Skip to main content

Proapoptotic Gene Silencing Via Methylation in Human Tumors

  • Chapter
Death Receptors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 556 Accesses

Abstract

Apoptosis, or programmed cell death (PCD), is an active process whereby individual cells, responding to internal and/or external stimuli, commit suicide. This process plays a crucial role in the normal life cycle of organisms, facilitating embryonic development, metamorphosis, cellular specialization; maintaining homeostasis (1,2). Apoptosis is characterized by a complex set of tightly controlled biochemical and molecular events leading to cell death, disassembly of various cellular components, and eventual engulfment of the resulting cellular debris (3,4). Inappropriate apoptosis has been associated with a variety of pathological conditions, such as neurodegenerative disorders, autoimmune phenomena, mitochondrial disorders, ischemic damage and cancer (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.

    PubMed  CAS  Google Scholar 

  2. Wylie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1981;68:251–305.

    Article  Google Scholar 

  3. Raff MC. Social controls on cell survival and cell death. Nature 1992;356:397–400.

    Article  PubMed  CAS  Google Scholar 

  4. Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Ann Rev Cell Biol 1991:663–698.

    Google Scholar 

  5. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–1308.

    Article  PubMed  CAS  Google Scholar 

  6. Pothana S, Dong Z, Mikhailov V, Denton M, Venkatachalam M. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 1999;107:498–506.

    Google Scholar 

  7. Reed JC, Cuddy M, Haldar S, et al. BCL2-mediated tumorigenicity of a human T-lymphoid cell line: synergy with MYC and inhibition by BCL2-antisense. Proc Natl Acad Sci USA 1990;87:3660–3664.

    Article  PubMed  CAS  Google Scholar 

  8. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med 2000;6:529–535.

    Article  PubMed  CAS  Google Scholar 

  9. Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001;409:207–211.

    Article  PubMed  CAS  Google Scholar 

  10. Shivapurkar N, Reddy J, Matta H, et al. Loss of expression of death-inducing signaling complex (DISC) components in lung cancer cell lines and the influence of MYC amplification. Oncogene 2002;21:8510–8514.

    Article  PubMed  CAS  Google Scholar 

  11. Cohen GM. Caspases—the executioners of apoptosis. Biochem J 1997;326:1–16.

    PubMed  CAS  Google Scholar 

  12. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA..Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001;155:459–470.

    Article  PubMed  CAS  Google Scholar 

  13. Harada K, Toyooka S, Shivapurkar N, et al. Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res 2002;62:5897–5901.

    PubMed  CAS  Google Scholar 

  14. Cryns VL, Yuan JY. Proteases to die for. Genes & Devel 1998;12:1551–1570.

    CAS  Google Scholar 

  15. Craen MV, Loo GV, Pype S, et al. Identification of a new caspase homologue: caspase-14. Cell Death & Diff 1998;5:838–846.

    Article  CAS  Google Scholar 

  16. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997;91:443–446.

    Article  PubMed  CAS  Google Scholar 

  17. Stegh AH, Herrmann H, Lampel S, et al. Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95-and tumor necrosis factor receptor-mediated apoptosis. Mol Cell Biol 2000;20:5665–5679.

    Article  PubMed  CAS  Google Scholar 

  18. Tang D, Lahti JM, Kidd VJ. Caspase-8 activation and Bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 2000;275:9303–9307.

    Article  PubMed  CAS  Google Scholar 

  19. Kidd VJ. Proteolytic activities that mediate apoptosis. Ann Rev Physiol 1998;60:533–573.

    Article  CAS  Google Scholar 

  20. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 1999;274:22,532–22,538.

    Article  PubMed  CAS  Google Scholar 

  21. Srinivasula SM, Ahmad MF, Fernandes-Alnemri T, Litwack G, Alnemri ES. Molecular ordering of the Fas-apoptotic pathways: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 1996;93:14,486–14,491.

    Article  PubMed  CAS  Google Scholar 

  22. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Article  PubMed  CAS  Google Scholar 

  23. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157.

    Article  PubMed  CAS  Google Scholar 

  24. Kuwana T, Smith JJ, Muzio M, Dixit VM, Newmeyer DD, Kornbluth S. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 1998;273:16589–16594.

    Article  PubMed  CAS  Google Scholar 

  25. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    Article  PubMed  CAS  Google Scholar 

  26. Zou H, Henzel WJ, Liu XS, Lutschg A, Wang XD. Apaf-1, a human protein homologous to C. elegans ced-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90(3):405–413.

    Article  PubMed  CAS  Google Scholar 

  27. Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC. Cell-specific induction of apoptosis by microinjection of cyctochrome c. J Biol Chem 1997;272:30,299–30,305.

    Article  PubMed  CAS  Google Scholar 

  28. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1311.

    Article  PubMed  CAS  Google Scholar 

  29. Varfolomeev E, Schuchmann M, Luria V, et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9:267–276.

    Article  PubMed  CAS  Google Scholar 

  30. Sakamaki K, Inoue T, Asano M, et al. Ex vivo whole-embryo culture of caspase-8 deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death & Diff 2002;9:1196–1206.

    Article  CAS  Google Scholar 

  31. Villunger A, Egle A, Kos M, et al. Drug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells. Cancer Res 1997;57:3331–3334.

    PubMed  CAS  Google Scholar 

  32. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 1999;274:5053–5060.

    Article  PubMed  CAS  Google Scholar 

  33. Fulda S, Lutz W, Schwab M, Debatin K-M. Myc-N sensitizes neuroblastoma cells for drug-induced apoptosis. Oncogene 1999;18:1479–1486.

    Article  PubMed  CAS  Google Scholar 

  34. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 1999;93:3053–3063.

    PubMed  CAS  Google Scholar 

  35. Fulda S, Strauss G, Meyer E, Debatin KM. Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic T cells. Blood 2000;95:301–308.

    PubMed  CAS  Google Scholar 

  36. Kluza J, Lansiaux A, Wattez N, Mahieu C, Osheroff N, Bailly C. Apoptotic response of HL-60 human leukemia cells to the antitumor drug TAS-103. Cancer Res 2000;60:4077–4084.

    PubMed  CAS  Google Scholar 

  37. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000;60:4315–4319.

    PubMed  CAS  Google Scholar 

  38. Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA. Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 2002;38:83–91.

    Article  PubMed  CAS  Google Scholar 

  39. Fulda S, Debatin KM. IFNg sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 2002;21:2295–2308.

    Article  PubMed  CAS  Google Scholar 

  40. Takita J, Yang HW, Chen YY, et al. Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. Oncogene 2001;20:4424–4432.

    Article  PubMed  CAS  Google Scholar 

  41. Takita J, Hayashi Y, Kohno Y, et al. Allelotype of neuroblastoma. Oncogene 1995;11:1829–1834.

    PubMed  CAS  Google Scholar 

  42. Grenet J, Teitz T, Wei T, Valentine V, Kidd VJ. Structure and chromosome localization of the human CASP8 gene. Gene 1999;226:225–232.

    Article  PubMed  CAS  Google Scholar 

  43. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor-or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 2001;20:5865–5877.

    Article  PubMed  CAS  Google Scholar 

  44. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992;69:119–128.

    Article  PubMed  CAS  Google Scholar 

  45. Hueber AO, Zornig M, Lyon D, Suda T, Nagata S, Evan GI. Requirement for the CD95 receptor-ligand pathway in c-myc-induced apoptosis. Science 1997;278:1305–1309.

    Article  PubMed  CAS  Google Scholar 

  46. Juin P, Evan G. Caspase 8: the killer you can’t live without. Nature Med 2000;6:498–500.

    Article  PubMed  CAS  Google Scholar 

  47. Klefstrom J, Verschuren EW, Evan G. c-Myc augments the apoptotic activity of cytosolic death receptor signaling proteins by engaging the mitochondrial apoptotic pathway. J Biol Chem 2002;277:43,224–43,232.

    Article  PubMed  CAS  Google Scholar 

  48. Juin P, Hueber AO, Littlewood T, Evan GI. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes & Devel 1999;13:1367–1381.

    CAS  Google Scholar 

  49. Koga S, Hirohata S, Kondo Y, et al. A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 2000;11:1397–1406.

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes & Devel 1999;13:3179–3184.

    Article  CAS  Google Scholar 

  51. Budihardjo I, Oliver H, Lutter M, Luo X, Wang XD. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999;15:269–290.

    Article  PubMed  CAS  Google Scholar 

  52. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999;274:17,941–17,945.

    Article  PubMed  CAS  Google Scholar 

  53. Hu Y, Benedict MA, Ding L, Ez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 1999;18:3586–3595.

    Article  PubMed  CAS  Google Scholar 

  54. Shiozaki EN, Chai J, Shi Y. Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci USA 2002;99:4197–4202.

    Article  PubMed  CAS  Google Scholar 

  55. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS. Caspase-9 can be activated without proteolytic processing. J Biol Chem 1999;274:8359–8362.

    Article  PubMed  CAS  Google Scholar 

  56. Rao RV, Castro-Obregon S, Frankowski H, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 2002;277:21,836–21,842.

    Article  PubMed  CAS  Google Scholar 

  57. Read SH, Baliga BC, Ekert PG, Vaux DL, Kumar S. A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 2002;159:739–745.

    Article  PubMed  CAS  Google Scholar 

  58. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94:339–352.

    Article  PubMed  CAS  Google Scholar 

  59. Caron HN, van Sluis P, van Hoeve M, et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplication. Nature Gen 1993;4:187–190.

    Article  CAS  Google Scholar 

  60. Bello MJ, deCampos JM, Kusak ME, et al. Allelic loss at 1p is associated with tumor progression of meningiomas. Genes, Chromosomes & Cancer 1994;9:296–298.

    Article  CAS  Google Scholar 

  61. Caron HN, Peter M, van Sluis P, et al. Evidence for two tumor suppressor loci on chromosomal bands 1p35-36 involved in neuroblastoma: one probably imprinted, another associated with N-myc amplification. Hum Mol Genet 1995;4:535–539.

    Article  PubMed  CAS  Google Scholar 

  62. Teitz T, Wei T, Liu D, et al. Caspase-9 and Apaf-1 are expressed and functionally active in human neuroblastoma tumor cell lines with 1p36 LOH and amplified MYCN. Oncogene 2002;21:1848–1858.

    Article  PubMed  CAS  Google Scholar 

  63. Wolf BB, Schuler M, Li W, et al. Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity. J Biol Chem 2001;276:34,244–34,251.

    Article  PubMed  CAS  Google Scholar 

  64. Adrain C, Slee EA, Harte MT, Martin SJ. Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J Biol Chem 1999;274:20,855–20,860.

    Article  PubMed  CAS  Google Scholar 

  65. Sitailo LA, Tibudan SS, Denning MF. Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J Biol Chem 2002;277:19,346–19,352.

    Article  PubMed  CAS  Google Scholar 

  66. Ding H, Lin I, McGill P, et al. Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 2000;275:38,905–38,911.

    Article  PubMed  CAS  Google Scholar 

  67. Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95-and anticancer drug-induced apoptosis. J Exp Med 1998;188:979–984.

    Article  PubMed  CAS  Google Scholar 

  68. Eischen CM, Kottke T, Martins LM, et al. Comparison of apoptosis in wild-type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood 1997;90:935–943.

    PubMed  CAS  Google Scholar 

  69. Yin X-M, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400:886–891.

    Article  PubMed  CAS  Google Scholar 

  70. Stupack DG, Cheresh DA. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Science 2002;115:3729–3738.

    Article  PubMed  CAS  Google Scholar 

  71. Ben-Yosef T, Yanuka O, Halle D, Benvenisty N. Involvement of Myc targets in c-myc and N-myc induced human tumors. Oncogene 1998;17:165–171.

    Article  PubMed  CAS  Google Scholar 

  72. Barge RY, Willemze R, Vandenabeele P, Fiers W, Beyaert R. Differential involvement of caspases in apoptosis of myeloid leukemic cells induced by chemotherapy versus growth factor withdrawal. FEBS Lett 1997;409:207–210.

    Article  PubMed  CAS  Google Scholar 

  73. Herr I, Wilhelm D, Bohler T, Angel P, Debatin K-M. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 1997;16:6200–6208.

    Article  PubMed  CAS  Google Scholar 

  74. Liu JR, Opipari AW, Tan L, et al. Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res 2002;62:924–931.

    PubMed  CAS  Google Scholar 

  75. Milner AE, Palmer DH, Hodgkin EA, et al. Induction of apoptosis by chemotherapeutic drugs: the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death & Diff 2002;9:287–300.

    Article  CAS  Google Scholar 

  76. Leverkus M, Yaar M, Gilchrest BA. Fas/Fas ligand interaction contributes to UV-induced apoptosis in human keratinocytes. Exp Cell Res 1997;232:255–262.

    Article  PubMed  CAS  Google Scholar 

  77. Brunner T, Mogil RJ, LaFace D, et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995;373:441–444.

    Article  PubMed  CAS  Google Scholar 

  78. Ju S-T, Panks DJ, Cui HL, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995;373:444–448.

    Article  PubMed  CAS  Google Scholar 

  79. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995;270:1189–1192.

    Article  PubMed  CAS  Google Scholar 

  80. Peli J, Schröter M, Rudaz C, et al. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 1999;18:1824–1831.

    Article  PubMed  CAS  Google Scholar 

  81. Petak I, Tillman DM, Harwood FG, Mihalik R, Houghton JA. Fas-dependent and-independent mechanisms of cell death following DNA damage in human colon carcinoma cells. Cancer Res 2000;60:2643–2650.

    PubMed  CAS  Google Scholar 

  82. Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 1999;190:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  83. Gottesman MM. Mechanisms of cancer drug resistance. Annual Rev Medicine 2002;53:615–627.

    Article  CAS  Google Scholar 

  84. Friesen C, Fulda S, Debatin K-M. Cytotoxic drugs and the CD95 pathway. Leukemia 1999;13:1854–1858.

    Article  PubMed  CAS  Google Scholar 

  85. Rehemtulla A, Hamilton CA, Chinnaiyan AM, Dixit VM. Ultraviolet radiation-induced apoptosis is mediated by activation of CD95 (Fas/APO-1). J Biol Chem 1997;272:25,783–25,786.

    Article  PubMed  CAS  Google Scholar 

  86. Selzer PM, Pingel S, Hsieh I, et al. Cysteine protease inhibitors as chemotherapy: Lessons from a parasite target. Proc Natl Acad Sci USA 1999;96:11,015–11,022.

    Article  PubMed  CAS  Google Scholar 

  87. Fulda S, Meyer E, Debatin KM. Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression. Cancer Res 2000;60:3947–3956.

    PubMed  CAS  Google Scholar 

  88. Fulda S, Debatin KM. IFNgamma sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 2002;21:2295–2308.

    Article  PubMed  CAS  Google Scholar 

  89. Reed JC, Tomaselli KJ. Drug discovery opportunities from apoptosis research. Current Opinion in Biotechnology 2001;11:586–592.

    Article  Google Scholar 

  90. Konopleva M, Zhou S, Xie Z, et al. Apoptosis: molecules and mechanisms. In: Kaspers GJL, Pieters R, Veerman AJP (eds), Drug Resistance in Leukemia and Lymphoma III. Kluwer Academic/Plenum Publishers, Norwell, MA: 1999;217–236.

    Google Scholar 

  91. Kim CN, Wang XD, Huang Y, et al. Overexpression of bcl-xL, inhibits ara-c-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis. Cancer Res 1997;57(15):3115–3120.

    PubMed  CAS  Google Scholar 

  92. Reed JC. Dysregulation of apoptosis in cancer. J Clin Onc 1999;17:2941–2953.

    CAS  Google Scholar 

  93. Fulda S, Friesen C, Los M, et al. Betulinic acid triggers CD95 (Apo-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res 1997;57(21):4956–4964.

    PubMed  CAS  Google Scholar 

  94. Houghton JA. Apoptosis and drug response. Curr Opinion Oncology 1999;11:475–481.

    Article  CAS  Google Scholar 

  95. McPake CR, Tillman DM, Poquette C, George EO, Houghton JA, Harris LC. Bax is an important determinant of chemosensitivity in pediatric tumor cell lines independent of Bcl-2 expression and p53 status. Oncology Res 1998; 10:235–244.

    CAS  Google Scholar 

  96. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 2000;20:205–212.

    Article  PubMed  CAS  Google Scholar 

  97. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000;256:58–66.

    Article  PubMed  CAS  Google Scholar 

  98. Kim K, Fisher MJ, Xu S-Q, El-Diery WS. Molecular determinants of responses to TRAIL in killing normal and cancer cells. Clin Cancer Res 2000;6:335–346.

    PubMed  CAS  Google Scholar 

  99. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med 1999;5:157–163.

    Article  PubMed  CAS  Google Scholar 

  100. Sheikh MS, Huang Y, Fernandes-Salas EA, et al. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 1999;18:4153–4159.

    Article  PubMed  CAS  Google Scholar 

  101. Strater J, Hinz U, Walczak H, et al. Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 2002;8:3734–3740.

    PubMed  Google Scholar 

  102. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996;93:9821–9826.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tekautz, T., Teitz, T., Lahti, J.M., Kidd, V.J. (2005). Proapoptotic Gene Silencing Via Methylation in Human Tumors. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:207

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics