Skip to main content

Caspase Activation by the Extrinsic Pathway

  • Chapter
Death Receptors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 555 Accesses

Abstract

Apoptosis, or programmed cell death, has been an area of extensive study since the early 1990s, largely due to its essential role in the development and maintenance of homeostasis and its implication in numerous diseases, ranging from cancer and autoimmunity to neurodegeneration and immunodeficiency (1). To date, one of the most important insights into the molecular mechanism of apoptosis is the discovery that apoptosis is executed by a family of intracellular proteases known as caspases. Caspases are cysteine aspases, i.e., they use cysteine as the nucleophilic group in their active site to cleave proteins after aspartic acid residues. This discovery initially came a decade ago with the cloning of CED-3, a Caenorhabditis elegans gene required for developmental cell death. During the development of this small organism, 1090 somatic cells are generated, 131 of which are deleted by apoptosis (2,3). Genetic analysis has revealed a core apoptotic program in C. elegans comprised of three genes: CED-3, CED-4, and CED-9, with the first two promoting apoptosis and the latter inhibiting it. Epistatic analysis has identified CED-3 as the most downstream component of this program, suggesting that the functions of CED-4 and CED-9 are to control CED-3 activity. CED-3 encodes a protein this is significantly similar to the only other caspase identified at that time, caspase-1, or interleukin(IL)-1β converting enzyme (ICE), which, as its name indicates, is responsible for processing pro-IL-1β to its mature form, a potent inflammatory cytokine (4,5). This finding has placed caspases at the center of apoptosis study, leading to earnest efforts to identify additional caspases in a range of organisms and extensive investigation of their functions and regulation. Presently, fourteen caspases have been found in mammals, five in Drosophila, and three in C. elegans. A large number of studies using inhibitors of caspases (either small peptide inhibitors or protein inhibitors encoded by viruses) and cells and animals deficient in caspases have confirmed a critical role of some caspases in apoptosis (68). However, other caspases appear to mainly function in nonapoptotic processes such as inflammation. Mammalian caspases are named according to the order in which they were identified (9). The apoptosis caspases include caspase-2, -3, -6, -7, -8, -9, -10, and -12, and the inflammatory caspases are caspase-1, -4, -5, and -11 (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  2. Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 1998;14:410–416.

    Article  PubMed  CAS  Google Scholar 

  3. Liu QA, Hengartner MO. The molecular mechanism of programmed cell death in C. elegans. Ann N Y Acad Sci 1999;887:92–104.

    Article  PubMed  CAS  Google Scholar 

  4. Yuan J, Shaham S, Ledoux HM, Horvitz HR. the C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-b-converting enzyme. Cell 1993;75:641–652.

    Article  PubMed  CAS  Google Scholar 

  5. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992;356:768–774.

    Article  PubMed  CAS  Google Scholar 

  6. Chang HY, Yang X. Proteases for Cell Suicide: Functions and regulation of caspases. Microbiol Mol Biol Rev 2000;64:821–846.

    Article  PubMed  CAS  Google Scholar 

  7. Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003;22:8543–8567.

    Article  PubMed  CAS  Google Scholar 

  8. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999;6:1028–1042.

    Article  PubMed  CAS  Google Scholar 

  9. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    Article  PubMed  CAS  Google Scholar 

  10. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272:17,907–17,911.

    Article  PubMed  CAS  Google Scholar 

  11. Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 1998;95:8461–8466.

    Article  PubMed  CAS  Google Scholar 

  12. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation and apoptosis. Cell 1997;89:175–184.

    Article  PubMed  CAS  Google Scholar 

  13. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391:43–50.

    Article  PubMed  CAS  Google Scholar 

  14. Lazebnik YA, Takahashi A, Moir RD, et al. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 1995;92:9042–9046.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi A, Alnemri ES, Lazebnik YA, et al. Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA 1996;93:8395–8400.

    Article  PubMed  CAS  Google Scholar 

  16. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 1997;278:294–298.

    Article  PubMed  CAS  Google Scholar 

  17. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001;3:339–345.

    Article  PubMed  CAS  Google Scholar 

  18. Martin JB. Molecular basis of the neurodegenerative disorders. New Engl J Med 1999;340:1970–1980.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407:802–809.

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg YP, Nicholson DW, Rasper DM, et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 1996;13:442–429.

    Article  PubMed  CAS  Google Scholar 

  21. Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995;376:37–43.

    Article  PubMed  CAS  Google Scholar 

  22. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996;384:638–641.

    Article  PubMed  CAS  Google Scholar 

  23. Eberstadt M, Huang B, Chen Z, et al. NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 1998;392:941–945.

    Article  PubMed  CAS  Google Scholar 

  24. Chou JJ, Matsuo H, Duan H, Wagner G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 1998;94:171–180.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson KP, Black JA, Thomson JA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 1994;370:270–275.

    Article  PubMed  CAS  Google Scholar 

  26. Walker NP, Talanian RV, Brady KD, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 1994;78:343–352.

    Article  PubMed  CAS  Google Scholar 

  27. Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 1996;3:619–625.

    Article  PubMed  CAS  Google Scholar 

  28. Blanchard H, Kodandapani L, Mittl PR, et al. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure Fold Des 1999;7:1125–1133.

    Article  PubMed  CAS  Google Scholar 

  29. Watt W, Koeplinger KA, Mildner AM, Heinrikson RL, Tomasselli AG, Watenpaugh KD. The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure Fold Des 1999;7:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  30. Chang DW, Ditsworth D, Liu H, Srinivasula SM, Alnemri ES, Yang X. Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J Biol Chem 2003;278:16,466–16,469.

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Bergeron L, Cryns V, et al. Activation of caspase-2 in apoptosis. J Biol Chem 1997;272:21,010–21,017.

    Article  PubMed  CAS  Google Scholar 

  32. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Article  PubMed  CAS  Google Scholar 

  33. Harvey NL, Butt AJ, Kumar S. Functional activation of Nedd2/ICH-1 (caspase-2) is an early process in apoptosis. J Biol Chem 1997;272:13,134–13,139.

    Article  PubMed  CAS  Google Scholar 

  34. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 1997;16:2271–2281.

    Article  PubMed  CAS  Google Scholar 

  35. Wang L, Miura M, Bergeron L, Zhu H, Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994;78:739–750.

    Article  PubMed  CAS  Google Scholar 

  36. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 1994;8:1613–1626.

    Article  PubMed  CAS  Google Scholar 

  37. Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 1998;12:1304–1314.

    PubMed  CAS  Google Scholar 

  38. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002;297:1352–1354.

    Article  PubMed  CAS  Google Scholar 

  39. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 2002;277:13,430–13,437.

    Article  PubMed  CAS  Google Scholar 

  40. Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. J Biol Chem 2002;277:15,147–15,161.

    Article  PubMed  CAS  Google Scholar 

  41. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 1999;13:3179–184.

    Article  PubMed  CAS  Google Scholar 

  42. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–1308.

    Article  PubMed  CAS  Google Scholar 

  43. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999;33:29–55.

    Article  PubMed  CAS  Google Scholar 

  44. Krammer PH. CD95’s deadly mission in the immune system. Nature 2000;407:789–795.

    Article  PubMed  CAS  Google Scholar 

  45. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    Article  PubMed  CAS  Google Scholar 

  46. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors [see comments]. Science 1997;277:818–821.

    Article  PubMed  CAS  Google Scholar 

  47. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL [see comments]. Science 1997;277:815–818.

    Article  PubMed  CAS  Google Scholar 

  48. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104:155–162.

    Article  PubMed  CAS  Google Scholar 

  49. Liu J, Na S, Glasebrook A, et al. Enhanced CD4+ T cell proliferation and Th2 cytokine production in DR6-deficient mice. Immunity 2001;15:23–34.

    Article  PubMed  CAS  Google Scholar 

  50. Boldin MP, Varfolomev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995;270:7795–7798.

    Article  PubMed  CAS  Google Scholar 

  51. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.

    Article  PubMed  CAS  Google Scholar 

  52. Kischkel FC, Hellbardt SH, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD-95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14:5579–5588.

    PubMed  CAS  Google Scholar 

  53. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 1996;85:803–815.

    Article  PubMed  CAS  Google Scholar 

  54. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3 like protease, is recruited to the CD95 (Fas/Apo1) death inducing signal complex. Cell 1996;85:817–827.

    Article  PubMed  CAS  Google Scholar 

  55. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 1997;16:2794–2804.

    Article  PubMed  CAS  Google Scholar 

  56. Scaffidi C, Medema JP, Krammer PH, Peter ME. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 1997;272:26,953–26,958.

    Article  PubMed  CAS  Google Scholar 

  57. Fernandes-Alnemri T, Armstrong RC, Krebs J, et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 1996;93:7464–7469.

    Article  PubMed  CAS  Google Scholar 

  58. Shu HB, Halpin DR, Goeddel DV. Casper is a FADD-and caspase-related inducer of apoptosis. Immunity 1997;6:751–763.

    Article  PubMed  CAS  Google Scholar 

  59. Han D, Chaudhary PM, Wright ME, et al. MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death. Proc Natl Acad Sci USA 1997;94:11,333–11,338.

    Article  PubMed  CAS  Google Scholar 

  60. Inohara N, Koseki T, Hu Y, Chen S, Nunez G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci USA 1997;94:10,717–10,722.

    Article  PubMed  CAS  Google Scholar 

  61. Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, Wallach D. CASH, a novel caspase homologue with death effector domains. J Biol Chem 1997;272:19,641–19,644.

    Article  PubMed  CAS  Google Scholar 

  62. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–195.

    Article  PubMed  CAS  Google Scholar 

  63. Hu S, Vincenz C, Ni J, Gentz R, Dixi VM. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1-and CD-95-induced apoptosis. J Biol Chem 1997;272:17,255–17,257.

    Article  PubMed  CAS  Google Scholar 

  64. Srinivasula SM, Ahmad M, Ottilie S, et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997;272:18,542–18,545.

    Article  PubMed  CAS  Google Scholar 

  65. Rasper DM, Vaillancourt JP, Hadano S, et al. Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 1998;5:271–288.

    Article  PubMed  CAS  Google Scholar 

  66. Kischkel FC, Lawrence DA, Tinel A, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001;276:46,639–46,646.

    Article  PubMed  CAS  Google Scholar 

  67. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. Embo J 2002;21:4520–4530.

    Article  PubMed  CAS  Google Scholar 

  68. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. Embo J 2002;21:3704–3714.

    Article  PubMed  CAS  Google Scholar 

  69. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 1999;274:1541–1548.

    Article  PubMed  CAS  Google Scholar 

  70. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling [see comments]. Science 2000;288:2351–2354.

    Article  PubMed  CAS  Google Scholar 

  71. Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations [see comments]. Science 2000;288:2354–2357.

    Article  PubMed  CAS  Google Scholar 

  72. Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 2002;22:207–220.

    Article  PubMed  CAS  Google Scholar 

  73. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–620.

    Article  PubMed  CAS  Google Scholar 

  74. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J 1998;17:1675–1687.

    Article  PubMed  CAS  Google Scholar 

  75. Li H, Zhu H, Xu C, Yuan J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    Article  PubMed  CAS  Google Scholar 

  76. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. BID, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–490.

    Article  PubMed  CAS  Google Scholar 

  77. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000;7:1166–1173.

    Article  PubMed  CAS  Google Scholar 

  78. Rodriguez I, Matsuura K, Khatib K, Reed JC, Nagata S, Vassalli P. A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J Exp Med 1996;183:1031–1036.

    Article  PubMed  CAS  Google Scholar 

  79. Strasser A, Harris AW, Huang DC, Krammer PH, Cory S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 1995;14:6136–6147.

    PubMed  CAS  Google Scholar 

  80. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400:886–891.

    Article  PubMed  CAS  Google Scholar 

  81. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation. Cell 1995;81:495–504.

    Article  PubMed  CAS  Google Scholar 

  82. Hsu H, Shu H-B, Pan M-G, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84:299–308.

    Article  PubMed  CAS  Google Scholar 

  83. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181–190.

    Article  PubMed  CAS  Google Scholar 

  84. Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 1998;8:1001–1008.

    Article  PubMed  CAS  Google Scholar 

  85. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9:267–276.

    Article  PubMed  CAS  Google Scholar 

  86. Lavrik I, Krueger A, Schmitz I, et al. The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death Differ 2003;10:144–145.

    Article  PubMed  CAS  Google Scholar 

  87. Martin DA, Siegel RM, Zheng L, Lenardo MJ. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 1998;273:4345–4349.

    Article  PubMed  CAS  Google Scholar 

  88. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998;1:319–325.

    Article  PubMed  CAS  Google Scholar 

  89. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model of caspase-8 activation. J Biol Chem 1998;273:2926–2930.

    Article  PubMed  CAS  Google Scholar 

  90. MacCorkle RA, Freeman KW, Spencer DM. Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA 1998;95:3655–3660.

    Article  PubMed  CAS  Google Scholar 

  91. Yang X, Chang HY, Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 1998;281:1355–1357.

    Article  PubMed  CAS  Google Scholar 

  92. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998;1:949–957.

    Article  PubMed  CAS  Google Scholar 

  93. Hu Y, Ding L, Spencer DM, Nunez G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 1998;273:33,489–33,494.

    Article  PubMed  CAS  Google Scholar 

  94. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA 2001;98:13,884–13,888.

    Article  PubMed  CAS  Google Scholar 

  95. Colussi PA, Harvey NL, Kumar S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel function for a caspase prodomain. J Biol Chem 1998;273:24,535–24,542.

    Article  PubMed  CAS  Google Scholar 

  96. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11,549–11,556.

    Article  PubMed  CAS  Google Scholar 

  97. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2000;275:31,199–31,203.

    Article  PubMed  CAS  Google Scholar 

  98. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211–225.

    Article  PubMed  CAS  Google Scholar 

  99. Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 1999;96:10,964–10,967.

    Article  PubMed  CAS  Google Scholar 

  100. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X. Interdimer processing mechanism of procaspase-8 activation. Embo J 2003;22:4132–4142.

    Article  PubMed  CAS  Google Scholar 

  101. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell 2003;11:529–541.

    Article  PubMed  CAS  Google Scholar 

  102. Donepudi M, Sweeney AM, Briand C, Grutter MG. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003;11:543–549.

    Article  PubMed  CAS  Google Scholar 

  103. Holler N, Tardivel A, Kovacsovics-Bankowski M, et al. Two adjacent trimeric fas ligands are required for fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 2003;23:1428–440.

    Article  PubMed  CAS  Google Scholar 

  104. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423–432.

    Article  PubMed  CAS  Google Scholar 

  105. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002;419:395–399.

    Article  PubMed  CAS  Google Scholar 

  106. Salmena L, Lemmers B, Hakem A, et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 2003;17:883–895.

    Article  PubMed  CAS  Google Scholar 

  107. Smith KG, Strasser A, Vaux DL. CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. Embo J 1996;15:5167–5176.

    PubMed  CAS  Google Scholar 

  108. Wang J, Zheng L, Lobito A, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999;98:47–58.

    Article  PubMed  CAS  Google Scholar 

  109. Barnhart BC, Lee JC, Alappat EC, Peter ME. The death effector domain protein family. Oncogene 2003;22:8634–8644.

    Article  PubMed  CAS  Google Scholar 

  110. Park WS, Lee JH, Shin MS, et al. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 2002;21:2919–2925.

    Article  PubMed  CAS  Google Scholar 

  111. Shin MS, Kim HS, Lee SH, et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 2002;21:4129–4136.

    Article  PubMed  CAS  Google Scholar 

  112. Shin MS, Kim HS, Kang CS, et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 2002;99:4094–4099.

    Article  PubMed  CAS  Google Scholar 

  113. Kang JJ, Schaber MD, Srinivasula SM, et al. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J Biol Chem 1999;274:3189–3198.

    Article  PubMed  CAS  Google Scholar 

  114. Krueger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001;21:8247–8254.

    Article  PubMed  CAS  Google Scholar 

  115. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001;276:20,633–20,640.

    Article  PubMed  CAS  Google Scholar 

  116. Yeh WC, Itie A, Elia AJ, et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000;12:633–642.

    Article  PubMed  CAS  Google Scholar 

  117. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002;277:45,162–45,171.

    Article  PubMed  CAS  Google Scholar 

  118. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 2001;21:5299–5305.

    Article  PubMed  CAS  Google Scholar 

  119. Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001;21:3964–3973.

    Article  PubMed  CAS  Google Scholar 

  120. Kirchhoff S, Muller WW, Krueger A, Schmitz I, Krammer PH. TCR-mediated up-regulation of c-FLIPshort correlates with resistance toward CD95-mediated apoptosis by blocking death-inducing signaling complex activity. J Immunol 2000;165:6293–6300.

    PubMed  CAS  Google Scholar 

  121. Kirchhoff S, Muller WW, Li-Weber M, Krammer PH. Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 2000;30:2765–2774.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yang, X. (2005). Caspase Activation by the Extrinsic Pathway. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics