Skip to main content

Repair and Neuroprotective Strategies in Multiple Sclerosis

  • Chapter
Multiple Sclerosis

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 2413 Accesses

Abstract

Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS). The destruction of the oligodendrocyte-derived myelin lamellae leads to loss of nerve insulation and results in impairment of fast saltatory conduction. Axons and neurons are also damaged and lost in the disease process (1), and cell repopulation is hampered by the inability of mature neurons to undergo cell division. An attractive approach for reestablishing electrochemical circuits in MS would be to restore the function or number of myelin-generating oligodendrocytes in early lesions, to act as bridges that guide and promote axonal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 1999;12:295–302.

    Article  PubMed  CAS  Google Scholar 

  2. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000; 343:938–952.

    Article  PubMed  CAS  Google Scholar 

  3. Paz Soldan MM, Rodriguez M. Heterogeneity of pathogenesis in multiple sclerosis: implications for promotion of remyelination. J Infect Dis 2002;186(Suppl 2):S248–S253.

    Article  PubMed  Google Scholar 

  4. Dangond F. From Genetics to Genomics and Proteomics. New technologies in myelin research. In: Dangond F, ed., Disorders of Myelin in the Central and Peripheral Nervous Systems. Butterworth-Heinemann, Boston, 2002, p. 355–363.

    Google Scholar 

  5. Iglesias AH, Camelo S, Hwang D, Villanueva R, Stephanopoulos G, Dangond F. Microarray detection of E2F pathway activation and other targets in multiple sclerosis peripheral blood mononuclear cells. J Neuroimmunol 2004; 150:163–177.

    Article  PubMed  CAS  Google Scholar 

  6. Blakemore WF. Pattern of remyelination in the CNS. Nature 1974;249:577.

    Article  PubMed  CAS  Google Scholar 

  7. Stangel M, Hartung HP. Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol 2002;68:361–376.

    Article  PubMed  CAS  Google Scholar 

  8. John GR, Shankar SL, Shafit-Zagardo B, et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002;8:1115–1121.

    Article  PubMed  CAS  Google Scholar 

  9. Murray PD, McGavern DB, Sathornsumetee S, Rodriguez M. Spontaneous remyelination following extensive demyelination is associated with improved neurological function in a viral model of multiple sclerosis. Brain 2001;124:1403–1416.

    Article  PubMed  CAS  Google Scholar 

  10. Smith EJ, Blakemore WF, McDonald WI. Central remyelination restores secure conduction. Nature 1979; 280:395–396.

    Article  PubMed  CAS  Google Scholar 

  11. Smith KJ, Blakemore WF, McDonald WI. The restoration of conduction by central remyelination. Brain 1981;104:383–404.

    Article  PubMed  CAS  Google Scholar 

  12. Linington C, Bradl M, Lassmann H, Brunner C, Vass K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 1988;130:443–454.

    PubMed  CAS  Google Scholar 

  13. Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 1999;46:144–160.

    Article  PubMed  CAS  Google Scholar 

  14. Genain CP, Cannella B, Hauser SL, Raine CS. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 1999;5:170–175.

    Article  PubMed  CAS  Google Scholar 

  15. Miller DJ, Bright JJ, Sriram S, Rodriguez M. Successful treatment of established relapsing experimental autoimmune encephalomyelitis in mice with a monoclonal natural autoantibody. J Neuroimmunol 1997;75: 204–209.

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez M, Lennon VA. Immunoglobulins promote remyelination in the central nervous system. Ann Neurol 1990;27:12–17.

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez M, Miller DJ, Lennon VA. Immunoglobulins reactive with myelin basic protein promote CNS remyelination. Neurology 1996;46:538–545.

    PubMed  CAS  Google Scholar 

  18. Wilkins A, Chandran S, Compston A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 2001;36:48–57.

    Article  PubMed  CAS  Google Scholar 

  19. Taniike M, Mohri I, Eguchi N, Beuckmann CT, Suzuki K, Urade Y. Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J Neurosci 2002;22:4885–4896.

    PubMed  CAS  Google Scholar 

  20. Wu HY, Dawson MR, Reynolds R, Hardy RJ. Expression of QKI proteins and MAP1B identifies actively myelinating oligodendrocytes in adult rat brain. Mol Cell Neurosci 2001;17:292–302.

    Article  PubMed  CAS  Google Scholar 

  21. Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 1998;121:2221–2228.

    Article  PubMed  Google Scholar 

  22. Tourbah A, Linnington C, Bachelin C, Avellana-Adalid V, Wekerle H, Baron-Van Evercooren A. Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J Neurosci Res 1997;50:853–861.

    Article  PubMed  CAS  Google Scholar 

  23. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 1998;18:601–609.

    PubMed  CAS  Google Scholar 

  24. Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 2000;123:105–115.

    Article  PubMed  Google Scholar 

  25. Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 2002;125:338–349.

    Article  PubMed  Google Scholar 

  26. Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 1997;19:197–203.

    Article  PubMed  CAS  Google Scholar 

  27. Jones SJ, Brusa A. Neurophysiological evidence for long-term repair of MS lesions: implications for axon protection. J Neurol Sci 2003;206:193–198.

    Article  PubMed  Google Scholar 

  28. Carmody RJ, Hilliard B, Maguschak K, Chodosh LA, Chen YH. Genomic scale profiling of autoimmune inflammation in the central nervous system: the nervous response to inflammation. J Neuroimmunol 2002;133:95–107.

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez M, Miller DJ. Immune promotion of central nervous system remyelination. Prog Brain Res 1994; 103:343–355.

    PubMed  CAS  Google Scholar 

  30. Warrington AE, Bieber AJ, Ciric B, et al. Immunoglobulin-mediated CNS repair. J Allergy Clin Immunol 2001;108:S121–S125.

    Article  PubMed  CAS  Google Scholar 

  31. Ure DR, Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 2002;16:1260–1262.

    PubMed  CAS  Google Scholar 

  32. Gilgun-Sherki Y, Panet H, Holdengreber V, Mosberg-Galili R, Offen D. Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 2003;47:201–207.

    Article  PubMed  CAS  Google Scholar 

  33. Stangel M, Compston A, Scolding NJ. Oligodendroglia are protected from antibody-mediated complement injury by normal immunoglobulins (“IVIg”). J Neuroimmunol 2000;103:195–201.

    Article  PubMed  CAS  Google Scholar 

  34. Frost EE, Nielsen JA, Le TQ, Armstrong RC. PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. J Neurobiol 2003;54:457–472.

    Article  PubMed  CAS  Google Scholar 

  35. Marchionni MA, Cannella B, Hoban C, et al. Neuregulin in neuron/glial interactions in the central nervous system. GGF2 diminishes autoimmune demyelination, promotes oligodendrocyte progenitor expansion, and enhances remyelination. Adv Exp Med Biol 1999;468:283–295.

    PubMed  CAS  Google Scholar 

  36. Stankoff B, Aigrot MS, Noel F, Wattilliaux A, Zalc B, Lubetzki C. Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 2002;22:9221–9227.

    PubMed  CAS  Google Scholar 

  37. Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1beta promotes repair of the CNS. J Neurosci 2001;21:7046–7052.

    PubMed  CAS  Google Scholar 

  38. Cannella B, Pitt D, Capello E, Raine CS. Insulin-like growth factor-1 fails to enhance central nervous system myelin repair during autoimmune demyelination. Am J Pathol 2000;157:933–943.

    PubMed  CAS  Google Scholar 

  39. Mason JL, Ye P, Suzuki K, D’Ercole AJ, Matsushima GK. Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J Neurosci 2000;20:5703–5708.

    PubMed  CAS  Google Scholar 

  40. Hooper DC, Bagasra O, Marini JC, et al. Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 1997;94:2528–2533.

    Article  PubMed  CAS  Google Scholar 

  41. Penkowa M, Hidalgo J. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis. J Neurosci Res 2003;72:574–586.

    Article  PubMed  CAS  Google Scholar 

  42. Camelo S, Iglesias AH, Hwang D, et al. The Histone deacetylase inhibitor trichostatin A ameliorates murine experimental encephalomyelitis, a model of multiple sclerosis. Am Assoc Neuropathol Mtg, Platform Presentation, Cleveland, OH, 2004.

    Google Scholar 

  43. Ryu H, Lee J, Olofsson BA, et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A 2003;100: 4281–4286.

    Article  PubMed  CAS  Google Scholar 

  44. Jeong MR, Hashimoto R, Senatorov VV, et al. Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 2003; 542:74–78.

    Article  PubMed  CAS  Google Scholar 

  45. Moreira JM, Scheipers P, Sorensen P. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses. BMC Cancer 2003;3:30.

    Article  PubMed  Google Scholar 

  46. Kohm AP, Carpentier PA, Miller SD. Regulation of experimental autoimmune encephalomyelitis (EAE) by CD4+CD25+ regulatory T cells. Novartis Found Symp 2003;252:45–52.

    Article  PubMed  CAS  Google Scholar 

  47. Belachew S, Rogister B, Rigo JM, Malgrange B, Moonen G. Neurotransmitter-mediated regulation of CNS myelination: a review. Acta Neurol Belg 1999;99:21–31.

    PubMed  CAS  Google Scholar 

  48. Gilgun-Sherki Y, Panet H, Melamed E, Offen D. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res 2003;989: 196–204.

    Article  PubMed  CAS  Google Scholar 

  49. Nessler S, Dodel R, Bittner A, et al. Effect of minocycline in experimental autoimmune encephalomyelitis. Ann Neurol 2002;52:689–690.

    Article  PubMed  Google Scholar 

  50. Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002;125: 1297–1308.

    Article  PubMed  Google Scholar 

  51. Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 2002;51:215–223.

    Article  PubMed  CAS  Google Scholar 

  52. Wujek JR, Bjartmar C, Richer E, et al. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 2002;61:23–32.

    PubMed  Google Scholar 

  53. Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50:389–400.

    Article  PubMed  CAS  Google Scholar 

  54. Offen D, Kaye JF, Bernard O, et al. Mice overexpressing Bcl-2 in their neurons are resistant to myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). J Mol Neurosci 2000; 15:167–176.

    Article  PubMed  CAS  Google Scholar 

  55. Ebadi M, Bashir RM, Heidrick ML, et al. Neurotrophins and their receptors in nerve injury and repair. Neurochem Int 1997;30:347–374.

    Article  PubMed  CAS  Google Scholar 

  56. Villoslada P, Hauser SL, Bartke I, et al.Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 2000;191:1799–1806.

    Article  PubMed  CAS  Google Scholar 

  57. Takami T, Oudega M, Bethea JR, Wood PM, Kleitman N, Bunge MB. Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fischer rat thoracic spinal cord but do not improve functional outcome. J Neurotrauma 2002;19:653–666.

    Article  PubMed  Google Scholar 

  58. Maeda A, Sobel RA.. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 1996;55:300–309.

    PubMed  CAS  Google Scholar 

  59. Rosenberg GA. Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 2002;8:586–595.

    Article  PubMed  CAS  Google Scholar 

  60. Sobel RA, Ahmed AS. White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol 2001;60:1198–1207.

    PubMed  CAS  Google Scholar 

  61. Savitz SL, Malhotra A, Gupta G, Rosenbaum DM. Cell transplants offer promise for stroke recovery. J Cardiovasc Nurs 2003;18:57–61.

    PubMed  Google Scholar 

  62. Wu S, Suzuki Y, Noda T, et al. Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat. J Neurosci Res 2002;69:940–945.

    Article  PubMed  CAS  Google Scholar 

  63. Pluchino S, Quattrini A, Brambilla E, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003;422:688–694.

    Article  PubMed  CAS  Google Scholar 

  64. Muraro PA, Ingoni RC, Martin R. Hematopoietic stem cell transplantation for multiple sclerosis: current status and future challenges. Curr Opin Neurol 2003;16:299–308.

    Article  PubMed  Google Scholar 

  65. Archer DR, Cuddon PA, Lipsitz D, Duncan ID. Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat Med 1997;3:54–59.

    Article  PubMed  CAS  Google Scholar 

  66. Learish RD, Brustle O, Zhang SC, Duncan ID. Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutant results in widespread formation of myelin. Ann Neurol 1999;46:716–722.

    Article  PubMed  CAS  Google Scholar 

  67. Van den Berg LH, Bar PR, Sodaar P, Mollee I, Wokke JJ, Logtenberg T. Selective expansion and long-term culture of human Schwann cells from sural nerve biopsies. Ann Neurol 1995;38:674–678.

    Article  PubMed  Google Scholar 

  68. Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI.. Purification and expansion of human Schwann cells in vitro. Nat Med 1995;1:80–83.

    Article  PubMed  CAS  Google Scholar 

  69. Harrison BM. Remyelination by cells introduced into a stable demyelinating lesion in the central nervous system. J Neurol Sci 1980;46:63–81.

    Article  PubMed  CAS  Google Scholar 

  70. Baron-Van Evercooren A, Gansmuller A, Duhamel E, Pascal F, Gumpel M. Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. J Neuroimmunol 1992;40:235–342.

    Article  PubMed  CAS  Google Scholar 

  71. Boyd JG, Skihar V, Kawaja M, Doucette R. Olfactory ensheathing cells: Historical perspective and therapeutic potential. Anat Rec 2003;271B:49–60.

    Article  Google Scholar 

  72. Franklin RJ. Remyelination by transplanted olfactory ensheathing cells. Anat Rec 2003; 271B: 71–76.

    Article  Google Scholar 

  73. Lakatos A, Smith PM, Barnett SC, Franklin RJ. Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells. Brain 2003;126:598–609.

    Article  PubMed  Google Scholar 

  74. Barnett SC, Alexander CL, Iwashita Y, et al. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 2000;123(Pt 8):1581–1588.

    Article  PubMed  Google Scholar 

  75. Li Y, Decherchi P, Raisman G. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J Neurosci 2003;23:727–731.

    PubMed  CAS  Google Scholar 

  76. Moalem G, Leibowitz-Amit R, Yoles E, Mor R, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Medicine 1999;5:49–55.

    Article  PubMed  CAS  Google Scholar 

  77. Moalem G, Gdalyahu A, Shani Y, et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 2000;15:331–345.

    Article  PubMed  CAS  Google Scholar 

  78. Bethea JR, Nagashima H, Acosta MC, et al. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999;16:851–863.

    Article  PubMed  CAS  Google Scholar 

  79. Barone FC, Irving EA, Ray AM, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 2001;21:129–145.

    Article  PubMed  CAS  Google Scholar 

  80. Brecht S, Schwarze K, Waetzig V, et al. Changes in peptidyl-prolyl cis/trans isomerase activity and fk506 binding protein expression following neuroprotection by fk506 in the ischemic rat brain. Neuroscience 2003; 120:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  81. Buki A, Okonkwo DO, Povlishock JT. Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 1999;16:511–521.

    PubMed  CAS  Google Scholar 

  82. Beech JS, Reckless J, Mosedale DE, Grainger DJ, Williams SC, Menon DK. Neuroprotection in ischemia-reperfusion injury: an antiinflammatory approach using a novel broad-spectrum chemokine inhibitor. J Cereb Blood Flow Metab 2001;21:683–689.

    Article  PubMed  CAS  Google Scholar 

  83. Acarin L, Gonzalez B, Castellano B. Decrease of proinflammatory molecules correlates with neuroprotective effect of the fluorinated salicylate triflusal after postnatal excitotoxic damage. Stroke 2002;33:2499–2505.

    Article  PubMed  CAS  Google Scholar 

  84. Bath CP, Farrell LN, Gilmore J, et al. The effects of ifenprodil and eliprodil on voltage-dependent Ca2+ channels and in gerbil global cerebral ischaemia. Eur J Pharmacol 1996;299:103–1120.

    Article  PubMed  CAS  Google Scholar 

  85. Arias RL, Tasse JR, Bowlby MR. Neuroprotective interaction effects of NMDA and AMPA receptor antagonists in an in vitro model of cerebral ischemia. Brain Res 1999;816:299–308.

    Article  PubMed  CAS  Google Scholar 

  86. Andersson T, Schwarcz R, Love A, Kristensson K. Measles virus-induced hippocampal neurodegeneration in the mouse: a novel, subacute model for testing neuroprotective agents. Neurosci Lett 1993;154:109–112.

    Article  PubMed  CAS  Google Scholar 

  87. Arvin B, Neville LF, Pan J, Roberts PJ. 2-chloroadenosine attenuates kainic acid-induced toxicity within the rat straitum: relationship to release of glutamate and Ca2+ influx. Br J Pharmacol 1989;98:225–235.

    PubMed  CAS  Google Scholar 

  88. Akins PT, Atkinson RP. Glutamate AMPA receptor antagonist treatment for ischaemic stroke. Curr Med Res Opin 2002;18(Suppl 2):S9–S13.

    Article  PubMed  Google Scholar 

  89. Brorson JR,. Marcuccilli CJ, Miller RJ. Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke 1995;26:1259–1266.

    PubMed  CAS  Google Scholar 

  90. Aono M, Lee Y, Grant ER, et al. Apolipoprotein E protects against NMDA excitotoxicity. Neurobiol Dis 2002;11:214–220.

    Article  PubMed  CAS  Google Scholar 

  91. Azcoitia I, Fernandez-Galaz C, Sierra A, Garcia-Segura LM. Gonadal hormones affect neuronal vulnerability to excitotoxin-induced degeneration. J Neurocytol 1999;28:699–710.

    Article  PubMed  CAS  Google Scholar 

  92. Behl C, Skutella T, Lezoualc’h F, et al. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 1997;51:535–541.

    PubMed  CAS  Google Scholar 

  93. Bae YH, Hwang JY, Kim YH, Koh JY. Anti-oxidative neuroprotection by estrogens in mouse cortical cultures. J Korean Med Sci 2000;15:327–336.

    PubMed  CAS  Google Scholar 

  94. Bebo BFJ, Fyfe-Johnson A, Adlard K, Beam AG, Vandenbark AA, Offner H. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol 2001;166: 2080–2089.

    PubMed  CAS  Google Scholar 

  95. Trooster WJ, Teelken AW, Kampinga J, Loof JG, Nieuwenhuis P, Minderhoud JM. Suppression of acute experimental allergic encephalomyelitis by the synthetic sex hormone 17-alpha-ethinylestradiol: an immunological study in the Lewis rat. Int Arch Allergy Immunol 1993;102:133–140.

    Article  PubMed  CAS  Google Scholar 

  96. Barone FC, Price WJ, Jakobsen P, Sheardown MJ, Feuerstein G. Pharmacological profile of a novel neuronal calcium channel blocker includes reduced cerebral damage and neurological deficits in rat focal ischemia. Pharmacol Biochem Behav 1994;48:77–85.

    Article  PubMed  CAS  Google Scholar 

  97. Barone FC, Lysko PG, Price WJ, et al. SB 201823-A antagonizes calcium currents in central neurons and reduces the effects of focal ischemia in rats and mice. Stroke 1995;26:1683–1690.

    PubMed  CAS  Google Scholar 

  98. Berger R, Lehmann T, Karcher J, Garnier Y, Jensen A. Low dose flunarizine protects the fetal brain from ischemic injury in sheep. Pediatr Res 1998;44:277–282.

    Article  PubMed  CAS  Google Scholar 

  99. Burns LH, Jin Z, Bowersox SS. The neuroprotective effects of intrathecal administration of the selective N-type calcium channel blocker ziconotide in a rat model of spinal ischemia. J Vasc Surg 1999;30:334–343.

    Article  PubMed  CAS  Google Scholar 

  100. Adam-Vizi V. [Neuroprotective effect of sodium channel blockers in ischemia: the pathomechanism of early ischemic dysfunction]. Orv Hetil 2000;141:1279–1286.

    PubMed  CAS  Google Scholar 

  101. Ashton D, Willems R, Wynants J, Van Reempts J, Marrannes R, Clincke G. Altered Na(+)-channel function as an in vitro model of the ischemic penumbra: action of lubeluzole and other neuroprotective drugs. Brain Res 1997;745:210–221.

    Article  PubMed  CAS  Google Scholar 

  102. Agrawal SK, Fehlings MG. Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. J Neurosci 1996;16:545–552.

    PubMed  CAS  Google Scholar 

  103. Brustovetsky N, Brustovetsky T, Dubinsky JM. On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 2001;76:425–434.

    Article  PubMed  CAS  Google Scholar 

  104. Adcock KH, Nedelcu J, Loenneker T, Martin E, Wallimann T, Wagner BP. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci 2002;24:382–338.

    Article  PubMed  CAS  Google Scholar 

  105. Almli LM, Hamrick SE, Koshy AA, Tauber MG, Ferriero DM. Multiple pathways of neuroprotection against oxidative stress and excitotoxic injury in immature primary hippocampal neurons. Brain Res Dev Brain Res 2001; 132:121–129.

    Article  PubMed  CAS  Google Scholar 

  106. Amano T, Ujihara H, Matsubayashi H, et al. Dopamine-induced protection of striatal neurons against kainate receptor-mediated glutamate cytotoxicity in vitro. Brain Res 1994;655:61–69.

    Article  PubMed  CAS  Google Scholar 

  107. Bickler PE, Warner DS, Stratmann G, Schuyler JA. gamma-Aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg 2003;97:564–571.

    Article  PubMed  CAS  Google Scholar 

  108. Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001;21:98–108.

    PubMed  CAS  Google Scholar 

  109. Behl C. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-beta estradiol and induces the activity of the transcription factor NF-kappaB. J Neural Transm 2000;107:393–407.

    Article  PubMed  CAS  Google Scholar 

  110. Bell JA, Beglan CL, London ED. Interaction of ascorbic acid with the neurotoxic effects of NMDA and sodium nitroprusside. Life Sci 1996;58:367–371.

    Article  PubMed  CAS  Google Scholar 

  111. Alberch J, Perez-Navarro E, Canals JM. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease. Brain Res Bull 2002;57:817–822.

    Article  PubMed  CAS  Google Scholar 

  112. Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 2002;513: 335–351.

    PubMed  CAS  Google Scholar 

  113. Bachis A, Rabin SJ, Del Fiacco M, Mocchetti I. Gangliosides prevent excitotoxicity through activation of TrkB receptor. Neurotox Res 2002;4:225–234.

    Article  PubMed  CAS  Google Scholar 

  114. Fazekas F, Strasser-Fuchs S, Kollegger H, et al. Apolipoprotein E epsilon 4 is associated with rapid progression of multiple sclerosis. Neurology 2001;57:853–857.

    PubMed  CAS  Google Scholar 

  115. Chapman J, Sylantiev C, Nisipeanu P, Korczyn AD. Preliminary observations on APOE epsilon4 allele and progression of disability in multiple sclerosis. Arch Neurol 1999;56:1484–1487.

    Article  PubMed  CAS  Google Scholar 

  116. Fazekas F, Strasser-Fuchs S, Schmidt H, et al. Apolipoprotein E genotype related differences in brain lesions of multiple sclerosis. J Neurol Neurosurg Psychiatry 2000;69:25–28.

    Article  PubMed  CAS  Google Scholar 

  117. Deloire-Grassin MS, Brochet B, Quesson B, et al. In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci 2000;178:10–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dangond, F. (2005). Repair and Neuroprotective Strategies in Multiple Sclerosis. In: Olek, M.J. (eds) Multiple Sclerosis. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-855-2:193

Download citation

  • DOI: https://doi.org/10.1385/1-59259-855-2:193

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-033-5

  • Online ISBN: 978-1-59259-855-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics