Skip to main content

Regulation of Death Receptor-Induced Apoptosis by NF-κB and Interferon Signaling Pathways

Implications for Cancer Therapy

  • Chapter
Death Receptors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 571 Accesses

Abstract

Programmed cell death, or apoptosis, enables the physiologic culling of excess cells during embryonic development as well as the selective attrition of cells for tissue remodeling, regeneration, and homeostasis. The vertebrate immune system uses apoptosis to delete lymphocytes with inoperative or auto-reactive receptors from its repertoire, and to reverse clonal expansion at the end of an immune response. Cytotoxic T-lymphocytes and natural killer (NK) cells induce apoptosis of target cells during innate and adaptive immune responses against intracellular pathogens, cancer cells, or transplanted tissues. The altruistic demise of cells in response to cellular stress or injury or genetic errors, serves to preserve genomic integrity and constitutes an important mechanism of tumor surveillance. Given the crucial role of apoptosis in such a diverse array of physiological functions, it is no surprise that aberrations of this process underlie a host of developmental, immune, degenerative, and neoplastic disorders. This appreciation has fuelled frenetic investigation of the molecular determinants and regulatory mechanisms of apoptosis (1). The molecular execution of cell death involves activation of members of a family of cysteine-dependent aspartate-specific proteases (caspases). One mechanism of activating caspases, termed the extrinsic pathway, is triggered by engagement of cell surface death receptors by their specific ligands (2). In this chapter, we review our current understanding of the molecular determinants of death receptor-induced apoptosis, and identify the key regulators of these death-signaling pathways. We also highlight the enormous promise of targeting death receptors or their regulatory circuits for treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407(6805):770–776.

    Article  PubMed  CAS  Google Scholar 

  2. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281(5381):1305–1308.

    Article  PubMed  CAS  Google Scholar 

  3. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76(6):959–962.

    Article  PubMed  CAS  Google Scholar 

  4. Brakebusch C, Nophar Y, Kemper O, Engelmann H, Wallach D. Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. EMBO J 1992;11(3):943–950.

    PubMed  CAS  Google Scholar 

  5. Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993;268(15):10932–10937.

    PubMed  CAS  Google Scholar 

  6. Nagata S. Apoptosis by death factor. Cell 1997;88(3):355–365.

    Article  PubMed  CAS  Google Scholar 

  7. Chinnaiyan AM, O’Rourke K, Yu GL, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 1996;274(5289):990–992.

    Article  PubMed  CAS  Google Scholar 

  8. Marsters SA, Sheridan JP, Donahue CJ, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 1996;6(12):1669–1676.

    Article  PubMed  CAS  Google Scholar 

  9. Kitson J, Raven T, Jiang YP, et al. A death-domain-containing receptor that mediates apoptosis. Nature 1996;384(6607):372–375.

    Article  PubMed  CAS  Google Scholar 

  10. Bodmer JL, Burns K, Schneider P, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity 1997;6(1):79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Screaton GR, Xu XN, Olsen AL, et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 1997;94(9):4615–4619.

    Article  PubMed  CAS  Google Scholar 

  12. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science 1997;276(5309):111–113.

    Article  PubMed  CAS  Google Scholar 

  13. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997;7(9):693–696.

    Article  PubMed  CAS  Google Scholar 

  14. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997;277(5327):815–818.

    Article  PubMed  CAS  Google Scholar 

  15. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277(5327):818–821.

    Article  PubMed  CAS  Google Scholar 

  16. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997;16(17):5386–5397.

    Article  PubMed  CAS  Google Scholar 

  17. Wu GS, Burns TF, McDonald ER, III, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997;17(2):141–143.

    Article  PubMed  CAS  Google Scholar 

  18. Pan G, Bauer JH, Haridas V, et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 1998;431(3):351–356.

    Article  PubMed  CAS  Google Scholar 

  19. Marsters SA, Sheridan JP, Pitti RM, Brush J, Goddard A, Ashkenazi A. Identification of a ligand for the death-domain-containing receptor Apo3. Curr Biol 1998;8(9):525–528.

    Article  PubMed  CAS  Google Scholar 

  20. Chicheportiche Y, Bourdon PR, Xu H, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997;272(51):32,401–32,410.

    Article  PubMed  CAS  Google Scholar 

  21. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271(22):12,687–12,690.

    Article  PubMed  CAS  Google Scholar 

  22. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3(6):673–682.

    Article  PubMed  CAS  Google Scholar 

  23. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383–424.

    Article  PubMed  CAS  Google Scholar 

  24. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272(29):17,907–17,911.

    Article  PubMed  CAS  Google Scholar 

  25. Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 1996;135(6 Pt 1):1441–1455.

    Article  PubMed  CAS  Google Scholar 

  26. Buendia B, Santa-Maria A, Courvalin JC. Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J Cell Sci 1999;112(Pt 11):1743–1753.

    PubMed  CAS  Google Scholar 

  27. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997;276(5318):1571–1574.

    Article  PubMed  CAS  Google Scholar 

  28. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001;3(4):339–345.

    Article  PubMed  CAS  Google Scholar 

  29. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001;3(4):346–352.

    Article  PubMed  CAS  Google Scholar 

  30. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997;89(2):175–184.

    Article  PubMed  CAS  Google Scholar 

  31. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391(6662):43–50.

    Article  PubMed  CAS  Google Scholar 

  32. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998;391(6662):96–99.

    Article  PubMed  CAS  Google Scholar 

  33. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993;74(5):845–853.

    Article  PubMed  CAS  Google Scholar 

  34. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;14(22):5579–5588.

    PubMed  CAS  Google Scholar 

  35. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81(4):505–512.

    Article  PubMed  CAS  Google Scholar 

  36. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995;270(14):7795–7798.

    Article  PubMed  CAS  Google Scholar 

  37. Siegel RM, Martin DA, Zheng L, et al. Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J Cell Biol 1998;141(5):1243–1253.

    Article  PubMed  CAS  Google Scholar 

  38. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996;85(6):803–815.

    Article  PubMed  CAS  Google Scholar 

  39. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996;85(6):817–827.

    Article  PubMed  CAS  Google Scholar 

  40. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997;16(10):2794–2804.

    Article  PubMed  CAS  Google Scholar 

  41. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998;1(2):319–325.

    Article  PubMed  CAS  Google Scholar 

  42. Martin DA, Siegel RM, Zheng L, Lenardo MJ. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 1998;273(8):4345–4349.

    Article  PubMed  CAS  Google Scholar 

  43. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 1998; 273(5):2926–2930.

    Article  PubMed  CAS  Google Scholar 

  44. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84(2):299–308.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 1998;392(6673):296–300.

    Article  PubMed  CAS  Google Scholar 

  46. Newton K, Harris AW, Bath ML, Smith KG, Strasser A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 1998;17(3):706–718.

    Article  PubMed  CAS  Google Scholar 

  47. Zornig M, Hueber AO, Evan G. p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Curr Biol 1998;8(8):467–470.

    Article  PubMed  CAS  Google Scholar 

  48. Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279(5358):1954–1958.

    Article  PubMed  CAS  Google Scholar 

  49. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12(6):611–620.

    Article  PubMed  CAS  Google Scholar 

  50. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9(2):267–276.

    Article  PubMed  CAS  Google Scholar 

  51. Kischkel FC, Lawrence DA, Tinel A, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001;276(49):46,639–46,646.

    Article  PubMed  CAS  Google Scholar 

  52. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998;17(6):1675–1687.

    Article  PubMed  CAS  Google Scholar 

  53. Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998;12(6):806–819.

    PubMed  CAS  Google Scholar 

  54. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ. BID: a novel BH3 domain-only death agonist. Genes Dev 1996;10(22):2859–2869.

    Article  PubMed  CAS  Google Scholar 

  55. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94(4):481–490.

    Article  PubMed  CAS  Google Scholar 

  56. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  57. Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999;274(2):1156–1163.

    Article  PubMed  CAS  Google Scholar 

  58. Roy S, Nicholson DW. Cross-talk in cell death signaling. J Exp Med 2000;192(8):F21–F25.

    Article  PubMed  CAS  Google Scholar 

  59. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000;20(3):929–935.

    Article  PubMed  CAS  Google Scholar 

  60. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14(16):2060–2071.

    PubMed  CAS  Google Scholar 

  61. Vaux DL. CED-4—the third horseman of apoptosis. Cell 1997;90(3):389–390.

    Article  PubMed  CAS  Google Scholar 

  62. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS. Caspase-9 can be activated without proteolytic processing. J Biol Chem 1999;274(13):8359–8362.

    Article  PubMed  CAS  Google Scholar 

  63. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998;1(7):949–957.

    Article  PubMed  CAS  Google Scholar 

  64. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17(8):2215–2223.

    Article  PubMed  CAS  Google Scholar 

  65. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400(6747):886–891.

    Article  PubMed  CAS  Google Scholar 

  66. Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000;6(6):1389–1399.

    Article  PubMed  CAS  Google Scholar 

  67. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292(5517):727–730.

    Article  PubMed  CAS  Google Scholar 

  68. Ravi R, Bedi A. Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res 2002;62(6):1583–1587.

    PubMed  CAS  Google Scholar 

  69. LeBlanc H, Lawrence D, Varfolomeev E, et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002;8(3):274–281.

    Article  PubMed  CAS  Google Scholar 

  70. Deng Y, Lin Y, Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 2002;16(1):33–45.

    Article  PubMed  CAS  Google Scholar 

  71. Burns TF, el Deiry WS. Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 2001;276(41):37,879–37,886.

    PubMed  CAS  Google Scholar 

  72. Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8(3):705–711.

    Article  PubMed  CAS  Google Scholar 

  73. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94(3):325–337.

    Article  PubMed  CAS  Google Scholar 

  74. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94(3):339–352.

    Article  PubMed  CAS  Google Scholar 

  75. Yoshida H, Kong YY, Yoshida R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94(6):739–750.

    Article  PubMed  CAS  Google Scholar 

  76. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 1998;94(6):727–737.

    Article  PubMed  CAS  Google Scholar 

  77. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384(6607):368–372.

    Article  PubMed  CAS  Google Scholar 

  78. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  79. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  80. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388(6639):300–304.

    Article  PubMed  CAS  Google Scholar 

  81. Goyal L. Cell death inhibition: keeping caspases in check. Cell 2001;104(6):805–808.

    Article  PubMed  CAS  Google Scholar 

  82. Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275(5296):90–94.

    Article  PubMed  CAS  Google Scholar 

  83. Verheij M, Bose R, Lin XH, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996;380(6569):75–79.

    Article  PubMed  CAS  Google Scholar 

  84. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000;288(5467):870–874.

    Article  PubMed  CAS  Google Scholar 

  85. Krammer PH. CD95’s deadly mission in the immune system. Nature 2000;407(6805):789–795.

    Article  PubMed  CAS  Google Scholar 

  86. Leithauser F, Dhein J, Mechtersheimer G, et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 1993;69(4):415–429.

    PubMed  CAS  Google Scholar 

  87. Li JH, Rosen D, Ronen D, et al. The regulation of CD95 ligand expression and function in CTL. J Immunol 1998;161(8):3943–3949.

    PubMed  CAS  Google Scholar 

  88. Golstein P. Cell death: TRAIL and its receptors. Curr Biol 1997;7(12):R750–R753.

    Article  PubMed  CAS  Google Scholar 

  89. Martinez-Lorenzo MJ, Alava MA, Gamen S, et al. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol 1998;28(9):2714–2725.

    Article  PubMed  CAS  Google Scholar 

  90. Jeremias I, Herr I, Boehler T, Debatin KM. TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur J Immunol 1998;28(1):143–152.

    Article  PubMed  CAS  Google Scholar 

  91. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997;272(41):25,417–25,420.

    Article  PubMed  CAS  Google Scholar 

  92. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS Lett 1997;416(3):329–334.

    Article  PubMed  CAS  Google Scholar 

  93. Degli-Esposti MA, Smolak PJ, Walczak H, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186(7):1165–1170.

    Article  PubMed  CAS  Google Scholar 

  94. Mongkolsapaya J, Cowper AE, Xu XN, et al. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol 1998;160(1):3–6.

    PubMed  CAS  Google Scholar 

  95. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997;7(12):1003–1006.

    Article  PubMed  CAS  Google Scholar 

  96. Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998;424(1-2):41–45.

    Article  PubMed  CAS  Google Scholar 

  97. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997;7(6):813–820.

    Article  PubMed  CAS  Google Scholar 

  98. Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998;10(5):559–563.

    Article  PubMed  CAS  Google Scholar 

  99. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396(6712):699–703.

    Article  PubMed  CAS  Google Scholar 

  100. Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999;283(5401):543–546.

    Article  PubMed  CAS  Google Scholar 

  101. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997;386(6624):517–521.

    Article  PubMed  CAS  Google Scholar 

  102. Hu S, Vincenz C, Buller M, Dixit VM. A novel family of viral death effector domain-containing molecules that inhibit both CD-95-and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem 1997;272(15):9621–9624.

    Article  PubMed  CAS  Google Scholar 

  103. Bertin J, Armstrong RC, Ottilie S, et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas-and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 1997;94(4):1172–1176.

    Article  PubMed  CAS  Google Scholar 

  104. Inohara N, Koseki T, Hu Y, Chen S, Nunez G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci USA 1997;94(20):10,717–10,722.

    Article  PubMed  CAS  Google Scholar 

  105. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388(6638):190–195.

    Article  PubMed  CAS  Google Scholar 

  106. Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, Wallach D. CASH, a novel caspase homologue with death effector domains. J Biol Chem 1997;272(32):19,641–19,644.

    Article  PubMed  CAS  Google Scholar 

  107. Srinivasula SM, Ahmad M, Ottilie S, et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997;272(30):18,542–18,545.

    Article  PubMed  CAS  Google Scholar 

  108. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 2001;107(3):399–407.

    Article  PubMed  CAS  Google Scholar 

  109. Han DK, Chaudhary PM, Wright ME, et al. MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death. Proc Natl Acad Sci USA 1997;94(21):11,333–11,338.

    Article  PubMed  CAS  Google Scholar 

  110. Rasper DM, Vaillancourt JP, Hadano S, et al. Cell death attenuation by “Usurpin,” a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 1998;5(4):271–288.

    Article  PubMed  CAS  Google Scholar 

  111. Yeh WC, Itie A, Elia AJ, et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000;12(6):633–642.

    Article  PubMed  CAS  Google Scholar 

  112. Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001;21(12):3964–3973.

    Article  PubMed  CAS  Google Scholar 

  113. Desagher S, Osen-Sand A, Montessuit S, et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 2001;8(3):601–611.

    Article  PubMed  CAS  Google Scholar 

  114. Tuazon PT, Traugh JA. Casein kinase I and II—multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res 1991;23:123–164.

    PubMed  CAS  Google Scholar 

  115. Birnbaum MJ, Clem RJ, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 1994;68(4):2521–2528.

    PubMed  CAS  Google Scholar 

  116. Lovering R, Hanson IM, Borden KL, et al. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 1993;90(6):2112–2116.

    Article  PubMed  CAS  Google Scholar 

  117. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997;16(23):6914–6925.

    Article  PubMed  CAS  Google Scholar 

  118. Takahashi R, Deveraux Q, Tamm I, et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 1998;273(14):7787–7790.

    Article  PubMed  CAS  Google Scholar 

  119. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999;18(19):5242–5251.

    Article  PubMed  CAS  Google Scholar 

  120. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 2001;104(5):781–790.

    PubMed  CAS  Google Scholar 

  121. Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001;104(5):791–800.

    Article  PubMed  CAS  Google Scholar 

  122. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998;188(1):211–216.

    Article  PubMed  CAS  Google Scholar 

  123. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83(7):1243–1252.

    Article  PubMed  CAS  Google Scholar 

  124. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281(5383):1680–1683.

    Article  PubMed  CAS  Google Scholar 

  125. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA 1997;94(19):10,057–10,062.

    Article  PubMed  CAS  Google Scholar 

  126. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997;3(8):917–921.

    Article  PubMed  CAS  Google Scholar 

  127. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002;3(3):221–227.

    Article  PubMed  CAS  Google Scholar 

  128. Sha WC, Liou HC, Tuomanen EI, Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995;80(2):321–330.

    Article  PubMed  CAS  Google Scholar 

  129. Alcamo E, Mizgerd JP, Horwitz BH, et al. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. J Immunol 2001;167(3):1592–1600.

    PubMed  CAS  Google Scholar 

  130. Franzoso G, Carlson L, Poljak L, et al. Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 1998;187(2):147–159.

    Article  PubMed  CAS  Google Scholar 

  131. Attar RM, Caamano J, Carrasco D, et al. Genetic approaches to study Rel/NF-kappa B/I kappa B function in mice. Semin Cancer Biol 1997;8(2):93–101.

    Article  PubMed  CAS  Google Scholar 

  132. Senftleben U, Li ZW, Baud V, Karin M. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 2001;14(3):217–230.

    Article  PubMed  CAS  Google Scholar 

  133. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274(5288):782–784.

    Article  PubMed  CAS  Google Scholar 

  134. Wang CY, Mayo MW, Baldwin AS, Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996;274(5288):784–787.

    Article  PubMed  CAS  Google Scholar 

  135. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996;274(5288):787–789.

    Article  PubMed  Google Scholar 

  136. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996;87(3):565–576.

    Article  PubMed  CAS  Google Scholar 

  137. Karin M, Ben Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000;18:621–663.

    Article  PubMed  CAS  Google Scholar 

  138. Grimm S, Baeuerle PA. The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem J 1993;290( Pt 2):297–308.

    PubMed  CAS  Google Scholar 

  139. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 1999;284(5412):321–325.

    Article  PubMed  CAS  Google Scholar 

  140. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 1999;284(5412):309–313.

    Article  PubMed  CAS  Google Scholar 

  141. Li ZW, Chu W, Hu Y, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 1999;189(11):1839–1845.

    Article  PubMed  CAS  Google Scholar 

  142. Solan NJ, Miyoshi H, Carmona EM, Bren GD, Paya CV. RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 2002;277(2):1405–1418.

    Article  PubMed  CAS  Google Scholar 

  143. Senftleben U, Cao Y, Xiao G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 2001;293(5534):1495–1499.

    Article  PubMed  CAS  Google Scholar 

  144. Wang D, Westerheide SD, Hanson JL, Baldwin AS, Jr. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000;275(42):32,592–32,597.

    Article  PubMed  CAS  Google Scholar 

  145. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 1997;89(3):413–424.

    Article  PubMed  CAS  Google Scholar 

  146. Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 1999;19(7):4798–4805.

    PubMed  CAS  Google Scholar 

  147. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS, Jr., Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000;20(5):1626–1638.

    Article  PubMed  CAS  Google Scholar 

  148. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995;376(6536):167–170.

    Article  PubMed  CAS  Google Scholar 

  149. Rudolph D, Yeh WC, Wakeham A, et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev 2000;14(7):854–862.

    PubMed  CAS  Google Scholar 

  150. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998;8(3):297–303.

    Article  PubMed  CAS  Google Scholar 

  151. Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 1997;385(6616):540–544.

    Article  PubMed  CAS  Google Scholar 

  152. Scheidereit C. Signal transduction. Docking IkappaB kinases. Nature 1998;395(6699):225–226.

    Article  PubMed  CAS  Google Scholar 

  153. Nishitoh H, Saitoh M, Mochida Y, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 1998;2(3):389–395.

    Article  PubMed  CAS  Google Scholar 

  154. Lee SY, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 1997;7(5):703–713.

    Article  PubMed  CAS  Google Scholar 

  155. Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7(5):715–725.

    Article  PubMed  CAS  Google Scholar 

  156. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001;11(9):372–377.

    Article  PubMed  CAS  Google Scholar 

  157. Rosenfeld ME, Prichard L, Shiojiri N, Fausto N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am J Pathol 2000;156(3):997–1007.

    PubMed  CAS  Google Scholar 

  158. Doi TS, Marino MW, Takahashi T, et al. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci USA 1999;96(6):2994–2999.

    Article  PubMed  CAS  Google Scholar 

  159. Van Parijs L, Ibraghimov A, Abbas AK. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 1996;4(3):321–328.

    Article  PubMed  Google Scholar 

  160. Hong SY, Yoon WH, Park JH, Kang SG, Ahn JH, Lee TH. Involvement of two NF-kappa B binding elements in tumor necrosis factor alpha-, CD40-, and Epstein-Barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J Biol Chem 2000;275(24):18,022–18,028.

    Article  PubMed  CAS  Google Scholar 

  161. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996;379(6563):349–353.

    Article  PubMed  CAS  Google Scholar 

  162. Shu HB, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 1996;93(24):13,973–13,978.

    Article  PubMed  CAS  Google Scholar 

  163. Chen C, Edelstein LC, Gelinas C. The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 2000;20(8):2687–2695.

    Article  PubMed  Google Scholar 

  164. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3(4):409–416.

    Article  PubMed  CAS  Google Scholar 

  165. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999;13(4):382–387.

    PubMed  CAS  Google Scholar 

  166. Hamasaki A, Sendo F, Nakayama K, et al. Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med 1998;188(11):1985–1992.

    Article  PubMed  CAS  Google Scholar 

  167. Bentires-Alj M, Dejardin E, Viatour P, et al. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 2001;20(22):2805–2813.

    Article  PubMed  CAS  Google Scholar 

  168. Tang G, Minemoto Y, Dibling B, et al. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001;414(6861):313–317.

    Article  PubMed  CAS  Google Scholar 

  169. De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45beta by NF-kappaB downregulates proapoptotic JNK signalling. Nature 2001;414(6861):308–313.

    Article  PubMed  Google Scholar 

  170. Javelaud D, Besancon F. NF-kappa B activation results in rapid inactivation of JNK in TNF alpha-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-kappa B. Oncogene 2001;20(32):4365–4372.

    Article  PubMed  CAS  Google Scholar 

  171. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998;67:227–264.

    Article  PubMed  CAS  Google Scholar 

  172. Darnell JE, Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994;264(5164):1415–1421.

    Article  PubMed  CAS  Google Scholar 

  173. Ihle JN. STATs: signal transducers and activators of transcription. Cell 1996;84(3):331–334.

    Article  PubMed  CAS  Google Scholar 

  174. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 1997;278(5343):1630–1632.

    Article  PubMed  CAS  Google Scholar 

  175. Tamura T, Ishihara M, Lamphier MS, et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 1995;376(6541):596–599.

    Article  PubMed  CAS  Google Scholar 

  176. Ossina NK, Cannas A, Powers VC, et al. Interferon-gamma modulates a p53-independent apoptotic pathway and apoptosis-related gene expression. J Biol Chem 1997;272(26):16,351–16,357.

    Article  PubMed  CAS  Google Scholar 

  177. Kumar-Sinha C, Varambally S, Sreekumar A, Chinnaiyan AM. Molecular cross-talk between the TRAIL and interferon signaling pathways. J Biol Chem 2002;277(1):575–585.

    Article  PubMed  CAS  Google Scholar 

  178. Leaman DW, Chawla-Sarkar M, Vyas K, et al. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 2002;277(32):28,504–28,511.

    Article  PubMed  CAS  Google Scholar 

  179. Dorothee G, Vergnon I, Menez J, et al. Tumor-infiltrating CD4+ T lymphocytes express APO2 ligand (APO2L)/TRAIL upon specific stimulation with autologous lung carcinoma cells: role of IFN-alpha on APO2L/TRAIL expression and-mediated cytotoxicity. J Immunol 2002;169(2):809–817.

    PubMed  CAS  Google Scholar 

  180. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999;189(9):1451–1460.

    Article  PubMed  CAS  Google Scholar 

  181. Lee JK, Sayers TJ, Brooks AD, et al. IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. J Immunol 2000;164(1):231–239.

    PubMed  CAS  Google Scholar 

  182. Oshima K, Yanase N, Ibukiyama C, et al. Involvement of TRAIL/TRAIL-R interaction in IFN-alpha-induced apoptosis of Daudi B lymphoma cells. Cytokine 2001;14(4):193–201.

    Article  PubMed  CAS  Google Scholar 

  183. Sedger LM, Shows DM, Blanton RA, et al. IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 1999;163(2):920–926.

    PubMed  CAS  Google Scholar 

  184. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002;2(11):850–861.

    Article  PubMed  CAS  Google Scholar 

  185. Takeda K, Smyth MJ, Cretney E, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 2001;214(2):194–200.

    Article  PubMed  CAS  Google Scholar 

  186. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002;195(2):161–169.

    Article  PubMed  CAS  Google Scholar 

  187. Krammer PH. CD95’s deadly mission in the immune system. Nature 2000;407(6805):789–795.

    Article  PubMed  CAS  Google Scholar 

  188. Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999;13(19):2514–2526.

    Article  PubMed  CAS  Google Scholar 

  189. Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 1997;11(21):2810–2821.

    PubMed  CAS  Google Scholar 

  190. Arch RH, Gedrich RW, Thompson CB. Translocation of TRAF proteins regulates apoptotic threshold of cells. Biochem Biophys Res Commun 2000;272(3):936–945.

    Article  PubMed  CAS  Google Scholar 

  191. Leo E, Deveraux QL, Buchholtz C, et al. TRAF1 is a substrate of caspases activated during tumor necrosis factor receptor-alpha-induced apoptosis. J Biol Chem 2001;276(11):8087–8093.

    Article  PubMed  CAS  Google Scholar 

  192. Schwenzer R, Siemienski K, Liptay S, et al. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 1999;274(27):19,368–19,374.

    Article  PubMed  CAS  Google Scholar 

  193. Tang G, Yang J, Minemoto Y, Lin A. Blocking caspase-3-mediated proteolysis of IKKbeta suppresses TNF-alpha-induced apoptosis. Mol Cell 2001;8(5):1005–1016.

    Article  PubMed  CAS  Google Scholar 

  194. Reuther JY, Baldwin AS, Jr. Apoptosis promotes a caspase-induced amino-terminal truncation of IkappaBalpha that functions as a stable inhibitor of NF-kappaB. J Biol Chem 1999;274(29):20,664–20,670.

    Article  PubMed  CAS  Google Scholar 

  195. Barkett M, Xue D, Horvitz HR, Gilmore TD. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 1997;272(47):29,419–29,422.

    Article  PubMed  CAS  Google Scholar 

  196. Ravi R, Bedi A, Fuchs EJ, Bedi A. CD95 (Fas)-induced caspase-mediated proteolysis of NF-kappaB. Cancer Res 1998;58(5):882–886.

    PubMed  CAS  Google Scholar 

  197. Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-kappa B loop. Nat Cell Biol 1999;1(4):227–233.

    Article  PubMed  CAS  Google Scholar 

  198. Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997;278(5345):1966–1968.

    Article  PubMed  CAS  Google Scholar 

  199. Clem RJ, Cheng EH, Karp CL, et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci USA 1998;95(2):554–559.

    Article  PubMed  CAS  Google Scholar 

  200. Fujita N, Nagahashi A, Nagashima K, Rokudai S, Tsuruo T. Acceleration of apoptotic cell death after the cleavage of Bcl-XL protein by caspase-3-like proteases. Oncogene 1998;17(10):1295–1304.

    Article  PubMed  CAS  Google Scholar 

  201. Clem RJ, Sheu TT, Richter BW, et al. c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. J Biol Chem 2001;276(10):7602–7608.

    Article  PubMed  CAS  Google Scholar 

  202. Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 1994;76(6):977–987.

    Article  PubMed  CAS  Google Scholar 

  203. Shresta S, MacIvor DM, Heusel JW, Russell JH, Ley TJ. Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Proc Natl Acad Sci USA 1995; 92(12):5679–5683.

    Article  PubMed  CAS  Google Scholar 

  204. Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 1997;185(5):855–866.

    Article  PubMed  CAS  Google Scholar 

  205. Metkar SS, Wang B, Aguilar-Santelises M, et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity 2002;16(3):417–428.

    Article  PubMed  CAS  Google Scholar 

  206. MacDonald G, Shi L, Vande VC, Lieberman J, Greenberg AH. Mitochondria-dependent and-independent regulation of granzyme B-induced apoptosis. J Exp Med 1999;189(1):131–144.

    Article  PubMed  CAS  Google Scholar 

  207. Alimonti JB, Shi L, Baijal PK, Greenberg AH. Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J Biol Chem 2001;276(10):6974–6982.

    Article  PubMed  CAS  Google Scholar 

  208. Wang GQ, Wieckowski E, Goldstein LA, et al. Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells. J Exp Med 2001;194(9):1325–1337.

    Article  PubMed  CAS  Google Scholar 

  209. Heibein JA, Goping IS, Barry M, et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med 2000;192(10):1391–1402.

    Article  PubMed  CAS  Google Scholar 

  210. Kataoka T, Schroter M, Hahne M, et al. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 1998;161(8):3936–3942.

    PubMed  CAS  Google Scholar 

  211. Kashii Y, Giorda R, Herberman RB, Whiteside TL, Vujanovic NL. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol 1999;163(10):5358–5366.

    PubMed  CAS  Google Scholar 

  212. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR. Role of NK cells in tumour growth and metastasis in beige mice. Nature 1980;284(5757):622–624.

    Article  PubMed  CAS  Google Scholar 

  213. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986;319(6055):675–678.

    Article  PubMed  CAS  Google Scholar 

  214. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 2001;7(1):94–100.

    Article  PubMed  CAS  Google Scholar 

  215. Smyth MJ, Thia KY, Cretney E, et al. Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 1999;162(11):6658–6662.

    PubMed  CAS  Google Scholar 

  216. Owen-Schaub LB, van Golen KL, Hill LL, Price JE. Fas and Fas ligand interactions suppress melanoma lung metastasis. J Exp Med 1998;188(9):1717–1723.

    Article  PubMed  CAS  Google Scholar 

  217. Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2001;2(12):917–924.

    Article  PubMed  CAS  Google Scholar 

  218. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 2000;407(6805):777–783.

    Article  PubMed  CAS  Google Scholar 

  219. el Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol 1998;8(5):345–357.

    Article  PubMed  Google Scholar 

  220. Kirsch DG, Kastan MB. Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 1998;16(9):3158–3168.

    PubMed  CAS  Google Scholar 

  221. Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001;29(Pt 6):684–688.

    Article  PubMed  CAS  Google Scholar 

  222. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000;288(5468):1053–1058.

    Article  PubMed  CAS  Google Scholar 

  223. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7(3):683–694.

    Article  PubMed  CAS  Google Scholar 

  224. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80(2):293–299.

    Article  PubMed  CAS  Google Scholar 

  225. Pearson AS, Spitz FR, Swisher SG, et al. Up-regulation of the proapoptotic mediators Bax and Bak after adenovirus-mediated p53 gene transfer in lung cancer cells. Clin Cancer Res 2000;6(3):887–890.

    PubMed  CAS  Google Scholar 

  226. Pohl U, Wagenknecht B, Naumann U, Weller M. p53 enhances BAK and CD95 expression in human malignant glioma cells but does not enhance CD95L-induced apoptosis. Cell Physiol Biochem 1999;9(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  227. Ravi R, Mookerjee B, van Hensbergen Y, et al. p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res 1998;58(20):4531–4536.

    PubMed  CAS  Google Scholar 

  228. Webster GA, Perkins ND. Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 1999;19(5):3485–3495.

    PubMed  CAS  Google Scholar 

  229. Wadgaonkar R, Phelps KM, Haque Z, Williams AJ, Silverman ES, Collins T. CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. J Biol Chem 1999;274(4):1879–1882.

    Article  PubMed  CAS  Google Scholar 

  230. Strasser A, Harris AW, Jacks T, Cory S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 1994;79(2):329–339.

    Article  PubMed  CAS  Google Scholar 

  231. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science 2000;290(5493):989–992.

    Article  PubMed  CAS  Google Scholar 

  232. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998;188(11):2033–2045.

    Article  PubMed  CAS  Google Scholar 

  233. Wu GS, Burns TF, McDonald ER, III, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997;17(2):141–143.

    Article  PubMed  CAS  Google Scholar 

  234. Fuchs EJ, McKenna KA, Bedi A. p53-dependent DNA damage-induced apoptosis requires Fas/APO-1-independent activation of CPP32beta. Cancer Res 1997;57(13):2550–2554.

    PubMed  CAS  Google Scholar 

  235. Eischen CM, Kottke TJ, Martins LM, et al. Comparison of apoptosis in wild-type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood 1997;90(3):935–943.

    PubMed  CAS  Google Scholar 

  236. Newton K, Strasser A. Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1 signaling. Implications for cancer therapy. J Exp Med 2000;191(1):195–200.

    Article  PubMed  CAS  Google Scholar 

  237. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001;7(6):680–686.

    Article  PubMed  CAS  Google Scholar 

  238. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000;256(1):42–49.

    Article  PubMed  CAS  Google Scholar 

  239. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104(2):155–162.

    Article  PubMed  CAS  Google Scholar 

  240. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5(2):157–163.

    Article  PubMed  CAS  Google Scholar 

  241. Roth W, Isenmann S, Naumann U, et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 1999;265(2):479–483.

    Article  PubMed  CAS  Google Scholar 

  242. Chuntharapai A, Dodge K, Grimmer K, et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 2001;166(8):4891–4898.

    PubMed  CAS  Google Scholar 

  243. Ichikawa K, Liu W, Zhao L, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001;7(8):954–960.

    Article  PubMed  CAS  Google Scholar 

  244. Marsters SA, Pitti RA, Sheridan JP, Ashkenazi A. Control of apoptosis signaling by Apo2 ligand. Recent Prog Horm Res 1999;54:225–234.

    PubMed  CAS  Google Scholar 

  245. Kim K, Fisher MJ, Xu SQ, el Deiry WS. Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 2000;6(2):335–346.

    PubMed  CAS  Google Scholar 

  246. Jo M, Kim TH, Seol DW, et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 2000;6(5):564–567.

    Article  PubMed  CAS  Google Scholar 

  247. Lawrence D, Shahrokh Z, Marsters S, et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001;7(4):383–385.

    Article  PubMed  CAS  Google Scholar 

  248. Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997;275(5302):967–969.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ravi, R., Bedi, A. (2005). Regulation of Death Receptor-Induced Apoptosis by NF-κB and Interferon Signaling Pathways. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:231

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:231

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics