PubMedCrossRefGoogle Scholar
  35. 35.
    Franceschi, R. T., et al. (2000) Gene therapy for bone formation:in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J. Cell Biochem. 78(3), 476–486.PubMedCrossRefGoogle Scholar
  36. 36.
    Viggeswarapu, M., et al. (2001) Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J. Bone Joint Surg. 83A(3), 364–376.Google Scholar
  37. 37.
    Krebsbach, P. H., et al. (2000) Gene therapy-directed osteogenesis:BMP-7-transduced human fibroblasts form bone in vivo. Hum. Gene Ther. 11(8), 1201–1210.PubMedCrossRefGoogle Scholar
  38. 38.
    Gugala, Z., et al. (2003) Osteoinduction by ex vivo adenovirus-mediated BMP2 delivery is independent of cell type. Gene Ther. 10(16), 1289–1296.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsuda, H., et al. (2003) Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol. Ther. 7(3), 354–365.PubMedCrossRefGoogle Scholar
  40. 40.
    Olmsted-Davis, E. A., et al. (2002) Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum. Gene Ther. 13(11), 1337–1347.PubMedCrossRefGoogle Scholar
  41. 41.
    Abe, N., et al. (2002) Enhancement of bone repair with a helper-dependent adenoviral transfer of bone morphogenetic protein-2. Biochem. Biophys. Res. Commun. 297(3), 523–527.PubMedCrossRefGoogle Scholar
  42. 42.
    Gysin, R., et al. (2002) Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther. 9(15), 991–999.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen, Y., et al. (2003) Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors. Gene Ther. 10(16), 1345–1353.PubMedCrossRefGoogle Scholar
  44. 44.
    Luk, K. D., et al. (2003) Adeno-associated virus-mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation. Biochem. Biophys. Res. Commun. 308(3), 636–645.PubMedCrossRefGoogle Scholar
  45. 45.
    Park, J., et al. (2003) Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer:a comparison of adenoviral vectors and liposomes. Gene Ther. 10(13), 1089–1098.PubMedCrossRefGoogle Scholar
  46. 46.
    Tsuchida, H., et al. (2003) Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J. Orthop. Res. 21(1), 44–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Okubo, Y., et al. (2001) In vitro and in vivo studies of a bone morphogenetic protein-2 expressing adenoviral vector. J. Bone Joint Surg. 83A(Suppl 1, pt 2), S99–S104.Google Scholar
  48. 48.
    Okubo, Y., et al. (2000) Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression. Biochem. Biophys. Res. Commun. 267(1), 382–387.PubMedCrossRefGoogle Scholar
  49. 49.
    Fang, J., et al. (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci. USA 93(12), 5753–5758.PubMedCrossRefGoogle Scholar
  50. 50.
    Bonadio, J., et al. (1999) Localized, direct plasmid gene delivery in vivo:prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5(7), 753–759.PubMedCrossRefGoogle Scholar
  51. 51.
    Musgrave, D. S., et al. (1999) Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 24(6), 541–547.PubMedCrossRefGoogle Scholar
  52. 52.
    Baltzer, A. W., et al. (1999) A gene therapy approach to accelerating bone healing. Evaluation of gene expression in a New Zealand white rabbit model. Knee Surg. Sports Traumatol. Arthrosc. 7(3), 197–202.PubMedCrossRefGoogle Scholar
  53. 53.
    Baltzer, A. W., et al. (2000) Genetic enhancement of fracture repair:healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther. 7(9), 734–739.PubMedCrossRefGoogle Scholar
  54. 54.
    Sonobe, J., et al. (2004) Osteoinduction by bone morphogenetic protein-2 expressing adenoviral vector:application of biomaterial to mask the host immune response. Hum. Gene Ther. 15, 659–668.PubMedCrossRefGoogle Scholar
  55. 55.
    Ito, T., et al. (2003) Coxsackievirus and adenovirus receptor (CAR)-positive immature osteoblasts as targets of adenovirus-mediated gene transfer for fracture healing. Gene Ther. 10(18), 1623–1628.PubMedCrossRefGoogle Scholar
  56. 56.
    Kawai, M., et al. (2004) Ectopic bone formation by human bone morphogenetic protein-2 gene transfer to skeletal muscle using transcutaneous electroporation. Hum. Gene Ther. 14, 1547–1556.CrossRefGoogle Scholar
  57. 57.
    Li, J. Z., et al. (2004) Osteogenic potential of five different recombinant human bone morphogenetic protein (BMP) adenoviral vectors in the rat. Gene Ther. (in press).Google Scholar
  58. 58.
    Boden, S. D., et al. (1998) LMP-1, a LIM-domain protein, mediates BMP-6 effects on bone formation. Endocrinology 139(12), 5125–5134.PubMedCrossRefGoogle Scholar
  59. 59.
    Minamide, A., et al. (2003) Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J. Bone Joint Surg. 85A(6), 1030–1039.Google Scholar
  60. 60.
    Peng, H., et al. (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110(6), 751–759.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang, J. C., et al. (2003) Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J. Bone Joint Surg. 85A(5), 905–911.Google Scholar
  62. 62.
    Alden, T. D., et al. (1999) Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J. Neurosurg. 90(1 Suppl), 109–114.PubMedGoogle Scholar
  63. 63.
    Helm, G. A., et al. (2000) Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J. Neurosurg. 92(2 Suppl), 191–196.PubMedGoogle Scholar
  64. 64.
    Chang, S. C., et al. (2003) Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther. 10(24), 2013–2019.PubMedCrossRefGoogle Scholar
  65. 65.
    Carmody, E. E., et al. (2002) Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum. 46(5), 1298–1308.PubMedCrossRefGoogle Scholar
  66. 66.
    Childs, L. M., et al. (2001) Effect of anti-tumor necrosis factor-alpha gene therapy on wear debris-induced osteolysis. J. Bone Joint Surg. 83A(12), 1789–1797.Google Scholar
  67. 67.
    Sud, S., et al. (2001) Effects of cytokine gene therapy on particulate-induced inflammation in the murine air pouch. Inflammation 25(6), 361–372.PubMedCrossRefGoogle Scholar
  68. 68.
    Yang, S., et al. (2002) IL-1Ra and vIL-10 gene transfer using retroviral vectors ameliorates particle-associated inflam-mation in the murine air pouch model. Inflamm. Res. 51(7), 342–350.PubMedCrossRefGoogle Scholar
  69. 69.
    Robbins, P. D., Evans, C. H., and Chernajovsky, Y. (2003) Gene therapy for arthritis. Gene Ther. 10(10), 902–911.PubMedCrossRefGoogle Scholar
  70. 70.
    Gouze, E., et al. (2001) Gene therapy for rheumatoid arthritis. Curr. Rheumatol. Rep. 3(1), 79–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Evans, C. H. and Robbins, P. D. (1999) Gene therapy of arthritis. Intern. Med. 38(3), 233–239.PubMedGoogle Scholar
  72. 72.
    Evans, C. H., et al. (1999) Gene therapy for rheumatic diseases. Arthritis Rheum. 42(1), 1–16.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Oliver Betz
    • 1
  • Mark Vrahas
    • 1
  • Axel Baltzer
    • 2
  • Jay R. Lieberman
    • 3
  • Paul D. Robbins
    • 4
  • Christopher H. Evans
    • 1
  1. 1.Center for Molecular OrthopaedicsHarvard Medical SchoolBoston
  2. 2.Praxis und Klink für OrthopaedieDusseldorfGermany
  3. 3.Department of Orthopaedic Surgery, David Geffen School of MedicineUniversity of CaliforniaLos Angeles
  4. 4.Department of Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburgh

Personalised recommendations