Skip to main content

Death Receptor Mutations

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

It is generally believed that human cancers may arise as the result of an accumulation of mutations in genes and subsequent clonal selection of variant progeny with increasingly aggressive behaviors. Also, among the remarkable advances in our understanding in cancer biology is the realization that apoptosis has a profound effect on the malignant phenotypes. Along with these, compelling evidence indicates that somatic mutations in the genes encoding apoptosis-related proteins contribute to either development or progression of human cancers. In this chapter, we present an overview of the death receptor pathway and its dysregulation in cancers. We then review the current knowledge of death receptor mutations that have been detected in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reed JC. Mechanisms of apoptosis. Am J Pathol 2000;157:1415–1430.

    PubMed  CAS  Google Scholar 

  2. Nagata S. Apoptosis by death factor. Cell 1997;88:355–365.

    PubMed  CAS  Google Scholar 

  3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    PubMed  CAS  Google Scholar 

  4. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.

    PubMed  CAS  Google Scholar 

  5. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997; 91:443–446.

    PubMed  CAS  Google Scholar 

  6. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999;17:331–367.

    PubMed  CAS  Google Scholar 

  7. Yuan J. Transducing signals of life and death. Curr Opin Cell Biol 1997;9:247–251.

    PubMed  CAS  Google Scholar 

  8. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.

    PubMed  CAS  Google Scholar 

  9. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995;270:7795–7798.

    PubMed  CAS  Google Scholar 

  10. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996;85:817–827.

    PubMed  CAS  Google Scholar 

  11. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996;85:803–815.

    PubMed  CAS  Google Scholar 

  12. Vincenz C, Dixit VM. Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95-and p55-mediated death signaling. J Biol Chem 1997;272:6578–6583.

    PubMed  CAS  Google Scholar 

  13. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.

    PubMed  CAS  Google Scholar 

  14. Zou H, Li Y, Liu X, Wang X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11,549–11,556.

    PubMed  CAS  Google Scholar 

  15. Saleh A, Srinivasula S, Acharya S, Fishel R, Alnemri E. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999;274:17,941–17,945.

    PubMed  CAS  Google Scholar 

  16. Stennicke HR, Jurgensmeier JM, Shin H, et al. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 1998; 273:27,084–27,090.

    PubMed  CAS  Google Scholar 

  17. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281–292.

    PubMed  CAS  Google Scholar 

  18. Li H, Zhu H, Xu C, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94:491–501.

    PubMed  CAS  Google Scholar 

  19. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998,94:481–490.

    PubMed  CAS  Google Scholar 

  20. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    PubMed  CAS  Google Scholar 

  21. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic overexpression of second mitochondriaderived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 2002;99:3419–3426.

    PubMed  CAS  Google Scholar 

  22. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    PubMed  CAS  Google Scholar 

  23. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87: 159–170.

    PubMed  CAS  Google Scholar 

  24. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1996;285:1028–1032.

    Google Scholar 

  25. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81,323–330.

    PubMed  CAS  Google Scholar 

  26. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996;69:135–174.

    PubMed  CAS  Google Scholar 

  27. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353–364.

    PubMed  CAS  Google Scholar 

  28. Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 1999;24:73–76.

    PubMed  CAS  Google Scholar 

  29. Sporn MB. The war on cancer. Lancet 1996;347:1377–1381.

    PubMed  CAS  Google Scholar 

  30. Evan G., Littlewood T. A matter of life and cell death. Science 1998;281:1317–1322.

    PubMed  CAS  Google Scholar 

  31. Ishizaki Y, Cheng L, Mudge AW, Raff MC. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol Biol Cell 1995;6:1443–1458.

    PubMed  CAS  Google Scholar 

  32. McDonnell TJ, Deane N, Platt FM, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989;57:79–88.

    PubMed  CAS  Google Scholar 

  33. Tsujimoto Y, Cossman J, Jaffe E, Croce C. Involvement of the Bcl-2 gene in human follicular lymphoma. Science 1985;228:1440–1443.

    PubMed  CAS  Google Scholar 

  34. Hueber AO, Zornig M, Lyon D, Suda T, Nagata S, Evan G.I. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science 1997;278: 1305–1309.

    PubMed  CAS  Google Scholar 

  35. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002;108:153–164.

    PubMed  CAS  Google Scholar 

  36. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 1995;81:495–504.

    PubMed  CAS  Google Scholar 

  37. Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991;66:233–243.

    PubMed  CAS  Google Scholar 

  38. Trauth BC, Klas C, Peters AMJ, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989;245:301–305.

    PubMed  CAS  Google Scholar 

  39. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989;169:1747–1756.

    PubMed  CAS  Google Scholar 

  40. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–682.

    PubMed  CAS  Google Scholar 

  41. Degli-Esposti M. To die or not to die—the quest of the TRAIL receptors. J Leukoc Biol 1999;65:535–542.

    PubMed  CAS  Google Scholar 

  42. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996;384:638–641.

    PubMed  CAS  Google Scholar 

  43. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–620.

    PubMed  CAS  Google Scholar 

  44. Wang J, Zheng L, Lobito A, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999;98:47–58.

    PubMed  CAS  Google Scholar 

  45. Bodmer JL, Holler N, Reynard S, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nature Cell Biol 2000;2:241–243.

    PubMed  CAS  Google Scholar 

  46. Leithäser F, Dhein J, Mechtersheimer G, et al. Constitutive and induced expression of APO-1, a new member of the new growth factor/tumor necrosis receptor superfamily, in normal and neoplastic cells. Lab Invest 1993;69:415–429.

    Google Scholar 

  47. MacFarlane M, Ahmad M, Srinivasula SM, Fernades-Alnemri T, Cohen G.M, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997;272:25,417–25,420.

    PubMed  CAS  Google Scholar 

  48. Owen-Schaub LB, Radinsky R, Kruzel E, Berry K, Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responses. Cancer Res 1994;54:1580–1586.

    PubMed  CAS  Google Scholar 

  49. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–821.

    PubMed  CAS  Google Scholar 

  50. Natoli G, Ianni A, Costanzo A, et al. Resistance to Fas-mediated apoptosis in human hepatoma cells. Oncogene 1995; 11:1157–1164.

    PubMed  CAS  Google Scholar 

  51. Hughes SJ, Nambu Y, Soldes OS, et al. Fas/APO-1 (CD95) is not translocated to the cell membrane in esophageal adenocarcinomas. Cancer Res 1997;57:5571–5578.

    PubMed  CAS  Google Scholar 

  52. Nambu Y, Hughes SJ, Rehemtula A, Hamstra D, Orringer MB, Beer DG. Lack of cell surface Fas/APO-1 expression in pulmonary adenocarcinomas. J Clin Invest 1998;101:1102–1110.

    PubMed  CAS  Google Scholar 

  53. Bennett M, Macdonald K, Chan S-W, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998; 282:290–293.

    PubMed  CAS  Google Scholar 

  54. Sato T, Irie S, Kituda S, Reed JC. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 1995;268:411–415.

    PubMed  CAS  Google Scholar 

  55. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–195.

    PubMed  CAS  Google Scholar 

  56. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356:314–317.

    PubMed  CAS  Google Scholar 

  57. Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995;81:935–946.

    PubMed  CAS  Google Scholar 

  58. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995;268:1347–1349.

    PubMed  CAS  Google Scholar 

  59. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 1996;335:1643–1649.

    PubMed  CAS  Google Scholar 

  60. Bettinardi A, Brugnoni B, Quiros-Roldan E, et al. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 1997;89:902–909.

    PubMed  CAS  Google Scholar 

  61. Infante AJ, Britton HA, DeNapoli T, et al. The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis. J Pediatr 1998;133:629–633.

    PubMed  CAS  Google Scholar 

  62. Landowsky TH, Qu N, Buyuksal I, Painter JS, Dalton WS. Mutations in the Fas antigen in patients with multiple myeloma. Blood 1997;90:4266–4270.

    Google Scholar 

  63. Beltinger C, Kurz E, Bohler T, Schrappe M, Ludwig WD, Debatin KM. CD 95 (APO-1/Fas) mutations in childhood T-lineage acute lymphoblastic leukemia. Blood 1998;91:3943–3951.

    PubMed  CAS  Google Scholar 

  64. Tamiya S, Etoh KI, Suzushima H, Takatsuki K, Matsuoka M. Mutation of CD 95 (Fas/APO-1) gene in adult T-cell leukemia cells. Blood 1998;91:3935–3942.

    PubMed  CAS  Google Scholar 

  65. Grønbæk K, Straten PT, Ralfkiaer E, et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood 1998; 92:3018–3024.

    PubMed  Google Scholar 

  66. Takahashi T, Tanaka M, Brannan CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994;76,969–976.

    PubMed  CAS  Google Scholar 

  67. Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today 1995;16:39–43.

    PubMed  CAS  Google Scholar 

  68. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest. 1996;98:1107–1113.

    PubMed  CAS  Google Scholar 

  69. Davidson WF, Giese T, Fredrickson TN. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J Exp Med 1998, 187:1825–1838.

    PubMed  CAS  Google Scholar 

  70. Maeda T, Yamada Y, Moriuchi R, et al. Fas gene mutation in the progression of adult T cell leukemia. J Exp Med;189:1063–1071.

    Google Scholar 

  71. Dereure O, Levi E, Vonderheid EC, Kadin ME. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol 2002;118:949–956.

    PubMed  CAS  Google Scholar 

  72. Takakuwa T, Dong Z, Takayama H, Matsuzuka F, Nagata S, Aozasa K. Frequent mutations of Fas gene in thyroid lymphoma. Frequent mutations of Fas gene in thyroid lymphoma. Cancer Res 2001;61:1382–1385.

    PubMed  CAS  Google Scholar 

  73. van Doorn R, Dijkman R, Vermeer MH, Starink TM, Willemze R, Tensen CP. A novel splice variant of the Fas gene in patients with cutaneous T-cell lymphoma. Cancer Res 2002;62:5389–5392.

    PubMed  Google Scholar 

  74. Takakuwa T, Dong Z, Nakatsuka S, et al. Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 2002;21: 4702–4705.

    PubMed  CAS  Google Scholar 

  75. Muschen M, Re D, Brauninger A, et al. Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res 2000;60:5640–5643.

    PubMed  CAS  Google Scholar 

  76. Shin MS, Park WS, Kim SY, et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 1999;154:1785–1791.

    PubMed  CAS  Google Scholar 

  77. Lee SH, Shin MS, Park WS, et al. Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene 1999;18:3754–3760.

    PubMed  CAS  Google Scholar 

  78. Lee SH, Shin MS, Park WS, et al. Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res 1999;59:3068–3072.

    PubMed  CAS  Google Scholar 

  79. Park WS, Oh RR, Kim YS, et al. Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J Pathol 2001;193:162–168.

    PubMed  CAS  Google Scholar 

  80. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of Fas (Apo-1/CD95) gene in cutaneous squamous cell carcinoma arising from a burn scar. J Invest Dermatol 2000;114:122–126.

    PubMed  CAS  Google Scholar 

  81. Beltinger C, Bohler T, Karawajew L, Ludwig WD, Schrappe M, Debatin KM. Mutation analysis of CD95 (APO-1/Fas) in childhood B-lineage acute lymphoblastic leukaemia. Br J Haematol 1998;102:722–728.

    PubMed  CAS  Google Scholar 

  82. Wong-Staal F, Gallo RC. Human T-lymphotropic retroviruses. Nature 1985;317:395–403.

    PubMed  CAS  Google Scholar 

  83. Kuppers R, Rajewsky K. The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 1998;16:471–493.

    PubMed  CAS  Google Scholar 

  84. Rozenfeld-Granot G, Toren A, Amariglio N, Brok-Simoni F, Rechavi G. Mutation analysis of the FAS and TNFR apoptotic cascade genes in hematological malignancies. Exp Hematol 2001;29:228–233.

    PubMed  CAS  Google Scholar 

  85. Lamy T, Liu JH, Landowski TH, Dalton WS, Loughran TP Jr. Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3(+) large granular lymphocyte leukemia. Blood 1998;92:4771–4777.

    PubMed  CAS  Google Scholar 

  86. Bertoni F, Conconi A, Luminari S, et al. Lack of CD95/FAS gene somatic mutations in extranodal, nodal and splenic marginal zone B cell lymphomas. Leukemia 2000;14:446–448.

    PubMed  CAS  Google Scholar 

  87. Yamamoto H, Gil J, Schwartz S Jr, Perucho M. Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastro-intestinal cancer of the microsatellite mutator phenotype. Cell Death Differ 2000;7:238–239.

    PubMed  CAS  Google Scholar 

  88. Takayama H, Takakuwa T, Tsujimoto Y, et al. Frequent Fas gene mutations in testicular germ cell tumors. Am J Pathol 2002;161:635–641.

    PubMed  CAS  Google Scholar 

  89. Muschen M, Re D, Betz B, et al. Resistance to CD95-mediated apoptosis in breast cancer is not due to somatic mutation of the CD95 gene. Int J Cancer 2001;92:309–310.

    PubMed  CAS  Google Scholar 

  90. Lee SH, Shin MS, Lee HS, et al. Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum Pathol 2001;32:250–256.

    PubMed  CAS  Google Scholar 

  91. Lee SH, Shin MS, Lee JY, et al. In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. J Pathol 1999;188:207–212.

    PubMed  CAS  Google Scholar 

  92. Bertoni F, Conconi A, Carobbio S, et al. Analysis of Fas/CD95 gene somatic mutations in ovarian cancer cell lines. Int J Cancer 2000;86:450.

    PubMed  CAS  Google Scholar 

  93. Abdel-Rahman W, Arends M, Morris R, Ramadan M, Wyllie A. Death pathway genes Fas (Apo-1/CD95) and Bik (Nbk) show no mutations in colorectal carcinomas. Cell Death Differ 1999;6:387–388.

    PubMed  CAS  Google Scholar 

  94. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–767.

    PubMed  CAS  Google Scholar 

  95. Fults D, Pedone CA, Thompson GE, et al. Microsatellite deletion mapping on chromosome 10q and mutation analysis of MMAC1, FAS, and MXI1 in human glioblastoma multiforme. Int J Oncol 1998;12:905–910.

    PubMed  CAS  Google Scholar 

  96. Pai SI, Wu GS, Ozoren N, et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 1998;58:3513–3518.

    PubMed  CAS  Google Scholar 

  97. Lee SH, Shin MS, Kim HS, et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res 1999;59:5683–5686.

    PubMed  CAS  Google Scholar 

  98. Shin MS, Kim HS, Lee SH, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 2001;61:4942–4946.

    PubMed  CAS  Google Scholar 

  99. Park WS, Lee JH, Shin MS, et al. Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology. 2001;121:1219–1225.

    PubMed  CAS  Google Scholar 

  100. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene 2001;20:399–403.

    PubMed  CAS  Google Scholar 

  101. Jeng YM, Hsu HC. Mutation of the DR5/TRAIL receptor 2 gene is infrequent in hepatocellular carcinoma. Cancer Lett 2002;181:205–208.

    PubMed  CAS  Google Scholar 

  102. Arai T, Akiyama Y, Okabe S, Saito K, Iwai T, Yuasa Y. Genomic organization and mutation analyses of the DR5/TRAIL receptor 2 gene in colorectal carcinomas. Cancer Lett 1998;133:197–204.

    PubMed  CAS  Google Scholar 

  103. Seitz S, Wassmuth P, Fischer J, et al. Mutation analysis and mRNA expression of trail-receptors in human breast cancer. Int J Cancer 2002;102:117–128.

    PubMed  CAS  Google Scholar 

  104. Wu WG, Soria JC, Wang L, Kemp BL, Mao L. TRAIL-R2 is not correlated with p53 status and is rarely mutated in non-small cell lung cancer. Anticancer Res 2000;20:4525–4529.

    PubMed  CAS  Google Scholar 

  105. McDonald ER 3rd, Chui PC, Martelli PF, Dicker DT, El-Deiry WS. Death domain mutagenesis of KILLER/DR5 reveals residues critical for apoptotic signaling. J Biol Chem 2001;276:14,939–14,945.

    PubMed  CAS  Google Scholar 

  106. Mitelman F, Mertens F, Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nature Genet 1997;15:417–474.

    PubMed  CAS  Google Scholar 

  107. Mollenhauer J, Wiemann S, Scheurlen W, et al. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours. Nat Genet 1997;17:32–39.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lee, S.H., Yoo, N.J., Lee, J.Y. (2005). Death Receptor Mutations. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:149

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:149

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics