Skip to main content

Regulation of Trail Receptor Expression in Human Melanoma

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

In previous studies we have shown that the level of expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor R2 was a major determinant of the sensitivity of melanoma cell lines to TRAIL-induced apoptosis. Transcriptional events regulating TRAIL death receptor expression have been the focus of much study, but our investigations point to a more important role for posttranscriptional events in regulation of TRAIL death receptors. First, although there was a wide variation in TRAIL-R2 expression between melanoma cell lines, this did not correlate with mRNA expression assessed by real-time PCR. Similarly, early passage primary cultures from patients tended to have low TRAIL-R2 protein expression compared to cells in later passage cultures, even though TRAIL-R2 mRNA expression was similar in early and late passages. Second, generation of TRAIL-resistant melanoma lines by culture in TRAIL was also associated with decreased expression of TRAIL-R2 protein, but TRAIL-R2 mRNA levels were similar to those in parental high-TRAIL-R2 expressing cells. The latter model was used to explore post-transcriptional regulation of TRAIL-R2. Expression from a luciferase reporter gene construct with the 3′ untranslated region (UTR) (but not the 5′ UTR) of TRAIL-R2 was suppressed when transfected into the TRAIL-selected (resistant) melanoma lines and in early passage (resistant) primary melanoma cultures. RNA gel shift assays demonstrated protein(s) binding to the 3′UTR but not the 5′UTR of TRAIL-R2 mRNA. These results suggest that TRAIL-R2 expression in melanoma cell lines is determined in large part by posttranscriptional events and that protein(s) binding to the 3′UTR region of TRAIL-R2 mRNA may play a key role in this regulation. Decoy receptors appeared to play little or no role in regulation of TRAIL-mediated apoptosis of melanoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–682.

    Article  PubMed  CAS  Google Scholar 

  2. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12,687–12,690.

    Article  PubMed  CAS  Google Scholar 

  3. Jo M, Kim T-H, Seol D-W, et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nature Medicine 2000;6:564–567.

    Article  PubMed  CAS  Google Scholar 

  4. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002;2:420–430.

    Article  PubMed  CAS  Google Scholar 

  5. Kelley SK, Harris LA, Xie D, et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 2001;299:31–38.

    PubMed  CAS  Google Scholar 

  6. Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 1998;161:2195–2200.

    PubMed  CAS  Google Scholar 

  7. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999;189:1343–1353.

    Article  PubMed  CAS  Google Scholar 

  8. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999;189:1451–1460.

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen T, Thomas W, Zhang XD, Gray C, Hersey P. Immunologically-mediated tumour cell apoptosis: the role of TRAIL in T cell and cytokine-mediated responses to melanoma. Forum (Genova) 2000;10:243–252.

    CAS  Google Scholar 

  10. Sedger LM, Shows DM, Blanton RA, et al. IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 1999;163:920–926.

    PubMed  CAS  Google Scholar 

  11. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Medicine 2001;7:94–100.

    Article  PubMed  CAS  Google Scholar 

  12. Smyth MJ, Cretney E, Takeda K, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 2001;193:661–70.

    Article  PubMed  CAS  Google Scholar 

  13. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 2002;168:1356–1361.

    PubMed  CAS  Google Scholar 

  14. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002;195:161–169.

    Article  PubMed  CAS  Google Scholar 

  15. Sedger LM, Glaccum MB, Schuh JCL, et al. Characterization of the in vivo function of TNF-α-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 2002;32:2246–2254.

    Article  PubMed  CAS  Google Scholar 

  16. Werner AB, de Vries E, Tait SW, Bontjer I, Borst J. TRAIL receptor and CD95 signal to mitochondria via FADD, caspase-8/10, Bid, and Bax but differentially regulate events downstream from truncated Bid. J Biol Chem 2002;277:40,760–40,767.

    Article  PubMed  CAS  Google Scholar 

  17. Truneh A, Sharma S, Silverman C, et al. Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem 2000;275:23,319–23,325.

    Article  PubMed  CAS  Google Scholar 

  18. Wajant H, Moosmayer D, Wuest T, et al. Differential activation of TRAIL-R1 and-R2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 2001;20:4101–4106.

    Article  PubMed  CAS  Google Scholar 

  19. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–620.

    Article  PubMed  CAS  Google Scholar 

  20. Sprick MR, Weigand MA, Rieser E, et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000;12:599–609.

    Article  PubMed  CAS  Google Scholar 

  21. Lin Y, Devin A, Cook A, et al. The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biology 2000;20:6638–6645.

    Article  CAS  Google Scholar 

  22. Hu WH, Johnson H, Shu HB. Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappa B and JNK activation and apoptosis through distinct pathways. J Biol Chem 1999;274:30,603–30,610.

    Article  PubMed  CAS  Google Scholar 

  23. Bild AH, Mendoza FJ, Gibson EM, et al. MEKK1-induced apoptosis requires TRAIL death receptor activation and is inhibited by AKT/PKB through inhibition of MEKK1 cleavage. Oncogene 2002;21:6649–6656.

    Article  PubMed  CAS  Google Scholar 

  24. Tran SEF, Holmstrom TH, Ahonen M, Kahari V-M, Eriksson JE. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 2001;276:16,484–16,490.

    Article  PubMed  CAS  Google Scholar 

  25. Sheikh MS, Burns TF, Huang Y, et al. p53-dependent and-independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 1998;58:1593–1598.

    PubMed  CAS  Google Scholar 

  26. Meng RD, el-Deiry WS. p53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-gamma. Experimental Cell Research 2001;262:154–169.

    Article  PubMed  CAS  Google Scholar 

  27. Wu WG, Soria JC, Wang L, Kemp BL, Mao L. TRAIL-R2 is not correlated with p53 status and is rarely mutated in non-small cell lung cancer. Anticancer Res 2000;20:4525–4529.

    PubMed  CAS  Google Scholar 

  28. Guan B, Yue P, Lotan R, Sun SY. Evidence that the human death receptor 4 is regulated by activator protein 1. Oncogene 2002;21:3121–3129.

    Article  PubMed  CAS  Google Scholar 

  29. Sheikh MS, Fornace AJ Jr. Death and decoy receptors and p53-mediated apoptosis. Leukemia 2000;14:1509–1513.

    Article  PubMed  CAS  Google Scholar 

  30. Bernard D, Quatannens B, Vandenbunder B, Abbadie C. Rel/NF-kappaB transcription factors protect from TRAIL-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 2001;276:27,322–27,328.

    Article  PubMed  CAS  Google Scholar 

  31. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3:409–416.

    Article  PubMed  CAS  Google Scholar 

  32. Shetty S, Gladden JB, Henson ES, et al. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in epithelial derived cell lines. Apoptosis 2002;7:413–420.

    Article  PubMed  CAS  Google Scholar 

  33. Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res 2002;62:4903–4908.

    PubMed  CAS  Google Scholar 

  34. Takimoto R, El-Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 2000;19:1735–1743.

    Article  PubMed  CAS  Google Scholar 

  35. Yoshida T, Maeda A, Tani N, Sakai T. Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett 2001;507:381–385.

    Article  PubMed  CAS  Google Scholar 

  36. Guan B, Yue P, Clayman GL, Sun SY. Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 2001;188:98–105.

    Article  PubMed  CAS  Google Scholar 

  37. Thomas WD, Hersey P. CD4 T cells kill melanoma cells by mechanisms that are independent of Fas (CD95). Int J Cancer 1998;75:1–7.

    Article  Google Scholar 

  38. Baetu TM, Kwon H, Sharma S, Grandvaux N, Hiscott J. Disruption of NF-κB signaling reveals a novel role for NF-κB in the regulation of TNF-related apoptosis-inducing ligand expression. J Immunol 2001;167:3164–3173.

    PubMed  CAS  Google Scholar 

  39. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Research 1999;59:2747–2753.

    PubMed  CAS  Google Scholar 

  40. Zhang XD, Zhang XI, Gray CP, Nguyen T, Hersey P. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by Smac/DIABLO release from mitochondria. Cancer Res 2001; 61:7339–7348.

    PubMed  CAS  Google Scholar 

  41. Nguyen T, Zhang XD, Hersey P. Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced apoptosis [abstr]. Clin Cancer Res 2001;7:966s–973s.

    PubMed  CAS  Google Scholar 

  42. Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P. Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol 2000;164:3961–3970.

    PubMed  CAS  Google Scholar 

  43. Cazzola M, Skoda RC. Translational pathophysiology: a novel molecular mechanism of human disease. Blood 2000;95:3280–3288.

    PubMed  CAS  Google Scholar 

  44. Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME. p53 binds selectively to the 5′ untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor β-and p53-mediated translational inhibition of cdk4. Mol Cell Biol 2000;20:8420–8431.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang T, Kruys V, Huez G, Gueydan C. AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 2001;30:952–958.

    Article  Google Scholar 

  46. Zhang XY, Zhang XD, Borrow JM, Nguyen T, Hersey P. Translational control of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor expression in melanoma cells. J Biol Chem 2004;279:10,606–10,614.

    Article  PubMed  CAS  Google Scholar 

  47. Iyer S, Kontoyiannis D, Chevrier D, et al. Inhibition of tumor necrosis factor mRNA translation by a rationally designed immunomodulatory peptide. J Biol Chem 2000;275:17,051–17,057.

    Article  PubMed  CAS  Google Scholar 

  48. Bollig F, Winzen R, Kracht M, et al. Evidence for general stabilization of mRNAs in response to UV light. Eur J Biochem 2002;269:5830–5839.

    Article  PubMed  CAS  Google Scholar 

  49. Neininger A, Kontoyiannis D, Kotlyarov A, et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 2002; 277:3065–3068.

    Article  PubMed  CAS  Google Scholar 

  50. Gura T. How TRAIL kills cancer cells, but not normal cells. Cancer Research 1997;277:768.

    CAS  Google Scholar 

  51. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–821.

    Article  PubMed  CAS  Google Scholar 

  52. Jones SJ, Ledgerwood EC, Prins JB, et al. TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1. J Imunol 1999;162:1042–1048.

    CAS  Google Scholar 

  53. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997;7:813–820.

    Article  PubMed  CAS  Google Scholar 

  54. Lawrence D, Shahrokh Z, Marsters S, et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001;7:383–385.

    Article  PubMed  CAS  Google Scholar 

  55. Odoux C, Albers A, Amoscato AA, Lotze MT, Wong MK. TRAIL, FasL and a blocking anti-DR5 antibody augment paclitaxel-induced apoptosis in human non-small-cell lung cancer. Int J Cancer 2002;97:458–465.

    Article  PubMed  CAS  Google Scholar 

  56. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. The EMBO Journal 1997;16:5386–5397.

    Article  PubMed  CAS  Google Scholar 

  57. Kotlyarov A, Gaestel M. Is MK2 (mitogen-activated protein kinase-activated protein kinase 2) the key for understanding post-transcriptional regulation of gene expression? Biochem Soc Trans 2001;30:959–963.

    Article  Google Scholar 

  58. Di Marco S, Hel Z, Lachance C, Furneaux H, Radzioch D. Polymorphism in the 3′-untranslated region of TNFalpha mRNA impairs binding of the post-transcriptional regulatory protein HuR to TNFalpha mRNA. Nucleic Acid Res 2001;29:863–871.

    Article  PubMed  Google Scholar 

  59. Sakai K, Kitagawa Y, Hirose G. Binding of neuronal ELAV-like proteins to the uridine-rich sequence in the 3′-untranslated region of tumor necrosis factor-α messenger RNA. FEBS Lett 1999;446:157–162.

    Article  PubMed  CAS  Google Scholar 

  60. Fan XC, Steitz JA. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 1998;17:3448–3460.

    Article  PubMed  CAS  Google Scholar 

  61. Akamatsu W, Okana HJ, Osumi N, et al. Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous system. Proc Natl Acad Sci USA 1999;96:9885–9890.

    Article  PubMed  CAS  Google Scholar 

  62. Levine TD, Gao F, King PH, Andrews LG, Keene JD. Hel-N1: an autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol 1993;13:3494–3504.

    PubMed  CAS  Google Scholar 

  63. Khaleghpour K, Kahvejian A, De Crescenzo G, et al. Dual interactions of the translational repressor Paip2 with poly (A) binding protein. Mol Cell Biol 2001;21:5200–5213.

    Article  PubMed  CAS  Google Scholar 

  64. Gueydan C, Droogmans L, Chalon P, Huez G, Caput D, Kruys V. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor α MRN. J Biol Chem 1999;274:2322–2326.

    Article  PubMed  CAS  Google Scholar 

  65. Piecyk M, Wax S, Beck AR, et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 2000;19:4154–4163.

    Article  PubMed  CAS  Google Scholar 

  66. Ross J, Lemm I, Berberet B. Overexpression of an mRNA-binding protein in human colorectal cancer. Oncogene 2001;20:6544–6550.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hersey, P., Zhang, S.Y., Zhang, X.D. (2005). Regulation of Trail Receptor Expression in Human Melanoma. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:175

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics