Skip to main content

Regulation of Death Receptors

  • Chapter
Death Receptors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 567 Accesses

Abstract

Apoptotic cell death mediated through activation of death receptors is essential in the regulation of tissue homeostasis in development and differentiation. The expression of the members of the death receptor family is tightly regulated and varies among tissues. Dysregulation of death receptor expression is implicated in the pathogenesis of various diseases, including cancer, autoimmune disorders, neurodegenerative diseases, and infections. In this chapter we will focus on the stimuli and mechanisms that regulate the expression of death receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992;13(5):151–153.

    Article  PubMed  CAS  Google Scholar 

  2. Grell M, Zimmermann G, Hulser D, Pfizenmaier K, Scheurich P. TNF receptors TR60 and TR80 can mediate apoptosis via induction of distinct signal pathways. J Immunol 1994;153(5):1963–1972.

    PubMed  CAS  Google Scholar 

  3. Santee SM, Owen-Schaub LB. Human tumor necrosis factor receptor p75/80 (CD120b) gene structure and promoter characterization. J Biol Chem 1996;271(35):21,151–21,159.

    Article  PubMed  CAS  Google Scholar 

  4. Winzen R, Wallach D, Engelmann H, et al. Selective decrease in cell surface expression and mRNA level of the 55-kDa tumor necrosis factor receptor during differentiation of HL-60 cells into macrophage-like but not granulocyte-like cells. J Immunol 1992;148(11):3454–3460.

    PubMed  CAS  Google Scholar 

  5. Kemper O, Wallach D. Cloning and partial characterization of the promoter for the human p55 tumor necrosis factor (TNF) receptor. Gene 1993;134(2):209–216.

    Article  PubMed  CAS  Google Scholar 

  6. Kuhnert P, Kemper O, Wallach D. Cloning, sequencing and partial functional characterization of the 5′ region of the human p75 tumor necrosis factor receptor-encoding gene (TNF-R). Gene 1994;150(2):381–386.

    Article  PubMed  CAS  Google Scholar 

  7. Kalthoff H, Roeder C, Brockhaus M, Thiele HG, Schmiegel W. Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor alpha and epidermal growth factor receptor mRNA. J Biol Chem 1993;268(4):2762–2766.

    PubMed  CAS  Google Scholar 

  8. Dickensheets HL, Freeman SL, Smith MF, Donnelly RP. Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxin-stimulated human monocytes. Blood 1997;90(10):4162–4171.

    PubMed  CAS  Google Scholar 

  9. Ware CF, Crowe PD, VanArsdale TL, Andrews JL, et al. Tumor necrosis factor (TNF) receptor expression in T lymphocytes. Differential regulation of the type I TNF receptor during activation of resting and effector T cells. J Immunol 1991;147(12):4229–4238.

    PubMed  CAS  Google Scholar 

  10. Kohno T, Brewer MT, Baker SL, et al. A second tumor necrosis factor receptor gene product can shed a naturally occurring tumor necrosis factor inhibitor. Proc Natl Acad Sci USA 1990;87(21):8331–8335.

    Article  PubMed  CAS  Google Scholar 

  11. Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 1992;89(11):4845–4849.

    Article  PubMed  Google Scholar 

  12. Reddy P, Slack JL, Davis R, et al. Functional analysis of the domain structure of tumor necrosis factoralpha converting enzyme. J Biol Chem 2000;275(19):14,608–14,614.

    Article  PubMed  CAS  Google Scholar 

  13. Hino T, Nakamura H, Abe S, et al. Hydrogen peroxide enhances shedding of type I soluble tumor necrosis factor receptor from pulmonary epithelial cells. Am J Respir Cell Mol Biol 1999;20(1):122–128.

    PubMed  CAS  Google Scholar 

  14. Zhang Z, Kolls JK, Oliver P, et al. Activation of tumor necrosis factor-alpha-converting enzyme-mediated ectodomain shedding by nitric oxide. J Biol Chem 2000;275(21):15,839–15,844.

    Article  PubMed  CAS  Google Scholar 

  15. Madge LA, Sierra-Honigmann MR, Pober JS. Apoptosis-inducing agents cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1). A nonpharmacological explanation for inhibition of TNF-mediated activation. J Biol Chem 1999; 274(19):13,643–13,649.

    Article  PubMed  CAS  Google Scholar 

  16. Joyce DA, Gibbons DP, Green P, Steer JH, Feldmann M, Brennan FM. Two inhibitors of pro-inflammatory cytokine release, interleukin-10 and interleukin-4, have contrasting effects on release of soluble p75 tumor necrosis factor receptor by cultured monocytes. Eur J Immunol 1994;24(11):2699–2705.

    Article  PubMed  CAS  Google Scholar 

  17. Philippe C, Roux-Lombard P, Fouqueray B, Perez J, Dayer JM, Baud L. Membrane expression and shedding of tumour necrosis factor receptors during activation of human blood monocytes: regulation by desferrioxamine. Immunology 1993;80(2):300–305.

    PubMed  CAS  Google Scholar 

  18. Joyce DA, Kloda A, Steer JH. Dexamethasone suppresses release of soluble TNF receptors by human monocytes concurrently with TNF-alpha suppression. Immunol Cell Biol 1997;75(4):345–350.

    Article  PubMed  CAS  Google Scholar 

  19. Ding AH, Sanchez E, Srimal S, Nathan CF. Macrophages rapidly internalize their tumor necrosis factor receptors in response to bacterial lipopolysaccharide. J Biol Chem 1989;264(7):3924–3929.

    PubMed  CAS  Google Scholar 

  20. Alsalameh S, Mattka B, Al Ward R, et al. Preferential expression of tumor necrosis factor receptor 55 (TNF-R55) on human articular chondrocytes: selective transcriptional upregulation of TNF-R75 by proinflammatory cytokines interleukin 1beta, tumor necrosis factor-alpha, and basis fibroblast growth factor. J Rheumatol 1999;26(3):645–653.

    PubMed  CAS  Google Scholar 

  21. Holtmann MH, Douni E, Schutz M, et al. Tumor necrosis factor-receptor 2 is up-regulated on lamina propria T cells in Crohn’s disease and promotes experimental colitis in vivo. Eur J Immunol 2002;32(11):3142–3151.

    Article  PubMed  CAS  Google Scholar 

  22. Goetz M, Schiel X, Heussel H, Steinmetz T, Hiddemann W, Weiss M. Elevation of soluble tumor necrosis factor receptor II in non-febrile patients with acute myeloid leukemia. Eur J Med Res 2002;7(11):487–490.

    PubMed  CAS  Google Scholar 

  23. Metkar SS, Naresh KN, Manna PP, Srinivas V, Advani SH, Nadkarni JJ. Circulating levels of TNF alpha and TNF receptor superfamily members in lymphoid neoplasia. Am J Hematol 2000;65(2):105–110.

    Article  PubMed  CAS  Google Scholar 

  24. Tesarova P, Kvasnicka J, Umlaufova A, Homolkova H, Jirsa M, Tesar V. Soluble TNF and IL-2 receptors in patients with breast cancer. Med Sci Monit 2000;6(4):661–667.

    PubMed  CAS  Google Scholar 

  25. Leithauser F, Dhein J, Mechtersheimer G, et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 1993;69(4):415–429.

    PubMed  CAS  Google Scholar 

  26. Cheng J, Liu C, Koopman WJ, Mountz JD. Characterization of human Fas gene. Exon/intron organization and promoter region. J Immunol 1995;154(3):1239–1245.

    PubMed  CAS  Google Scholar 

  27. Behrmann I, Walczak H, Krammer PH. Structure of the human APO-1 gene. Eur J Immunol 1994;24(12):3057–3062.

    Article  PubMed  CAS  Google Scholar 

  28. Xiang H, Fox JA, Totpal K, et al. Enhanced tumor killing by Apo2L/TRAIL and CPT-11 co-treatment is associated with p21 cleavage and differential regulation of Apo2L/TRAIL ligand and its receptors. Oncogene 2002;21(22):3611–3619.

    Article  PubMed  CAS  Google Scholar 

  29. Azizkhan JC, Jensen DE, Pierce AJ, Wade M. Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit Rev Eukaryot Gene Expr 1993;3(4):229–254.

    PubMed  CAS  Google Scholar 

  30. Wada N, Matsumura M, Ohba Y, Kobayashi N, Takizawa T, Nakanishi Y. Transcription stimulation of the Fas-encoding gene by nuclear factor for interleukin-6 expression upon influenza virus infection. J Biol Chem 1995;270(30):18,007–18,012.

    Article  PubMed  CAS  Google Scholar 

  31. Rudert F, Visser E, Forbes L, Lindridge E, Wang Y, Watson J. Identification of a silencer, enhancer, and basal promoter region in the human CD95 (Fas/APO-1) gene. DNA Cell Biol 1995;14(11):931–937.

    Article  PubMed  CAS  Google Scholar 

  32. Lasham A, Lindridge E, Rudert F, Onrust R, Watson J. Regulation of the human fas promoter by YB-1, Puralpha and AP-1 transcription factors. Gene 2000;252(1-2):1–13.

    Article  PubMed  CAS  Google Scholar 

  33. Li XR, Chong AS, Wu J, et al. Transcriptional regulation of Fas gene expression by GA-binding protein and AP-1 in T cell antigen receptor.CD3 complex-stimulated T cells. J Biol Chem 1999;274(49):35,203–35,210.

    Article  PubMed  CAS  Google Scholar 

  34. Miyawaki T, Uehara T, Nibu R, et al. Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 1992;149(11):3753–3758.

    PubMed  CAS  Google Scholar 

  35. van Leeuwen JE, Samelson LE. T cell antigen-receptor signal transduction. Curr Opin Immunol 1999;11(3):242–248.

    Article  PubMed  Google Scholar 

  36. Chan H, Bartos DP, Owen-Schaub LB. Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50-p65 recruitment. Mol Cell Biol 1999;19(3):2098–2108.

    PubMed  CAS  Google Scholar 

  37. Takizawa T, Fukuda R, Miyawaki T, Ohashi K, Nakanishi Y. Activation of the apoptotic Fas antigen-encoding gene upon influenza virus infection involving spontaneously produced beta-interferon. Virology 1995;209(2):288–296.

    Article  PubMed  CAS  Google Scholar 

  38. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000;256(1):42–49.

    Article  PubMed  CAS  Google Scholar 

  39. Owen-Schaub LB, Zhang W, Cusack JC, et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995;15(6):3032–3040.

    PubMed  CAS  Google Scholar 

  40. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998;188 (11):2033–2045.

    Article  Google Scholar 

  41. Kobayashi T, Ruan S, Jabbur JR, et al. Differential p53 phosphorylation and activation of apoptosis-promoting genes Bax and Fas/APO-1 by irradiation and ara-C treatment. Cell Death Differ 1998;5(7):584–591.

    Article  PubMed  CAS  Google Scholar 

  42. Lorenzo E, Ruiz-Ruiz C, Quesada AJ, et al. Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J Biol Chem 2002;277(13):10,883–10,892.

    Article  PubMed  CAS  Google Scholar 

  43. Lowe SW. Cancer therapy and p53. Curr Opin Oncol 1995;7(6):547–553.

    PubMed  CAS  Google Scholar 

  44. Kastan MB, Zhan Q, El Deiry WS, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992;71(4):587–597.

    Article  PubMed  CAS  Google Scholar 

  45. El Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75(4):817–825.

    Article  PubMed  Google Scholar 

  46. Munsch D, Watanabe-Fukunaga R, Bourdon JC, et al. Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis. J Biol Chem 2000;275(6):3867–3872.

    Article  PubMed  CAS  Google Scholar 

  47. Ouaaz F, Li M, Beg AA. A critical role for the RelA subunit of nuclear factor kappaB in regulation of multiple immune-response genes and in Fas-induced cell death. J Exp Med 1999;189(6):999–1004.

    Article  PubMed  CAS  Google Scholar 

  48. Platanias LC, Fish EN. Signaling pathways activated by interferons. Exp Hematol 1999;27(11):1583–1592.

    Article  PubMed  CAS  Google Scholar 

  49. Weller M, Frei K, Groscurth P, Krammer PH, Yonekawa Y, Fontana A. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest 1994;94(3):954–964.

    Article  PubMed  CAS  Google Scholar 

  50. Ossina NK, Cannas A, Powers VC, et al. Interferon-gamma modulates a p53-independent apoptotic pathway and apoptosis-related gene expression. J Biol Chem 1997;272(26):16,351–16,357.

    Article  PubMed  CAS  Google Scholar 

  51. Kontny HU, Lehrnbecher TM, Chanock SJ, Mackall CL. Simultaneous expression of Fas and nonfunctional Fas ligand in Ewing’s sarcoma. Cancer Res 1998;58(24):5842–5849.

    PubMed  CAS  Google Scholar 

  52. Ruemmele FM, Russo P, Beaulieu J, et al. Susceptibility to FAS-induced apoptosis in human nontumoral enterocytes: role of costimulatory factors. J Cell Physiol 1999;181(1):45–54.

    Article  PubMed  CAS  Google Scholar 

  53. Xu X, Fu XY, Plate J, Chong AS. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 1998;58(13):2832–2837.

    PubMed  CAS  Google Scholar 

  54. Lafleur EA, Jia SF, Worth LL, Zhou Z, Owen-Schaub LB, Kleinerman ES. Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res 2001;61(10):4066–4071.

    PubMed  CAS  Google Scholar 

  55. Siders WM, Wright PW, Hixon JA, et al. T cell-and NK cell-independent inhibition of hepatic metastases by systemic administration of an IL-12-expressing recombinant adenovirus. J Immunol 1998;160(11):5465–5474.

    PubMed  CAS  Google Scholar 

  56. Sun SY, Yue P, Hong WK, Lotan R. Induction of Fas expression and augmentation of Fas/Fas ligand-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res 2000;60(22):6537–6543.

    PubMed  CAS  Google Scholar 

  57. Chinnaiyan AM, O’Rourke K, Yu GL, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 1996;274(5289):990–992.

    Article  PubMed  CAS  Google Scholar 

  58. Grenet J, Valentine V, Kitson J, Li H, Farrow SN, Kidd VJ. Duplication of the DR3 gene on human chromosome 1p36 and its deletion in human neuroblastoma. Genomics 1998;49(3):385–393.

    Article  PubMed  CAS  Google Scholar 

  59. Eggert A, Grotzer MA, Zuzak TJ, Ikegaki N, Zhao H, Brodeur GM. Expression of Apo-3 and Apo-3L in primitive neuroectodermal tumours of the central and peripheral nervous system. Eur J Cancer 2002;38(1):92–98.

    Article  PubMed  CAS  Google Scholar 

  60. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H. Nature’s TRAIL—on a path to cancer immunotherapy. Immunity 2003;18(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  61. Guan B, Yue P, Lotan R, Sun SY. Evidence that the human death receptor 4 is regulated by activator protein 1. Oncogene 2002;21(20):3121–3129.

    Article  PubMed  CAS  Google Scholar 

  62. Guan B, Yue P, Clayman GL, Sun SY. Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 2001;188(1):98–105.

    Article  PubMed  CAS  Google Scholar 

  63. Yoshida T, Maeda A, Tani N, Sakai T. Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett 2001;507(3):381–385.

    Article  PubMed  CAS  Google Scholar 

  64. Wu GS, Burns TF, McDonald ER, III, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997;17(2):141–143.

    Article  PubMed  CAS  Google Scholar 

  65. Takimoto R, El Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 2000;19(14):1735–1743.

    Article  PubMed  CAS  Google Scholar 

  66. Wu GS, Burns TF, McDonald ER, III, et al. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 1999;18(47):6411–6418.

    Article  PubMed  CAS  Google Scholar 

  67. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 2000;20(1):205–212.

    PubMed  CAS  Google Scholar 

  68. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3(4):409–416.

    Article  PubMed  CAS  Google Scholar 

  69. Shetty S, Gladden JB, Henson ES, et al. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in epithelial derived cell lines. Apoptosis 2002;7(5):413–420.

    Article  PubMed  CAS  Google Scholar 

  70. Nimmanapalli R, Perkins CL, Orlando M, O’Bryan E, Nguyen D, Bhalla KN. Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 2001;61(2):759–763.

    PubMed  CAS  Google Scholar 

  71. Wen J, Ramadevi N, Nguyen D, Perkins C, Worthington E, Bhalla K. Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 2000;96(12):3900–3906.

    PubMed  CAS  Google Scholar 

  72. Sedger LM, Shows DM, Blanton RA, et al. IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 1999;163(2):920–926.

    PubMed  CAS  Google Scholar 

  73. Meng RD, El Deiry WS. p53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-gamma. Exp Cell Res 2001;262(2):154–169.

    Article  PubMed  CAS  Google Scholar 

  74. Secchiero P, Mirandola P, Zella D, et al. Human herpesvirus 7 induces the functional up-regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) coupled to TRAIL-R1 down-modulation in CD4(+) T cells. Blood 2001;98(8):2474–2481.

    Article  PubMed  CAS  Google Scholar 

  75. Yurochko AD, Kowalik TF, Huong SM, Huang ES. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J Virol 1995;69(9):5391–5400.

    PubMed  CAS  Google Scholar 

  76. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107(4):1183–1188.

    PubMed  CAS  Google Scholar 

  77. Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res 2002;62(17):4903–4908.

    PubMed  CAS  Google Scholar 

  78. Greim H, Trulzsch D, Czygan P, et al. Mechanism of cholestasis. 6. Bile acids in human livers with or without biliary obstruction. Gastroenterology 1972;63(5):846–850.

    PubMed  CAS  Google Scholar 

  79. Higuchi H, Bronk SF, Takikawa Y, et al. The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem 2001;276(42):38,610–38,618.

    Article  PubMed  CAS  Google Scholar 

  80. Pan G, Bauer JH, Haridas V, et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 1998;431(3):351–356.

    Article  PubMed  CAS  Google Scholar 

  81. Kasof GM, Lu JJ, Liu D, et al. Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene 2001;20(55):7965–7975.

    Article  PubMed  CAS  Google Scholar 

  82. Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol 2001;22(6):328–336.

    Article  PubMed  CAS  Google Scholar 

  83. Ruiz dA, Lopez-Rivas A, Redondo JM, Rodriguez A. Transcription initiation sites and promoter structure of the human TRAIL-R3 gene. FEBS Lett 2002; 531(2):304–308.

    Article  Google Scholar 

  84. Sheikh MS, Huang Y, Fernandez-Salas EA, et al. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 1999;18(28):4153–4159.

    Article  PubMed  CAS  Google Scholar 

  85. Bernard D, Quatannens B, Vandenbunder B, Abbadie C. Rel/NF-kappaB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 2001;276(29):27,322–27,328.

    Article  PubMed  CAS  Google Scholar 

  86. Maeda T, Hao C, Tron VA. Ultraviolet light (UV) regulation of the TNF family decoy receptors DcR2 and DcR3 in human keratinocytes. J Cutan Med Surg 2001;5(4):294–298.

    Article  PubMed  CAS  Google Scholar 

  87. van Noesel MM, van Bezouw S, Salomons GS, et al. Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation. Cancer Res 2002;62(7):2157–2161.

    PubMed  Google Scholar 

  88. Bai C, Connolly B, Metzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci USA 2000;97(3):1230–1235.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kontny, U., Kovar, H. (2005). Regulation of Death Receptors. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:163

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics