Skip to main content

Multiple Sclerosis, Genetics, and Autoimmunity

  • Chapter
Multiple Sclerosis

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Multiple sclerosis (MS) afflicts approximately 250,000 to 350,000 individuals in the United States and is the most common autoimmune disease involving the nervous system. Multifocal immune-mediated destruction of the myelin sheath and secondary axonal damage in the central nervous system (CNS) results in variable neurological dysfunction, most commonly altered vision, incoordination, gait ataxia, paralysis, and sensory disturbances (1). Relapsing-remitting MS (RRMS), where patients have attacks of neurological dysfunction lasting days to weeks followed by complete to near complete recovery, accounts for approximately 85% of patients with MS. After approximately 10 years, the majority of patients with RRMS have entered secondary-progressive MS (SPMS), where there is gradual accumulation of neurological dysfunction without recovery. This may represent a neurodegenerative phase of the disease that results from axon transfection and neuronal loss (2,3). Primary-progressive MS (PPMS), accounting for approximately 15% of patients with MS, is similar to SPMS, except that these patients do not have a preceding relapsing-remitting phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. Progress in determining the causes and treatment of multiple sclerosis. N Engl J Med 2000;343:938–952.

    Article  PubMed  CAS  Google Scholar 

  2. Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol 2001;2:762–764.

    Article  PubMed  CAS  Google Scholar 

  3. Lucchinetti C, Bruck W, Noseworthy J. Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 2001;14:259–269.

    Article  PubMed  CAS  Google Scholar 

  4. Noseworthy JH. Progress in determining the causes and treatment of multiple sclerosis. Nature 1999;399:A40–A47.

    PubMed  CAS  Google Scholar 

  5. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 1996;85:299–302.

    Article  PubMed  CAS  Google Scholar 

  6. Ebers GC, Sadovnick AD, Risch NJ. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 1995;377:150–151.

    Article  PubMed  CAS  Google Scholar 

  7. Ebers GC, Bulman DE, Sadovnick AD, et al. A population-based study of multiple sclerosis in twins. N Engl J Med 1986;315:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  8. Ebers GC, Kukay K, Bulman DE, et al. A full genome search in multiple sclerosis. Nat Genet 1996;13:472–476.

    Article  PubMed  CAS  Google Scholar 

  9. Haines JL, Ter-Minassian M, Bazyk A, Feakes R, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996;13:469–471.

    Article  PubMed  CAS  Google Scholar 

  10. Sawcer S, Jones HB, et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996;13:464–468.

    Article  PubMed  CAS  Google Scholar 

  11. Becker KG, Simon RH, Bailey-Wilson JE, et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci U S A 1998;95:9979–9984.

    Article  PubMed  CAS  Google Scholar 

  12. Butterfield RJ, Sudweeks JD, Blankenhorn EP, et al. New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 1998;161:1860–1867.

    PubMed  CAS  Google Scholar 

  13. Vorechovsky I, Kralovicova J, Tchilian E, et al. Does 77C→G in PTPRC modify autoimmune disorders linked to the major histocompatibility locus? Nat Genet 2001;29:22–23.

    Article  PubMed  CAS  Google Scholar 

  14. Barcellos LF, et al. PTPRC (CD45) is not associated with the development of multiple sclerosis in U.S. patients. Nat Genet 2001;29:23–24.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobsen M, et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet 2000;26:495–499 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. Ben Nun A, Cohen IR. Experimental autoimmune encephalomyelitis (EAE) mediated by T cell lines: process of selection of lines and characterization of the cells. J Immunol 1982;129:303–308.

    PubMed  CAS  Google Scholar 

  17. Zamvil S, et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 1985;317:355–358.

    Article  PubMed  CAS  Google Scholar 

  18. Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 1994;78:399–408.

    Article  PubMed  CAS  Google Scholar 

  19. Burns J, Rosenzweig A, Zweiman B, Lisak RP. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 1983;81:435–440.

    Article  PubMed  CAS  Google Scholar 

  20. Jingwu Z, Medaer R, Hashim GA, Chin Y, van der Berg-Loonen E, Raus JC. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol 1992;32:330–338.

    Article  PubMed  CAS  Google Scholar 

  21. Pribyl TM, Campagnoni C, Kampf K, Handley VW, Campagnoni AT. The major myelin protein genes are expressed in the human thymus. J Neurosci Res 1996;45:812–819.

    Article  PubMed  CAS  Google Scholar 

  22. Abbas AK, Janeway CA, Jr. Immunology: improving on nature in the twenty-first century. Cell 2000;100:129–138.

    Article  PubMed  CAS  Google Scholar 

  23. Barton GM, Medzhitov R. Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 2002;14:380–383.

    Article  PubMed  CAS  Google Scholar 

  24. Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002;2:11–19.

    Article  PubMed  CAS  Google Scholar 

  25. Takeda S, Rodewald HR, Arakawa H, Bluethmann H, Shimizu T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 1996;5:217–228.

    Article  PubMed  CAS  Google Scholar 

  26. Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 1997;276:2057–2062.

    Article  PubMed  CAS  Google Scholar 

  27. Brocker T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J Exp Med 1997;186:1223–1232.

    Article  PubMed  CAS  Google Scholar 

  28. Tough DF, Sprent J. Turnover of naive-and memory-phenotype T cells. J Exp Med 1994;179:1127–1135.

    Article  PubMed  CAS  Google Scholar 

  29. Jameson SC. Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2002;2:547–556.

    PubMed  CAS  Google Scholar 

  30. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998;395:82–86.

    Article  PubMed  CAS  Google Scholar 

  31. Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999;285:221–227.

    Article  PubMed  CAS  Google Scholar 

  32. Wulfing C, Davis MM. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 1998;282:2266–2269.

    Article  PubMed  CAS  Google Scholar 

  33. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999;283:680–682.

    Article  PubMed  CAS  Google Scholar 

  34. Dustin ML, Chan AC. Signaling takes shape in the immune system. Cell 2000;103:283–294.

    Article  PubMed  CAS  Google Scholar 

  35. Bromley SK, et al. The immunological synapse. Annu Rev Immunol 2001;19:375–396.

    Article  PubMed  CAS  Google Scholar 

  36. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–258.

    Article  PubMed  CAS  Google Scholar 

  37. Chambers CA. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol 2001;22:217–223.

    Article  PubMed  CAS  Google Scholar 

  38. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992;356:607–609.

    Article  PubMed  CAS  Google Scholar 

  39. Shahinian A, Pfeffer K, Lee KP, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993;261:609–612.

    Article  PubMed  CAS  Google Scholar 

  40. Oliveira-dos-Santos AJ, Ho A, Tada Y, et al. CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis. J Immunol 1999;162:4490–4495.

    PubMed  CAS  Google Scholar 

  41. Janeway CA, Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13:11–16.

    Article  PubMed  CAS  Google Scholar 

  42. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001;1:220–228.

    Article  PubMed  CAS  Google Scholar 

  43. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995;270:985–988.

    Article  PubMed  CAS  Google Scholar 

  44. Hurwitz AA, Sullivan TJ, Krummel MF, Sobel RA, Allison JP. Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experimental allergic encephalomyelitis. J Neuroimmunol 1997;73:57–62.

    Article  PubMed  Google Scholar 

  45. Ueda H, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–511.

    Article  PubMed  CAS  Google Scholar 

  46. Fukazawa T, Yanagawa T, Kikuchi S, et al. CTLA-4 gene polymorphism may modulate disease in Japanese multiple sclerosis patients. J Neurol Sci 1999;171:49–55.

    Article  PubMed  CAS  Google Scholar 

  47. Harbo HF, Celius EG, Vartdal F, Spurkland A. CTLA4 promoter and exon 1 dimorphisms in multiple sclerosis. Tissue Antigens 1999;53:106–110.

    Article  PubMed  CAS  Google Scholar 

  48. Ligers A, Xu C, Saarinen S, Hillert J, Olerup O. The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 1999;97:182–190.

    Article  PubMed  CAS  Google Scholar 

  49. Rasmussen HB, Kelly MA, Francis DA, Clausen J. CTLA4 in multiple sclerosis. Lack of genetic association in a European Caucasian population but evidence of interaction with HLA-DR2 among Shanghai Chinese. J Neurol Sci 2001; 184:143–147.

    Article  PubMed  CAS  Google Scholar 

  50. Dyment DA, Steckley JL, Willer CJ, et al. No evidence to support CTLA-4 as a susceptibility gene in MS families: the Canadian Collaborative Study. J Neuroimmunol 2002;123:193–198.

    Article  PubMed  CAS  Google Scholar 

  51. Kantarci OH, Hebrink DD, Achenbach SJ, et al. CTLA4 is associated with susceptibility to multiple sclerosis. J Neuroimmunol 2003;134:133–141.

    Article  PubMed  CAS  Google Scholar 

  52. Alizadeh M, Babron MC, Birebent B, et al. Genetic interaction of CTLA-4 with HLA-DR15 in multiple sclerosis patients. Ann Neurol 2003;54:119–122.

    Article  PubMed  CAS  Google Scholar 

  53. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002;2:116–126.

    Article  PubMed  CAS  Google Scholar 

  54. Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273:104–106.

    Article  PubMed  CAS  Google Scholar 

  55. Chiang YJ, Kole HK, Brown K, et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 2000;403:216–220.

    Article  PubMed  CAS  Google Scholar 

  56. Bachmaier K, Krawczyk C, Kozieradzki I, et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 2000;403:211–216.

    Article  PubMed  CAS  Google Scholar 

  57. Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 2001;276:4872–4878.

    Article  PubMed  CAS  Google Scholar 

  58. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med 1999;341:2068–2074.

    Article  PubMed  CAS  Google Scholar 

  59. Benoist C, Mathis D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2001;2:797–801.

    Article  PubMed  CAS  Google Scholar 

  60. Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80:695–705.

    Article  PubMed  CAS  Google Scholar 

  61. Fujinami RS, Oldstone M.B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230:1043–1045.

    Article  PubMed  CAS  Google Scholar 

  62. Gautam AM, Liblau R, Chelvanayagam G, Steinman L, Boston T. A viral peptide with limited homology to a self peptide can induce clinical signs of experimental autoimmune encephalomyelitis. J Immunol 1998;161:60–64.

    PubMed  CAS  Google Scholar 

  63. Mokhtarian F, Zhang Z, Shi Y, Gonzales E, Sobel RA. Molecular mimicry between a viral peptide and a myelin oligodendrocyte glycoprotein peptide induces autoimmune demyelinating disease in mice. J Neuroimmunol 1999;95: 43–54.

    Article  PubMed  CAS  Google Scholar 

  64. Grogan JL, Kramer A, Nogai A, et al. Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: experimental autoimmune encephalomyelitis induction in TCR transgenic mice.J Immunol 1999;163:3764–3770.

    PubMed  CAS  Google Scholar 

  65. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 1993;72:551–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Demetriou, M. (2005). Multiple Sclerosis, Genetics, and Autoimmunity. In: Olek, M.J. (eds) Multiple Sclerosis. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-855-2:103

Download citation

  • DOI: https://doi.org/10.1385/1-59259-855-2:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-033-5

  • Online ISBN: 978-1-59259-855-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics