Skip to main content

Role of Magnetic Resonance Imaging in the Diagnosis and Prognosis of Multiple Sclerosis

  • Chapter
Multiple Sclerosis

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal loss for which the exact immunopathogenic mechanisms underlying disease initiation and progression are unknown. In the last two decades, magnetic resonance imaging (MRI) has become the most important laboratory diagnostic and monitoring tool in MS (1). Moreover, MRI is 5 to 10 times more sensitive than clinical data in the assessment of disease activity (2). The sensitivity of T2-weighted images (T2-WI) in detection of MS lesions, together with the ability of gadolinium (Gd)-enhanced T1-WI to reflect increased blood-brain barrier (BBB) permeability associated with active inflammatory activity, allows the demonstration of spatial and temporal dissemination of MS lesions earlier than is possible from clinical assessments. Therefore, in the last decade, metrics derived from conventional MRI have been widely employed in therapeutic clinical trials (36). Several conventional MRI protocols, in conjunction with clinical assessment, are now routinely used to detect therapeutic effects and extend clinical observations (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McFarland HF, Frank JA, Albert PS, et al. Using gadolinium-enhanced magnetic resonance imaging to monitor disease activity in multiple sclerosis. Ann Neurol 1992;32:758–766.

    PubMed  CAS  Google Scholar 

  2. Thompson AJ, Miller D, Youl B, et al. Serial gadolinium-enhanced MRI in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 1992;42:60–63.

    PubMed  CAS  Google Scholar 

  3. The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Interferon-β-1b in the treatment of multiple sclerosis: Final outcome of the randomized controlled trial. Neurology 1995;45:1277–1285.

    Google Scholar 

  4. Simon JH, Jacobs LD, Campion M, et al. Magnetic resonance studies of intramuscular interferon β-1a for relapsing multiple sclerosis. Ann Neurol 1998;43:79–87.

    PubMed  CAS  Google Scholar 

  5. Li DKB, Paty DW, the UBC MS/MRI Analysis Research Group and the PRISMS Study Group. Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of interferon β-1b in relapsing-remitting multiple sclerosis. Ann Neurol 1999;46:197–206.

    PubMed  CAS  Google Scholar 

  6. Miller DH, Molyneaux PD, Barker GJ, et al. and the European Study Group on interferon β-1b in secondary progressive multiple sclerosis. Ann Neurol 1999;46:850–859.

    PubMed  CAS  Google Scholar 

  7. Molyenux PD, Miller DH. Magnetic resonance imaging techniques to monitor phase III treatment trials. In: Filippi M, Arnold DL, Comi G, eds. Magnetic Resonance Spectroscopy in Multiple Sclerosis. Springer Verlag, Berlin, 2000, pp. 49–72.

    Google Scholar 

  8. van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin echo MRI in multiple sclerosis. Neurology 1998;50:1282–1288.

    PubMed  Google Scholar 

  9. Filippi M, Campi A, Dousset V, et al. A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 1995;45:478–482.

    PubMed  CAS  Google Scholar 

  10. Lucchinetti CF, Bruck W, Rodriguez M, Lasmman H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 1996;6:259–274.

    PubMed  CAS  Google Scholar 

  11. Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998;121:3–24.

    PubMed  Google Scholar 

  12. Filippi M, Rovaris M, Comi G. Introduction. In: Filippi M, Comi G, eds. New Frontiers of MR-Based Techniques in Multiple Sclerosis. Springer Verlag, Berlin, 2003, pp. 1–3.

    Google Scholar 

  13. Markovic-Plese S, McFarland HF. Immunopathogenesis of the multiple sclerosis lesion. Curr Neurol Neurosci Rep 2001;1:257–262.

    PubMed  CAS  Google Scholar 

  14. Fu L, Matthews PM, De Stefano N, et al. Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 1998;121:103–113.

    PubMed  Google Scholar 

  15. van Wasberghe JHTM, Kamphorst W, De Groot JA, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insight into substrates of disability. Ann Neurol 1999;46:747–754.

    Google Scholar 

  16. Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002;125:1676–1695.

    PubMed  Google Scholar 

  17. Fisher E, Rudick RA, Simon JH, et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology 2002;59:1412–1420.

    PubMed  CAS  Google Scholar 

  18. Filippi M, Grossman RI. MRI techniques to monitor MS evolution. The present and the future. Neurology 2002;58:1147–1153.

    PubMed  Google Scholar 

  19. Arnold DL, Matthews PM. MRI in the diagnosis and management of multiple sclerosis, Neurology 2002;58(Suppl 4):S23–S31.

    PubMed  Google Scholar 

  20. Filippi M, Mastronardo G, Bastianello S, et al. A longitudinal brain MRI study comparing the sensitivities of the conventional and a newer approach for detecting active lesions in multiple sclerosis. J Neurol Sci 1998;59:94–101.

    Google Scholar 

  21. Filippi M, Horsfield MA, Ader HJ, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 1998;43:499–506.

    PubMed  CAS  Google Scholar 

  22. Miller DH, Albert PS, Barkhof F, et al. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Ann Neurol 1996;39:6–16.

    PubMed  CAS  Google Scholar 

  23. Rovaris M, Rocca MA, Yousry I, et al. Lesion load quantification on fast-FLAIR, rapid acquisition relaxation-enhanced, and gradient spin echo brain MRI scans from multiple sclerosis patients. Mag Res Imaging 1999;17:105–110.

    Google Scholar 

  24. Bastianello S, Bozzao A, Paolillo A, et al. Fast spin-echo and fast fluid-attenuated inversion recovery sequences versus conventional spin-echo for MRI quantification of multiple sclerosis lesions. Am J Neuroradiol 1997;18:699–704.

    PubMed  CAS  Google Scholar 

  25. Bakshi R, Ariyaratana S, Benedict RHB, Jacobs L. Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 2001;58:742–748.

    PubMed  CAS  Google Scholar 

  26. Gawne-Cain ML, O’Riordan JI, Thompson AJ, Moseley IF, Miller DH. Multiple sclerosis lesion detection in the brain: a comparison of fast fluid-attenuated inversion recovery and conventional T2-weighted dual spin echo. Neurology 1997;49:364–370.

    PubMed  CAS  Google Scholar 

  27. Campi A, Pontesilli S, Gerevini S, Scotti G. Comparison of MRI pulse sequences for investigation of lesions of the cervical spinal cord. Neuroradiology 2000;42:669–675.

    PubMed  CAS  Google Scholar 

  28. Gass A, Moseley IF, Barker GJ, et al. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI. Neuroradiology 1996;38:317–321.

    PubMed  CAS  Google Scholar 

  29. Smith ME, Stone LA, Albert PS, et al. Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 1993;33:480–489.

    PubMed  CAS  Google Scholar 

  30. Simon JH. From enhancing lesions to brain atrophy in relapsing MS. J Neuroimmunol 1999;98:7–15.

    PubMed  CAS  Google Scholar 

  31. Molyenux PD, Filippi M, Barkhof F, et al. Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 1998;43:332–329.

    Google Scholar 

  32. Kappos L, Moeri D, Radue EW, et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet 1999;353:964–969.

    PubMed  CAS  Google Scholar 

  33. Molyneux PD, Tofts PS, Fletcher A, et al. Precisions and reliability for measurement of change in MRI lesion volume in multiple sclerosis: a comparison of two computer-assisted techniques. J Neurol Neurosurg Psychiatry 1998;65:42–47.

    PubMed  CAS  Google Scholar 

  34. Filippi M, Rocca MA, Rizzo G, et al. A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium DTPA for monitoring disease activity in multiple sclerosis. Implications for phase II clinical trials. Brain 1998;21:2011–2020.

    Google Scholar 

  35. Filippi M. Enhanced magnetic resonance in multiple sclerosis. Mult Scler 2000;6:320–326.

    PubMed  CAS  Google Scholar 

  36. Wolansky LJ, Bardini JA, Cook SD, et al. Triple-dose versus single-dose gadoteridol in multiple sclerosis patients. J Neuroimaging 1994;4:141–145.

    PubMed  CAS  Google Scholar 

  37. Silver NC, Good CD, Barker GJ, et al. Sensitivity of contrast enhanced MRI in multiple sclerosis. Effects of gadolinium dose magnetization transfer contrast and delayed imaging. Brain 1997;120:1149–1161.

    PubMed  Google Scholar 

  38. Miller DH, Rudge P, Johnson G, et al. Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 1988;111:927–939.

    PubMed  Google Scholar 

  39. Morgen K, Jeffries NO, Stone R, et al. Ring-enhancement in multiple sclerosis: marker of disease severity. Mult Scler 2001;7:167–171.

    PubMed  CAS  Google Scholar 

  40. He J, Grossman RI, Ge Y, Mannon LJ. Enhancing patterns in multiple sclerosis: evolution and persistence. Am J Neuroradiol 2001;22:664–669.

    PubMed  CAS  Google Scholar 

  41. Rovira A, Alonso J, Cucurella G, et al. Evolution of multiple sclerosis lesions on serial contrast-enhanced T1-weighted and magnetization-transfer MR images. Am J Neuroradiol 1999;20:1939–1945.

    PubMed  CAS  Google Scholar 

  42. Guttman CR, Ahn SS, Hsu L, Kikinis R, Jolesz FA. The evolution of multiple sclerosis lesions on serial MR. Am J Neuroradiol 1995;16:1481–1491.

    Google Scholar 

  43. Petrella JR, Grossman RI, McGowan JC, Campbell G, Cohen JA. Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. Am J Neuroradiol 1996;17:1041–1049.

    PubMed  CAS  Google Scholar 

  44. Roychowdhury S, Maldijian JA, Grossman RI. Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. Am J Neuroradiol 2000;21:869–874.

    PubMed  CAS  Google Scholar 

  45. Leist TP, Gobbibi MI, Frank JA, McFarland HF. Enhancing magnetic resonance imaging lesions and cerebral atrophy in patients with relapsing multiple sclerosis. Arch Neurol 2001;58:57–60.

    PubMed  CAS  Google Scholar 

  46. van Wasberghe JH, van Walderveen MA, Castelijns JA, et al. Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. Am J Neuroradiol 1998;19:675–683.

    Google Scholar 

  47. Pretorius PM, Quaghebeur G. The role of MRI in diagnosis of MS. Clin Radiol 2003;58:434–448.

    PubMed  CAS  Google Scholar 

  48. O’Connor P on behalf of the Canadian Multiple Sclerosis Working Group. Key issues in the diagnosis and treatment of multiple sclerosis. An overview. Neurology 2002;59(Suppl 3):1–33.

    Google Scholar 

  49. Murthy SNK, Faden HA, Cohen ME, Bakshi R. Acute disseminated encephalomyelitis in children. Pediatrics 2002;110(e21-1):1–7.

    Google Scholar 

  50. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50:121–127.

    PubMed  CAS  Google Scholar 

  51. Kidd D, Thorpe JW, Thompson AJ, et al. Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 1993;43:2632–2637.

    PubMed  CAS  Google Scholar 

  52. Tartaglino LM, Friedman DP, Flanders AE, et al. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology 1995;195:725–732.

    PubMed  CAS  Google Scholar 

  53. Loseff NA, Webb SL, O’Riordan JI, et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996;119:701–708.

    Google Scholar 

  54. Thorpe JW, Kidd D, Moseley IF, et al. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 1996;46:373–378.

    PubMed  CAS  Google Scholar 

  55. Kidd D, Thorpe JW, Kendall BE, et al. MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 1996;60:15–19.

    PubMed  CAS  Google Scholar 

  56. Yousry TA, Fesl G, Walther E, Voltz R, Filippi M. Triple dose of gadolinium-DTPA increases the sensitivity of spinal cord MRI in detecting enhancing lesions in multiple sclerosis. J Neurol Sci. 1998;158:221–225.

    PubMed  Google Scholar 

  57. Thorpe JW, Kidd D, Moseley IF, et al. Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain 1996;119:709–714.

    PubMed  Google Scholar 

  58. O’Riordan JI, Losseff NA, Phatouros C, et al. Asymptomatic spinal cord lesions in clinically isolated optic nerve, brain stem, and spinal cord syndromes suggestive of demyelination. J Neurol Neurosurg Psychiatry 1998;64:353–357.

    PubMed  CAS  Google Scholar 

  59. Trop I, Bourgouin PM, Lapierre Y, et al. Multiple sclerosis of the spinal cord: diagnosis and follow-up with contrast-enhanced MR and correlation with clinical activity. Am J Neuroradiol 1998;19:1025–1033.

    PubMed  CAS  Google Scholar 

  60. Lycklama a Nijeholt GJ, Barkhof F, et al. MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability. Am J Neuroradiol. 1997;18:1041–1048.

    PubMed  Google Scholar 

  61. Bakshi R, Kinkel PR, Mechtler LL, et al. Magnetic resonance imaging findings in 22 cases of myelitis: comparison between patients with and without multiple sclerosis. Eur J Neurol 1998;5:35–48.

    PubMed  Google Scholar 

  62. Bakshi R, Glass J, Louis DN, Hochberg FH. Magnetic resonance imaging features of solitary inflammatory brain masses. J Neuroimaging 1998;8:8–14.

    PubMed  CAS  Google Scholar 

  63. Wingerchuck DM, Weinshenker BG. Neuromyelitis optica. Clinical predictors of a relapsing course and survival. Neurology 2003;60:848–853.

    Google Scholar 

  64. Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002;59:499–505.

    Google Scholar 

  65. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983;12:227–231.

    Google Scholar 

  66. Paty DW, Oger JJ, Kastrukoff LF, et al. MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology. 1988;38:180–185.

    PubMed  CAS  Google Scholar 

  67. Fazekas F, Offenbacher H, Fuchs S, et al. Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology 1988;38:1822–1825.

    PubMed  CAS  Google Scholar 

  68. Barkhof F, Filippi M, Miller DH, et al. Comparison of MR imaging criteria at first presentation to predict conversion to clinically definite MS. Brain 1997;120:2059–2069.

    PubMed  Google Scholar 

  69. Tintoré M, Rovira A, Martinez M, et al. Isolated demyelinating syndromes: comparison of different imaging criteria to predict conversion to clinically definite MS. Am J Neuroradiol 2000;21:702–706.

    PubMed  Google Scholar 

  70. Brex PA, Miszkiel KA, O’Riordan JI, et al. Assessing the risk of early multiple sclerosis in patients with clinically isolated syndromes: the role of a follow up MRI. J Neurol Neurosurg Psychiatry 2001;70:390–393.

    PubMed  CAS  Google Scholar 

  71. Tintore M, Rovira A, Rio J, et al. New diagnostic criteria for multiple sclerosis: application in first demyelinating episode. Neurology 2003;60:27–30.

    PubMed  CAS  Google Scholar 

  72. Giovannoni G, Bever CT Jr. Patients with clinically isolated syndromes suggestive of MS: does MRI allow earlier diagnosis? Neurology 2003;60:6–7.

    PubMed  Google Scholar 

  73. Dalton CM, Brex PA, Miszkiel KA, et al. Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Ann Neurol 2002;52:47–53.

    PubMed  Google Scholar 

  74. Dalton CM, Brex PA, Miszkiel KA, et al. New T2 lesions enable an earlier diagnosis of multiple sclerosis in clinically isolated syndromes. Ann Neurol. 2003;53:673–676.

    PubMed  Google Scholar 

  75. Barkhof F, Rocca M, Francis G, et al., and Early Treatment of Multiple Sclerosis Study Group. Validation of diagnostic magnetic resonance imaging criteria for multiple sclerosis and response to interferon beta1a. Ann Neurol 2003;53:718–724.

    PubMed  Google Scholar 

  76. Thompson AJ, Polman CH, Miller DH, et al. Primary progressive multiple sclerosis. Brain 1997;12:1085–1096.

    Google Scholar 

  77. Wolinsky JS, PROMiSe Study Group. The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 2003;206:145–152.

    PubMed  Google Scholar 

  78. Paolillo A, Pozzilli C, Gasperini C, et al. Brain atrophy in relapsing-remitting multiple sclerosis. Relationship with black holes, disease duration and clinical disability. J Neurol Sci 2000;174:85–91.

    PubMed  CAS  Google Scholar 

  79. Zivadinov R, Rudick RA, De Masi R, et al. Effects of intravenous methylprednisolone on brain atrophy in relapsing-remitting multiple sclerosis. Neurology 2001;57:1239–1247.

    PubMed  CAS  Google Scholar 

  80. Simon JH, Lull J, Jacobs LD, et al. A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1a. Multiple Sclerosis Collaborative Research Group. Neurology 2000;55:185–192.

    PubMed  CAS  Google Scholar 

  81. Bitsch A, Kuhlmann T, Stadelmann C, et al. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001;49:793–796.

    PubMed  CAS  Google Scholar 

  82. Benedict RHB, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R. Prediction of neuropsychological impairment in multiple sclerosis: a comparison of conventional MRI measures of atrophy and lesion burden. Arch Neurol 2004;61:226–230.

    PubMed  Google Scholar 

  83. Bermel RA, Sharma J, Tjoa CW, Puli SR, Bakshi R. A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 2003:208;57–65.

    PubMed  Google Scholar 

  84. Jacobs LD, Beck RW, Simon JH, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 2000;343:898–904.

    PubMed  CAS  Google Scholar 

  85. Beck RW, Chandler DL, Cole SR, et al. Interferon beta-1a for early multiple sclerosis: CHAMPS trial subgroup analyses. Ann Neurol 2002;51:481–490.

    PubMed  CAS  Google Scholar 

  86. Comi G, Filippi M, Barkhof F, et al., and Early Treatment of Multiple Sclerosis Study Group Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 2001;357:1576–1582.

    PubMed  CAS  Google Scholar 

  87. Rovaris M, Filippi M. Interventions for the prevention of brain atrophy in multiple sclerosis: current status. CNS Drugs 2003;17:563–575.

    PubMed  CAS  Google Scholar 

  88. Rudick RA, Fisher E, Lee JC, et al., and the Multiple Sclerosis Collaborative Research Group. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology 1999;53:1698–1704.

    PubMed  CAS  Google Scholar 

  89. Zivadinov R, Sepcic J, Nasuelli D, et al. A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2001;70:773–780.

    PubMed  CAS  Google Scholar 

  90. Paolillo A, Pozzilli E, Giugni E, et al. A 6-year clinical and MRI follow-up study of patients with relapsing-remitting multiple sclerosis treated with Interferon-beta. Eur J Neurol 2002;9:1–11.

    Google Scholar 

  91. Zivadinov R, Zorzon M. Is gadolinium enhancement predictive of the development of brain atrophy in multiple sclerosis? A review of the literature. J Neuroimaging 2002;12:302–309.

    PubMed  Google Scholar 

  92. Bakshi R, Benedict RHB, Bermel RA, Jacobs L. Regional brain atrophy is associated with physical disability in multiple sclerosis: semiquantitative MRI and relationship to clinical findings. J Neuroimaging 2001;11:129–136.

    PubMed  CAS  Google Scholar 

  93. Zivadinov R, De Masi R, Nasuelli D, et al. Magnetic resonance imaging techniques and cognitive impairment in early phase of relapsing-remitting multiple sclerosis. Neuroradiology 2001;43:272–278.

    PubMed  CAS  Google Scholar 

  94. Bakshi R, Czarnecki D, Shaikh ZA, et al. Brain MRI lesions and atrophy are related to depression in multiple sclerosis. NeuroReport 2000;11:1153–1158.

    PubMed  CAS  Google Scholar 

  95. Janardhan V, Bakshi R. Quality of life and its relationship to brain lesions and atrophy on magnetic resonance images in 60 patients with multiple sclerosis. Arch Neurol 2000;57:1485–1491.

    PubMed  CAS  Google Scholar 

  96. Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L. Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 2001;185:19–26.

    PubMed  CAS  Google Scholar 

  97. Bakshi R, Benedict RHB, Bermel RA, et al. T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 2002;59:62–68.

    PubMed  Google Scholar 

  98. Luks TL, Goodkin DE, Nelson SJ, et al. A longitudinal study of ventricular volume in early relapsing-remitting multiple sclerosis. Mult Scler 2000;6:322–327.

    Google Scholar 

  99. Chard DT, Griffin CM, Parker GJM, et al. Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 2002;125:327–337.

    PubMed  CAS  Google Scholar 

  100. Brex PA, Jenkins R, Fox NC, et al. Detection of ventricular enlargement in patients at the earliest clinical stage of MS. Neurology 2000;54:1689–1691.

    PubMed  CAS  Google Scholar 

  101. Brex PA, Leary SM, O’Riordan JI, et al. Measurement of spinal cord area in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Neurosurg Psychiatry 2001;70:544–547.

    PubMed  CAS  Google Scholar 

  102. Dalton CM, Brex PA, Jenkins R, et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. Ann Neurol 2002;73:141–147.

    CAS  Google Scholar 

  103. van Buchem MA, McGowan JC, Kolson DL, Polansky M, Grossman RI. Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 1996;36:632–636.

    PubMed  Google Scholar 

  104. Rovaris M, Filippi M. Magnetization transfer imaging. In: Filippi M, Comi G, eds. New Frontiers of MR-Based Techniques in Multiple Sclerosis. Springer Verlag, Berlin, 2003, pp. 11–32.

    Google Scholar 

  105. Iannucci G, Tortorella C, Rovaris M, et al. Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. A J Neuroradiol 2000;21:1034–1038.

    CAS  Google Scholar 

  106. Filippi M, Inglese M, Rovaris M, et al. Magnetization transfer imaging to monitor the evolution of MS: a 1-year follow-up study. Neurology 2000;55:940–946.

    PubMed  CAS  Google Scholar 

  107. Brex PA, Larry SM, Plant GT, et al. Magnetization transfer imaging in patients with clinically isolated syndromes suggestive of multiple sclerosis. Am J Neuroradiol 2001;22:947–951.

    PubMed  CAS  Google Scholar 

  108. Traboulsee A, Dehmeshki J, Brex PA, et al. Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 2002;59:126–128.

    PubMed  CAS  Google Scholar 

  109. Gonen O, Grossman RI. Global brain proton spectroscopy in MS. In: Filippi M, Comi G, eds. New Frontiers of MR-Based Techniques in Multiple Sclerosis. Springer Verlag, Berlin, 2003, pp. 47–71.

    Google Scholar 

  110. Davie CA, Barker GJ, Webb S, et al. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 1995;118:1583–1592.

    PubMed  Google Scholar 

  111. Fu L, Matthews PM, De Stefano N, et al. Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 1998;21:103–113.

    Google Scholar 

  112. Brex PA, Gomez-Anson B, Parker GJ, et al. Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Sci 1999;166:16–22.

    PubMed  CAS  Google Scholar 

  113. Rocca MA, Mezzapesa DM, Falini A, et al. Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 2003;18:847–855.

    PubMed  Google Scholar 

  114. Filippi M, Bozzali M, Rovaris M, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003;126:433–437.

    PubMed  CAS  Google Scholar 

  115. Maldjian JA, Grossman RI. Future applications of DWI in MS. J Neurol Sci 2001;186(Suppl 1):55–57.

    Google Scholar 

  116. Fabiano AJ, Sharma J, Weinstock-Guttman B, et al. Thalamic involvement in multiple sclerosis: a diffusion-weighted magnetic resonance imaging study. J Neuroimaging 2003;13:307–314.

    PubMed  Google Scholar 

  117. Cercignani M, Ingle M, Pagani E, Comi G, Filippi M. Mean diffusivity and fractional anisotropy histograms in patients with multiple sclerosis. Am J Neuroradiol 2001;22:952–958.

    PubMed  CAS  Google Scholar 

  118. Caramia F, Pantano P, Di Legge S, et al. A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging 2002;20:383–388.

    PubMed  Google Scholar 

  119. Werring DJ, Bullmore ET, Toosy AT, et al. Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 2000;68:441–449.

    PubMed  CAS  Google Scholar 

  120. Filippi M, Rocca MA, Falini A, et al. A functional MRI study of patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. J Neurol 2002;249(Suppl 1):I/20.

    Google Scholar 

  121. Pantano P, Iannetti GD, Caramia F, et al. Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 2002;125:1607–1615.

    PubMed  Google Scholar 

  122. Pantano P, Mainero C, Iannetti GD, et al. Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 2002;17:1837–1843.

    PubMed  Google Scholar 

  123. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. New Engl J Med 2000;343:938–952.

    PubMed  CAS  Google Scholar 

  124. Jacobs L, Kinkel PR, Kinkel WR. Silent brain lesions in patients with isolated idiopathic optic neuritis. A clinical and nuclear magnetic resonance imaging study. Arch Neurol 1986;43:452–455.

    PubMed  CAS  Google Scholar 

  125. Ormerod IE, Miller DH, McDonald WI, et al. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 1987;110:1579–1616.

    PubMed  Google Scholar 

  126. Jacobs LD, Kaba SE, Miller CM, Priore RL, Brownscheidle CM. Correlation of clinical, magnetic resonance imaging, and cerebrospinal fluid findings in optic neuritis. Ann Neurol 1997;41:392–398.

    PubMed  CAS  Google Scholar 

  127. Optic Neuritis Study Group. The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Optic Neuritis Study Group. Neurology 1997;49:1404–1413.

    Google Scholar 

  128. Morrisey SP, Miller DH, Kendall BE, et al. The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain 1993;116:135–146.

    Google Scholar 

  129. Filippi M, Horsfield MA, Morrisey MD, et al. Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 1994;44:635–641.

    PubMed  CAS  Google Scholar 

  130. O’Riordan JI, Thompson AJ, Kingsley DP, et al. The prognostic value of brain MRI in clinically isolated syndromes suggestive of demyelination. Brain 1998;121:495–503.

    PubMed  Google Scholar 

  131. Sailer M, O’Riordan JI, Thompson AJ, et al. Quantitative MRI in patients with clinically isolated syndromes suggestive of demyelination. Neurology 1999;52:599–606.

    PubMed  CAS  Google Scholar 

  132. Brex PA, Ciccarelli O, Jonathon I, et al. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002;346:158–164.

    PubMed  Google Scholar 

  133. Losseff NA, Miller DH, Kidd D, Thompson AJ. The predictive value of gadolinium enhancement for long-term disability in relapsing-remitting multiple sclerosis—preliminary results. Mult Scler 2001;7:23–25.

    PubMed  CAS  Google Scholar 

  134. Losseff NA, Kingsley DP, McDonald WI, Miller DH, Thompson AJ. Clinical and magnetic resonance imaging predictors of disability in primary and secondary progressive multiple sclerosis. Mult Scler 1996;1:218–222.

    PubMed  CAS  Google Scholar 

  135. Koudriavtseva T, Thompson AJ, Fiorelli M, et al. Gadolinium enhanced MRI predicts clinical and MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 1997;62:285–287.

    PubMed  CAS  Google Scholar 

  136. Simon JH. Contrast-enhanced MR imaging in the evaluation of treatment response and prediction of outcome in multiple sclerosis. J Magn Reson Imaging 1997;7:29–37.

    PubMed  CAS  Google Scholar 

  137. Giovannoni G, Lai M, Thorpe J, et al. Longitudinal study of soluble adhesion molecules in multiple sclerosis: correlation with gadolinium enhanced magnetic resonance imaging. Neurology 1997;48:1557–1656.

    PubMed  CAS  Google Scholar 

  138. Truyen L, van Waesberghe JH, van Walderveen MA, et al. Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 1996;47:1469–1476.

    PubMed  CAS  Google Scholar 

  139. Koziol JA, Wagner S, Sobel DF, et al. Predictive value of lesions for relapses in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 2001;22:284–291.

    PubMed  CAS  Google Scholar 

  140. Wagner S, Adams H, Sobel DF, et al. New hypointense lesions on MRI in relapsing-remitting multiple sclerosis patients. Eur Neurol 2000;43:194–200.

    PubMed  CAS  Google Scholar 

  141. Gasperini C, Pozzilli C, Bastianello S, et al. Interferon-beta-1a in relapsing-remitting multiple sclerosis: effect on hypointense lesion volume on T1 weighted images. J Neurol Neurosurg Psychiatry 1999;67:579–584.

    PubMed  CAS  Google Scholar 

  142. Bagnato F, Jeffries N, Richert ND, et al. Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 2003;126:1–8.

    Google Scholar 

  143. Santos AC, Narayanan S, de Stefano N, et al. Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. J Neurol 2002;249:662–668.

    PubMed  Google Scholar 

  144. Arnold DL, Riess GT, Matthews PM, et al. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol. 1994;36:76–82.

    PubMed  CAS  Google Scholar 

  145. De Stefano N, Matthews PM, Narayanan S, et al. Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 1997;49:1138–1141.

    PubMed  Google Scholar 

  146. De Stefano N, Matthews PM, Fu L, et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998;121:1469–1477.

    PubMed  Google Scholar 

  147. Parry A, Corkill R, Blamire AM, et al. Beta-Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J Neurol 2003;250:171–178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Zivadinov, R., Bakshi, R. (2005). Role of Magnetic Resonance Imaging in the Diagnosis and Prognosis of Multiple Sclerosis. In: Olek, M.J. (eds) Multiple Sclerosis. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-855-2:055

Download citation

  • DOI: https://doi.org/10.1385/1-59259-855-2:055

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-033-5

  • Online ISBN: 978-1-59259-855-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics