Skip to main content

Regulation of TRAIL-Induced Apoptosis by Transcriptional Factors

  • Chapter
  • 562 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

In 1995, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was identified based on its sequence homology to other TNF family members (1). Among members of the TNF family, TRAIL shares the highest sequence homology with Fas ligand (FasL, CD95L). However, unlike FasL, TRAIL appears to induce apoptosis of tumor cells but not most normal cells (2). To date, five receptors for TRAIL have been cloned: TRAIL-R1 (DR4, Apo2A) (3), TRAIL-R2 (DR5, TRICK, Killer) (38), TRAIL-R3 (DcR1, TRID, LIT) (69), TRAIL-R4 (DcR2, TRUNDD) (10), and osteoprotegerin (OPG) (11). Unlike other TRAIL receptors, which bind only to TRAIL, osteoprotegerin also binds to osteoprotegerin ligand (OPGL), TRANCE, and RANK ligand (RANKL). TRAIL-R1 and TRAIL-R2 contain intracellular death domains and induce, via coupling with intracellular adaptor proteins, the proteolytic cleavage of caspase-8 (12). Caspase-8 activation initiates the extrinsic and intrinsic apoptotic pathways, resulting in caspase-3 cleavage, which is an irreversible step in a cell’s commitment to apoptosis. Other TRAIL receptors do not generate death signals because TRAIL-R3 does not contain a death domain and is attached to the membrane by a glycolipid anchor (6,9), whereas the death domain of TRAIL-R4 is not functional (10) and OPG exists only in a soluble form (11). Therefore, TRAIL-R3 and TRAIL-R4 might act as decoy receptors by competing with other TRAIL receptors for TRAIL. The expression pattern of TRAIL receptors on certain cell lines might determine their sensitivity to TRAIL. However, the expression of TRAIL decoy receptors is not always related to a cell’s resistance to TRAIL-induced apoptosis (13). Other factors may, therefore, play more decisive roles in determining a cell’s sensitivity to TRAIL. In this review, we will focus on NF-κB and PPAR-γ, two transcription factors that were recently found to play important roles in TRAIL-induced apoptosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–82.

    Article  PubMed  CAS  Google Scholar 

  2. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000;256:58–66.

    Article  PubMed  CAS  Google Scholar 

  3. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science 1997;276:111–113.

    Article  PubMed  CAS  Google Scholar 

  4. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997;16:5386–5397.

    Article  PubMed  CAS  Google Scholar 

  5. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–821.

    Article  PubMed  CAS  Google Scholar 

  6. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS Letters 1997;416:329–334.

    Article  PubMed  CAS  Google Scholar 

  7. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997;7:693–696.

    Article  PubMed  CAS  Google Scholar 

  8. Wu GS, Burns TF, McDonald III ER, et al. Killer/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997;17:141–143.

    Article  PubMed  CAS  Google Scholar 

  9. Degli-Espost MA, Smolak PJ, Walczak H, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186:1165–1170.

    Article  Google Scholar 

  10. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997; 7:813–820.

    Article  PubMed  CAS  Google Scholar 

  11. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998;273:14,363–14,367.

    Article  PubMed  CAS  Google Scholar 

  12. Srivastava RK. Intracellular mechanisms of TRAIL and its role in cancer therapy. Mol Cell Biol Res Commun 2000;4:67–75.

    Article  PubMed  CAS  Google Scholar 

  13. Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998;10:559–563.

    Article  PubMed  CAS  Google Scholar 

  14. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immun 1998;16:225–260.

    Article  CAS  Google Scholar 

  15. Bours V, Bentires AM, Hellin AC, et al. Nuclear factor-kappa B, cancer, and apoptosis. Biochem Pharma 2000;60:1085–1089.

    Article  CAS  Google Scholar 

  16. Karin M, Lin A. NF-kappaB at the crossroads of life and death. 2002;3:221–227.

    CAS  Google Scholar 

  17. Verma IM, Stevenson JK, Schwarz EM, Van_Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995;9:2723–2735.

    Article  PubMed  CAS  Google Scholar 

  18. Karin M. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 1999;274:27,339–27,342.

    Article  PubMed  CAS  Google Scholar 

  19. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680–1683.

    Article  PubMed  CAS  Google Scholar 

  20. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998;188:211–216.

    Article  PubMed  CAS  Google Scholar 

  21. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999;13:382–387.

    PubMed  CAS  Google Scholar 

  22. Grumont RJ, Rourke IJ, Gerondakis S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev 1999;13:400–411.

    PubMed  CAS  Google Scholar 

  23. Chen F, Demers LM, Vallyathan V, Lu Y, Castranova V, Shi X. Involvement of 5′-flanking kappaB-like sites within bcl-x gene in silica-induced Bcl-x expression. J Biol Chem 1999;274:35,591–35,595.

    Article  PubMed  CAS  Google Scholar 

  24. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G. NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA 1999;96:9136–9141.

    Article  PubMed  CAS  Google Scholar 

  25. Tamatani M, Che YH, Matsuzaki H, et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 1999;274:8531–8538.

    Article  PubMed  CAS  Google Scholar 

  26. Krikos A, Laherty CD, Dixit VM. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 1992;267:17,971–17,976.

    PubMed  CAS  Google Scholar 

  27. Jones PL, Ping D, Boss JM. Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol 1997;17:6970–6981.

    PubMed  CAS  Google Scholar 

  28. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 1998;281:998–1001.

    Article  PubMed  CAS  Google Scholar 

  29. Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001;21:3964–3973.

    Article  PubMed  CAS  Google Scholar 

  30. Bernard D, Quatannens B, Vandenbunder B, Abbadie C. Rel/NF-kappaB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 2001;276:27,322–27,328.

    Article  PubMed  CAS  Google Scholar 

  31. Wang CY, Mayo MW, Baldwin AS. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996;274:784–787.

    Article  PubMed  CAS  Google Scholar 

  32. Wang CY, Cusack JC, Liu R, Baldwin AS. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nature Med 1999;5:412–417.

    Article  PubMed  Google Scholar 

  33. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301–310.

    Article  PubMed  CAS  Google Scholar 

  34. Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM. Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery 2002;132:127–134.

    Article  PubMed  Google Scholar 

  35. Eid MA, Lewis RW, Abdel_Mageed AB, Kumar MV. Reduced response of prostate cancer cells to TRAIL is modulated by NFkappaB-mediated inhibition of caspases and Bid activation. Internat J Oncol 2002;21:111–117.

    CAS  Google Scholar 

  36. Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98:795–804.

    Article  PubMed  CAS  Google Scholar 

  37. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002;21:5673–5683.

    Article  PubMed  CAS  Google Scholar 

  38. Jeremias I, Herr I, Boehler T, Debatin KM. TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur J Immunol 1998;28:143–152.

    Article  PubMed  CAS  Google Scholar 

  39. Göke R, Göke A, Göke B, Chen Y. Regulation of TRAIL-induced apoptosis by transcription factors. Cell Immunol 2000;201:77–82.

    Article  PubMed  Google Scholar 

  40. Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 1998;161:2195–2200.

    PubMed  CAS  Google Scholar 

  41. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 1999; 59:2747–2753.

    PubMed  CAS  Google Scholar 

  42. Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P. Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immun 2000;164:3961–3970.

    PubMed  CAS  Google Scholar 

  43. Thomas WD, Smith MJ, Si Z, Hersey P. Expression of the co-stimulatory molecule CD40 on melanoma cells. Internat J Cancer 1996;68:795–801.

    Article  CAS  Google Scholar 

  44. Thomas WD, Hersey P. CD4 T cells kill melanoma cells by mechanisms that are independent of Fas (CD95). Internat J Cancer 1998;75:384–390.

    Article  CAS  Google Scholar 

  45. Franco AV, Zhang XD, Van_Berkel E, et al. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 2001;166:5337–5345.

    PubMed  CAS  Google Scholar 

  46. Pawlowski JE, Nesterov A, Scheinman RI, Johnson TR, Kraft AS. NF-kappa B does not modulate sensitivity of renal carcinoma cells to TNF alpha-related apoptosis-inducing ligand (TRAIL). Anticancer Res 2000;20:4243–4255.

    PubMed  CAS  Google Scholar 

  47. Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Murai M. Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 2001;20:3888–3896.

    Article  PubMed  CAS  Google Scholar 

  48. Southall MD, Isenberg JS, Nakshatri H, et al. The platelet-activating factor receptor protects epidermal cells from tumor necrosis factor (TNF) alpha and TNF-related apoptosis-inducing ligand-induced apoptosis through an NF-kappa B-dependent process. J Biol Chem 2001;276:45,548–45,554.

    Article  PubMed  CAS  Google Scholar 

  49. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3:409–416.

    Article  PubMed  CAS  Google Scholar 

  50. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Rev 1999;20:649–688.

    Article  CAS  Google Scholar 

  51. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994;8:1224–1234.

    Article  PubMed  CAS  Google Scholar 

  52. Mansen A, Guardiola_Diaz H, Rafter J, Branting C, Gustafsson JA. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa. Biochem Biophys Res Commun 1996;222:844–851.

    Article  PubMed  CAS  Google Scholar 

  53. Mueller E, Sarraf P, Tontonoz P, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1998;1:465–470.

    Article  PubMed  CAS  Google Scholar 

  54. Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res (Online) 1999;85:394–402.

    CAS  Google Scholar 

  55. Marx N, Schonbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res (Online) 1998;83:1097–1103.

    CAS  Google Scholar 

  56. Ricote M, Li AC, Wilson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-g is a negative regulator of macrophage activation. Nature 1998;391:79–82.

    Article  PubMed  CAS  Google Scholar 

  57. Marx N, Sukhova G, Murphy C, Libby P, Plutzky J. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998;153:17–23.

    PubMed  CAS  Google Scholar 

  58. Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998;273:25,573–25,580.

    Article  PubMed  CAS  Google Scholar 

  59. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflam Res 2000;49:497–505.

    Article  CAS  Google Scholar 

  60. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001;276:37,731–37,734.

    Article  PubMed  CAS  Google Scholar 

  61. Elstner E, Muller C, Koshizuka K, et al. Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 1998;95:8806–8811.

    Article  PubMed  CAS  Google Scholar 

  62. Badawi AF, Badr MZ. Chemoprevention of breast cancer by targeting cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma (Review). Int J Oncol 2002;20:1109–1122.

    PubMed  CAS  Google Scholar 

  63. Elstner E, Williamson EA, Zang C, et al. Novel therapeutic approach: ligands for PPARgamma and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells. Breast Cancer Res Treat 2002;74:155–165.

    Article  PubMed  CAS  Google Scholar 

  64. Mueller E, Smith M, Sarraf P, et al. Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 2000;97:10,990–10,995.

    Article  PubMed  CAS  Google Scholar 

  65. Hisatake JI, Ikezoe T, Carey M, Holden S, Tomoyasu S, Koeffler HP. Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res 2000;60:5494–5498.

    PubMed  CAS  Google Scholar 

  66. Eibl G, Wente MN, Reber HA, Hines OJ. Peroxisome proliferator-activated receptor gamma induces pancreatic cancer cell apoptosis. Biochem Biophys Res Commun 2001;287:522–529.

    Article  PubMed  CAS  Google Scholar 

  67. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y. Activation of PPARgamma inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett 1999;455:135–139.

    Article  PubMed  CAS  Google Scholar 

  68. Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nature Med 1998;4:1046–1052.

    Article  PubMed  CAS  Google Scholar 

  69. Yang WL, Frucht H. Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis 2001;22:1379–1383.

    Article  PubMed  CAS  Google Scholar 

  70. Tontonoz P, Singer S, Forman BM, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci USA 1997;94:237–241.

    Article  PubMed  CAS  Google Scholar 

  71. Guan YF, Zhang YH, Breyer RM, Davis L, Breyer MD. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in human transitional bladder cancer and its role in inducing cell death. Neoplasia 1999;1:330–339.

    Article  PubMed  CAS  Google Scholar 

  72. Tsubouchi Y, Sano H, Kawahito Y, et al. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 2000;270:400–405.

    Article  PubMed  CAS  Google Scholar 

  73. Fujiwara T, Horikoshi H. Troglitazone and related compounds: therapeutic potential beyond diabetes. Life Sci 2000;67:2405–2416.

    Article  PubMed  CAS  Google Scholar 

  74. Zander T, Kraus JA, Grommes C, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 2002;81:1052–1060.

    Article  PubMed  CAS  Google Scholar 

  75. Okura T, Nakamura M, Takata Y, Watanabe S, Kitami Y, Hiwada K. Troglitazone induces apoptosis via the p53 and Gadd45 pathway in vascular smooth muscle cells. Eur J Pharm 2000;407:227–235.

    Article  CAS  Google Scholar 

  76. Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrin Metab 2001; 86:2170–2177.

    Article  CAS  Google Scholar 

  77. Toyoda M, Takagi H, Horiguchi N, et al. A ligand for peroxisome proliferator activated receptor gamma inhibits cell growth and induces apoptosis in human liver cancer cells. Gut 2002;50:563–567.

    Article  PubMed  CAS  Google Scholar 

  78. Göke R, Göke A, Göke B, El-Deiry WS, Chen Y. Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21waf1/cip1. Digestion 2001;64:75–80.

    Article  PubMed  Google Scholar 

  79. Straus DS, Pascual G, Li M, et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci USA 2000;97:4844–4849.

    Article  PubMed  CAS  Google Scholar 

  80. Kim Y, Suh N, Sporn M, Reed JC. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002;277:22,320–22,329.

    Article  PubMed  CAS  Google Scholar 

  81. Fehlberg S, Trautwein S, Göke A, Göke R. Bisphenol A diglycidyl ether induces apoptosis in tumour cells independently of peroxisome proliferator-activated receptor-gamma, in caspase-dependent and-independent manners. Biochem J 2002;362:573–578.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Göke, R., Chen, Y.H. (2005). Regulation of TRAIL-Induced Apoptosis by Transcriptional Factors. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:297

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:297

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics