Skip to main content

Expression and Regulation of Death Receptors in Multiple Myeloma and Prostate Carcinoma

  • Chapter
Death Receptors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Several members of the tumor necrosis factor (TNF) gene superfamily induce apoptosis through engagement of their cognate death receptors (TNFR). To explore how their expression may be regulated, we used oligonucleotide arrays to determine TNFR gene expression using as a model multiple myeloma and prostate cancer cell lines. Expression levels for BCMA, HVEM, CD40, CD30, TACI, TNFR2, and Fas were considerably higher in multiple myeloma, pointing to their role in B-cell biology. Treatment with ionizing radiation led to increased levels of Fas, death receptor (DR)5, to a lesser extent decoy receptor (DcR)1 and DcR2, as well as BCMA, RANK, and ILA. Treatment with the topoisomerase I inhibitor CPT-11 led to increased expression of Fas, RANK, and DcR2, but not of BCMA or ILA, indicating a different transcriptional “signature” for ionizing radiation and chemotherapeutics. This increased expression level following genotoxic stress was prevented or attenuated in prostate cancer cells stably expressing a dominant-negative p53 mutant. Of the TNF family members, one that has received much attention recently is Apo2L/TRAIL (Apo2 ligand or TNF-related apoptosis-inducing ligand). Apo2L/TRAIL is unusual compared to any other cytokine, as it interacts with a complex system of receptors: two pro-apoptotic death receptors (DR4, DR5) and three anti-apoptotic decoy receptors (DcR1, DcR2, and osteoprotegerin [OPG]). This protein has generated tremendous excitement as a potential tumor-specific cancer therapeutic because, as a stable soluble trimer, it selectively induces apoptosis in many transformed cells but not in normal cells. We found that its expression can also be modulated by therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 2001; 3:E277–E286.

    Article  PubMed  CAS  Google Scholar 

  2. Gong B, Chen Q, Endlich B, Mazumder S, Almasan A. Ionizing radiation-induced, Bax-mediated cell death is dependent on activation of serine and cysteine proteases. Cell Growth Diff. 1999; 10:491–502.

    PubMed  CAS  Google Scholar 

  3. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15:2922–2933.

    PubMed  CAS  Google Scholar 

  4. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2:420–430.

    Article  PubMed  CAS  Google Scholar 

  5. Almasan A, Ashkenazi A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 2003;14:337–348.

    Article  PubMed  CAS  Google Scholar 

  6. Hohmann HP, Remy R, Brockhaus M, van Loon AP. Two different cell types have different major receptors for human tumor necrosis factor (TNF alpha). J Biol Chem 1989;264:14,927–14,934.

    PubMed  CAS  Google Scholar 

  7. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    Article  PubMed  CAS  Google Scholar 

  8. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000;288:2351–2354.

    Article  PubMed  CAS  Google Scholar 

  9. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12,687–12,690.

    Article  PubMed  CAS  Google Scholar 

  10. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–682.

    Article  PubMed  CAS  Google Scholar 

  11. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science 1997;276:111–113.

    Article  PubMed  CAS  Google Scholar 

  12. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–821.

    Article  PubMed  CAS  Google Scholar 

  13. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997;7:693–696.

    Article  PubMed  CAS  Google Scholar 

  14. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997;272:25,417–25,420.

    Article  PubMed  CAS  Google Scholar 

  15. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 1997;7:821–830.

    Article  PubMed  CAS  Google Scholar 

  16. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J 1997;16:5386–5397.

    Article  PubMed  CAS  Google Scholar 

  17. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS Lett 1997;416:329–334.

    Article  PubMed  CAS  Google Scholar 

  18. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997;277:815–818.

    Article  PubMed  CAS  Google Scholar 

  19. Pai SI, Wu GS, Ozoren N, et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 1998;58:3513–3518.

    PubMed  CAS  Google Scholar 

  20. Wu GS, Burns TF, McDonald ERr, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997;17:141–143.

    Article  PubMed  CAS  Google Scholar 

  21. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 1995;14:5579–5588.

    PubMed  CAS  Google Scholar 

  22. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–620.

    Article  PubMed  CAS  Google Scholar 

  23. Sprick MR, Weigand MA, Rieser E, et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000;12:599–609.

    Article  PubMed  CAS  Google Scholar 

  24. Bodmer JL, Holler N, Reynard S, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000;2:241–243.

    Article  PubMed  CAS  Google Scholar 

  25. Degli-Esposti MA, Smolak PJ, Walczak H, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186:1165–1170.

    Article  PubMed  CAS  Google Scholar 

  26. Mongkolsapaya J, Cowper AE, Xu XN, et al. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol 1998;160:3–6.

    PubMed  CAS  Google Scholar 

  27. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997;7:1003–1006.

    Article  PubMed  CAS  Google Scholar 

  28. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997;7:813–820.

    Article  PubMed  CAS  Google Scholar 

  29. Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998;424:41–45.

    Article  PubMed  CAS  Google Scholar 

  30. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–319.

    Article  PubMed  CAS  Google Scholar 

  31. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998;273:14,363–14,367.

    Article  PubMed  CAS  Google Scholar 

  32. Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 2002;62:1619–1623.

    PubMed  CAS  Google Scholar 

  33. Truneh A, Sharma S, Silverman C, et al. Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem 2000;275:23,319–23,325.

    Article  PubMed  CAS  Google Scholar 

  34. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301–310.

    Article  PubMed  CAS  Google Scholar 

  35. Thalmann GN, Anezinis PE, Chang SM, et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994;54:2577–2581.

    PubMed  CAS  Google Scholar 

  36. Gong B, Almasan A. Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Res 2000;60:5754–5760.

    PubMed  CAS  Google Scholar 

  37. Chen Q, Gong B, Mahmoud-Ahmed A, et al. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 2001;98:2183–2192.

    Article  PubMed  CAS  Google Scholar 

  38. Ossovskaya VS, Mazo IA, Chernov MV, et al. Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci USA 1996;93:10,309–10,314.

    Article  PubMed  CAS  Google Scholar 

  39. Ray S, Almasan A. Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2L/TRAIL and CPT-11. Cancer Res 2003;63:4713–4723.

    PubMed  CAS  Google Scholar 

  40. Laabi Y, Gras MP, Carbonnel F, et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. Embo J 1992;11:3897–3904.

    PubMed  CAS  Google Scholar 

  41. Gras MP, Laabi Y, Linares-Cruz G, et al. BCMAp: an integral membrane protein in the Golgi apparatus of human mature B lymphocytes. Int Immunol 1995;7:1093–1106.

    Article  PubMed  CAS  Google Scholar 

  42. Hatzoglou A, Roussel J, Bourgeade MF, et al. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol 2000;165:1322–1330.

    PubMed  CAS  Google Scholar 

  43. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999;190:1697–1710.

    Article  PubMed  CAS  Google Scholar 

  44. Morel Y, Schiano de Colella JM, Harrop J, et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol 2000;165:4397–4404.

    PubMed  CAS  Google Scholar 

  45. Clark EA. CD40: a cytokine receptor in search of a ligand. Tissue Antigens 1990;36:33–36.

    PubMed  CAS  Google Scholar 

  46. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998;394:200–203.

    Article  PubMed  CAS  Google Scholar 

  47. Kurts C, Carbone FR, Krummel MF, Koch KM, Miller JF, Heath WR. Signalling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature 1999;398:341–344.

    Article  PubMed  CAS  Google Scholar 

  48. Horie R, Gattei V, Ito K, et al. Frequent expression of the variant CD30 in human malignant myeloid and lymphoid neoplasms. Am J Pathol 1999;155:2029–2041.

    PubMed  CAS  Google Scholar 

  49. Mazumder S, Chen Q, Gong B, Drazba JA, Buchsbaum JC, Almasan A. Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells. Mol. Cell. Biol. 2002;22:2398–2409.

    Article  PubMed  CAS  Google Scholar 

  50. Mazumder S, Gong B, Almasan A. Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene 2000;19:2828–2835.

    Article  PubMed  CAS  Google Scholar 

  51. El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–825.

    Article  PubMed  CAS  Google Scholar 

  52. Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS. Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 1999;59:2770–2775.

    PubMed  CAS  Google Scholar 

  53. Gong B, Almasan A. Genomic organization and transcriptional regulation of the human Apo2L/TRAIL gene. Biochem Biophys Res Commun 2000;278:747–752.

    Article  PubMed  CAS  Google Scholar 

  54. Sheikh MS, Burns TF, Huang Y, et al. p53-dependent and-independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 1998;58:1593–1598.

    PubMed  CAS  Google Scholar 

  55. Sheikh MS, Huang Y, Fernandez-Salas EA, et al. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 1999;18:4153–4159.

    Article  PubMed  CAS  Google Scholar 

  56. Kim KM, Kim HW, Kim JO, Baek KM, Kim JG, Kang CY. Induction of 4-1BB (CD137) expression by DNA damaging agents in human T lymphocytes. Immunology 2002;107:472–479.

    Article  PubMed  CAS  Google Scholar 

  57. Schwarz H, Blanco FJ, von Kempis J, Valbracht J, Lotz M. ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 1996;87:2839–2845.

    PubMed  CAS  Google Scholar 

  58. Chen Q, Ray S, Hussein M, Srkalovic G, Almasan A. Role of Apo2L/TRAIL and Bcl-2-family proteins in apoptosis of multiple myeloma. Leuk Lymp 2003;44:1209–1214.

    Article  CAS  Google Scholar 

  59. Sordillo EM, Pearse RN. RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer 2003;97:802–812.

    Article  PubMed  Google Scholar 

  60. Lipton A, Ali SM, Leitzel K, et al. Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 2002;8:2306–2310.

    PubMed  CAS  Google Scholar 

  61. Pearse RN, Sordillo EM, Yaccoby S, et al. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 2001;98:11,581–11,586.

    Article  PubMed  CAS  Google Scholar 

  62. Standal T, Seidel C, Hjertner O, et al. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 2002;100:3002–3007.

    Article  PubMed  CAS  Google Scholar 

  63. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998;67:227–264.

    Article  PubMed  CAS  Google Scholar 

  64. Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98:795–804.

    Article  PubMed  CAS  Google Scholar 

  65. Naka T, Sugamura K, Hylander BL, Widmer MB, Rustum YM, Repasky EA. Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors grown in SCID mice. Cancer Res 2002;62:5800–5806.

    PubMed  CAS  Google Scholar 

  66. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104:155–162.

    Article  PubMed  CAS  Google Scholar 

  67. LeBlanc H, Lawrence D, Varfolomeev E, et al. Tumor cell resistance to death receptor induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Medicine 2002;8:274–278.

    Article  PubMed  CAS  Google Scholar 

  68. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5:157–163.

    Article  PubMed  CAS  Google Scholar 

  69. Morrison BH, Bauer JA, Hu J, et al. Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 2002;21:1882–1889.

    Article  PubMed  CAS  Google Scholar 

  70. Chawla-Sarkar M, Bauer JA, Lupica JA, et al. Suppression of NF-kappa B survival signaling by nitrosylcobalamin sensitizes neoplasms to the anti-tumor effects of Apo2L/TRAIL. J Biol Chem 2003;24:24.

    Google Scholar 

  71. Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin Cancer Res 2001;7:1362–1369.

    PubMed  CAS  Google Scholar 

  72. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002;8:808–815.

    PubMed  CAS  Google Scholar 

  73. Chinnaiyan AM, Prasad U, Shankar S, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000;97:1754–1759.

    Article  PubMed  CAS  Google Scholar 

  74. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 2000;60:847–853.

    PubMed  CAS  Google Scholar 

  75. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 2000;20:205–212.

    Article  PubMed  CAS  Google Scholar 

  76. Rokhlin OW, Gudkov AV, Kwek S, Glover RA, Gewies AS, Cohen MB. p53 is involved in tumor necrosis factor-alpha-induced apoptosis in the human prostatic carcinoma cell line LNCaP. Oncogene 2000;19:1959–1968.

    Article  PubMed  CAS  Google Scholar 

  77. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999;59:734–741.

    PubMed  CAS  Google Scholar 

  78. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400:886–891.

    Article  PubMed  CAS  Google Scholar 

  79. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9:267–276.

    Article  PubMed  CAS  Google Scholar 

  80. Shima Y, Nishimoto N, Ogata A, Fujii Y, Yoshizaki K, Kishimoto T. Myeloma cells express Fas antigen/APO-1 (CD95) but only some are sensitive to anti-Fas antibody resulting in apoptosis. Blood 1995;85:757–764.

    PubMed  CAS  Google Scholar 

  81. Drexler HG, Dirks WG, MacLeod RA. False human hematopoietic cell lines: cross-contaminations and misinterpretations. Leukemia 1999;13:1601–1607.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ray, S., Hissong, J.G., Oancea, M., Almasan, A. (2005). Expression and Regulation of Death Receptors in Multiple Myeloma and Prostate Carcinoma. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:281

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:281

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics