Skip to main content

Mammalian Cell Death Pathways

Intrinsic and Extrinsic

  • Chapter
Death Receptors in Cancer Therapy

Abstract

Programmed cell death results from a conserved cascade of events essential in the development and maintenance of tissue homeostasis. “Extrinsic” cell-death pathways initiate at the cell surface, leading to execution through substrate cleavage, and may involve mitochondrial amplification. Multiple “intrinsic” death pathways converge and require signaling through the mitochondria. Extrinsic cell death is integral to cell-mediated immunity and host immune surveillance/suppression of cancer. Caspase activation is highly regulated and defects at virtually all levels of death regulation are observed in cancer. This chapter focuses on the cell biology, biochemistry, and genetics of programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rich T, Watson CJ, Wyllie A. Apoptosis: the germs of death. Nat Cell Biol 1999;1:E69–E71.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88:347–354.

    Article  PubMed  CAS  Google Scholar 

  3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  4. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2001;2:545–550.

    Article  PubMed  CAS  Google Scholar 

  5. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986;44:817–829.

    Article  PubMed  CAS  Google Scholar 

  6. Hengartner MO, Ellis RE, Horvitz HR. Caenorhaditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992;356:494–499.

    Article  PubMed  CAS  Google Scholar 

  7. Liu QA, Hengartner MO. The molecular mechanism of programmed cell death in C. elegans. Ann N Y Acad Sci 1999;887:92–104.

    Article  PubMed  CAS  Google Scholar 

  8. Conradt B, Horvitz HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 1998;93:519–529.

    Article  PubMed  CAS  Google Scholar 

  9. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770–776.

    Article  PubMed  CAS  Google Scholar 

  10. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 2002;9:505–512.20

    Article  PubMed  CAS  Google Scholar 

  11. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647–656.

    Article  PubMed  CAS  Google Scholar 

  12. Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000;407:796–801.

    Article  PubMed  CAS  Google Scholar 

  13. Vander Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis?Nat Cell Biol 1999;1:E209–E216.

    Article  Google Scholar 

  14. Nagata S. Apoptosis by death factor. Cell 1997;88:355–365.

    Article  PubMed  CAS  Google Scholar 

  15. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 deathinducing signaling complex (DISC). EMBO J 1997;16:2794–2804.

    Article  PubMed  CAS  Google Scholar 

  16. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 2002;3:401–410.

    Article  PubMed  CAS  Google Scholar 

  17. Quinn LM, Dorstyn L, Mills K, et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 2000;275:40,416–40,424.

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1999;1:272–279.

    Article  PubMed  CAS  Google Scholar 

  19. Dorstyn L, Read S, Cakouros D, Huh JR, Hay BA, Kumar S. The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 2002;156:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  20. Zimmermann KC, Ricci JE, Droin NM, Green DR. The role of ARK in stress-induced apoptosis in Drosophila cells. J Cell Biol 2002;156:1077–1087.

    Article  PubMed  CAS  Google Scholar 

  21. Moreno E, Yan M, Basler K. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol 2002;12:1263–1268.

    Article  PubMed  CAS  Google Scholar 

  22. Leulier F, Vidal S, Saigo K, Ueda R, Lemaitre B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr Biol 2002;12:996–1000.

    Article  PubMed  CAS  Google Scholar 

  23. Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 2000;1:353–358.

    Article  PubMed  CAS  Google Scholar 

  24. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 1999;98:453–463.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez A, Chen P, Oliver H, Abrams JM. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J 2002;21:2189–2197.

    Article  PubMed  CAS  Google Scholar 

  26. Richardson H, Kumar S. Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods 2002;265:21–38.

    Article  PubMed  CAS  Google Scholar 

  27. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science 1994;264:677–683.

    Article  PubMed  CAS  Google Scholar 

  28. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  29. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001;8:613–621.

    Article  PubMed  CAS  Google Scholar 

  31. Hegde R, Srinivasula SM, Zhang Z, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 2002;277:432–438.

    Article  PubMed  CAS  Google Scholar 

  32. Verhagen AM, Silke J, Ekert PG, et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002;277:445–454.

    Article  PubMed  CAS  Google Scholar 

  33. van Loo G, van Gurp M, Depuydt B, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002;9:20–26.

    Article  PubMed  Google Scholar 

  34. Martins LM, Iaccarino I, Tenev T, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002;27:439–444.

    Google Scholar 

  35. Palaga T, Osborne B. The 3D’s of apoptosis: death, degradation and DIAPs. Nat Cell Biol 2002;4:E149–E151.

    Article  PubMed  CAS  Google Scholar 

  36. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641–652.

    Article  PubMed  CAS  Google Scholar 

  37. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 betaconverting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993;75:653–660.

    Article  PubMed  CAS  Google Scholar 

  38. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    Article  PubMed  CAS  Google Scholar 

  39. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997;91:443–446.

    Article  PubMed  CAS  Google Scholar 

  40. Raff M. Cell suicide for beginners. Nature 1998;396:119–122.

    Article  PubMed  CAS  Google Scholar 

  41. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312–1316.

    Article  PubMed  CAS  Google Scholar 

  42. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272:17,907–17,911.

    Article  PubMed  CAS  Google Scholar 

  43. Varfolomeev EE, Shuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9:267–276.

    Article  PubMed  CAS  Google Scholar 

  44. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94:339–352.

    Article  PubMed  CAS  Google Scholar 

  45. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94:325–337.

    Article  PubMed  CAS  Google Scholar 

  46. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.

    Article  PubMed  CAS  Google Scholar 

  47. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384:368–372.

    Article  PubMed  CAS  Google Scholar 

  48. Woo M, Hakem R. Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998;12:806–819.

    PubMed  CAS  Google Scholar 

  49. Zheng TS, Flavell RA. Divinations and surprises: genetic analysis of caspase function in mice. Exp Cell Res 2000;256:67–73.

    Article  PubMed  CAS  Google Scholar 

  50. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998;1:319–325.

    Article  PubMed  CAS  Google Scholar 

  51. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273:2926–2930.

    Article  PubMed  CAS  Google Scholar 

  52. Martin DA, Sigel RM, Zheng L, Lenardo MJ. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 1998;273:4345–4349.

    Article  PubMed  CAS  Google Scholar 

  53. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993;74:845–853.

    Article  PubMed  CAS  Google Scholar 

  54. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.

    Article  PubMed  CAS  Google Scholar 

  55. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995;270:7795–7798.

    Article  PubMed  CAS  Google Scholar 

  56. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996;85:817–827.

    Article  PubMed  CAS  Google Scholar 

  57. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADDinteracting protease, in Fas/APO-and TNF receptor-induced cell death. Cell 1996;85:803–815.

    Article  PubMed  CAS  Google Scholar 

  58. Chen M, Orozco A, Spencer DM, Wang J. Activation of initiator caspases through a stable dimeric intermediate. J Biol Chem 2002;277:50,761–50,767.

    Article  PubMed  CAS  Google Scholar 

  59. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell 2003;11:529–541.

    Article  PubMed  CAS  Google Scholar 

  60. Donepudi M, Sweeney AM, Briand C, Grutter MG. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003;11:543–549.

    Article  PubMed  CAS  Google Scholar 

  61. Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fasinduced apoptotic cascade. Curr Biol 1998;8:1001–1008.

    Article  PubMed  CAS  Google Scholar 

  62. Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279:1954–1958.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 1998;392:296–300.

    Article  PubMed  CAS  Google Scholar 

  64. Kuang AA, Diehl GE, Zhang J, Winoto A. FADD is required for DR4-and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem 2000;275:25,065–25,068.

    Article  PubMed  CAS  Google Scholar 

  65. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.

    Article  PubMed  CAS  Google Scholar 

  66. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Article  PubMed  CAS  Google Scholar 

  67. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157.

    Article  PubMed  CAS  Google Scholar 

  68. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2000;275:31,199–31,203.

    Article  PubMed  CAS  Google Scholar 

  69. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 1999;13:3179–3184.

    Article  PubMed  CAS  Google Scholar 

  70. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 1998;94:727–737.

    Article  PubMed  CAS  Google Scholar 

  71. Yoshida H, Kong YY, Yoshida R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94:739–750.

    Article  PubMed  CAS  Google Scholar 

  72. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993;67:2168–2174.

    PubMed  CAS  Google Scholar 

  73. Clem RJ, Miller Lk. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 1994;14:5212–5222.

    PubMed  CAS  Google Scholar 

  74. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995;80:167–178.

    Article  PubMed  CAS  Google Scholar 

  75. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001;2:REVIEWS3009.

    Google Scholar 

  76. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996;379:349–353.

    Article  PubMed  CAS  Google Scholar 

  77. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300–304.

    Article  PubMed  CAS  Google Scholar 

  78. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17:2215–2223.

    Article  PubMed  CAS  Google Scholar 

  79. Takahashi R, Deveraux Q, Tamm I, et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 1998;273:7787–7790.

    Article  PubMed  CAS  Google Scholar 

  80. Sun C, Cai M, Gunasekera AH, et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999;401:818–822.

    Article  PubMed  CAS  Google Scholar 

  81. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 2001;104:781–790.

    PubMed  CAS  Google Scholar 

  82. Chai J, Shiozaki E, Srinivasula SM, et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001;104:769–780.

    Article  PubMed  CAS  Google Scholar 

  83. Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001:104:791–800.

    Article  PubMed  CAS  Google Scholar 

  84. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A 2001;98:14,250–14,255.

    Article  PubMed  CAS  Google Scholar 

  85. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003;11:519–527.

    Article  PubMed  CAS  Google Scholar 

  86. Richter BW, Mir SS, Eiben LJ, et al. Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol 2001;21:4292–4301.

    Article  PubMed  CAS  Google Scholar 

  87. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243–1252.

    Article  PubMed  CAS  Google Scholar 

  88. Roy N, Deveraux QL, Takahashi R, Salvesen Gs, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997;16:6914–6925.

    Article  PubMed  CAS  Google Scholar 

  89. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 2000;10:1359–1366.

    Article  PubMed  CAS  Google Scholar 

  90. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 1999;13:239–252.

    PubMed  CAS  Google Scholar 

  91. Martin SJ. Destabilizing influences in apoptosis: sowing the seeds of IAP destruction. Cell 2002;109:793–796.

    Article  PubMed  CAS  Google Scholar 

  92. Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell 2000;102:549–552.

    Article  PubMed  CAS  Google Scholar 

  93. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquiting protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000;288:874–877

    Article  PubMed  CAS  Google Scholar 

  94. Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 2000;275:26,661–26,664.

    PubMed  CAS  Google Scholar 

  95. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A 2001;98:8662–8667.

    Article  PubMed  CAS  Google Scholar 

  96. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999;18:5242–5251.

    Article  PubMed  CAS  Google Scholar 

  97. Clem RJ, Sheu TT, Richter BW, et al. c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. J Biol Chem 2001;276:7602–7608.

    Article  PubMed  CAS  Google Scholar 

  98. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001;410:112–116.

    Article  PubMed  CAS  Google Scholar 

  99. Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991;254:1388–1390.

    Article  PubMed  CAS  Google Scholar 

  100. Xue D, Horvitz HR. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 1995;377:248–251.

    Article  PubMed  CAS  Google Scholar 

  101. Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995;269:1885–1888.

    Article  PubMed  CAS  Google Scholar 

  102. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci U S A 1996;93:14,486–14,491.

    Article  PubMed  CAS  Google Scholar 

  103. Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell-free system. Cleavage of caspase zymogens. J Biol Chem 1997;272:2952–2956.

    Article  PubMed  CAS  Google Scholar 

  104. Zhou Q, Snipas S, Orth K, Muzio M, Dixit VM, Salvesen GS. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem 1997;272:7797–7800.

    Article  PubMed  CAS  Google Scholar 

  105. Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 2001;98:7829–7834.

    Article  PubMed  CAS  Google Scholar 

  106. Chen P, Tian J, Kovesdi I, Bruder JT. Interaction of the adenovirus 14. 7-kDa protein with FLICE inhibits Fas ligand-induced apoptosis. J Biol Chem 1998;273:5815–5820.

    Article  PubMed  CAS  Google Scholar 

  107. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997;386:517–521.

    Article  PubMed  CAS  Google Scholar 

  108. Bertin J, Armstrong RC, Ottilie S, et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas-and TNFR1-induced apoptosis. Proc Natl Acad Sci U S A 1997;94:1172–1176.

    Article  PubMed  CAS  Google Scholar 

  109. Wang GH, Bertin J, Wang Y, et al. Bovine herpesvirus 4 BORFE2 protein inhibits Fas-and tumor necrosis factor receptor 1-induced apoptosis and contains death effector domains shared with other gamma-1 herpesviruses. J Virol 1997;71:8928–8932.

    PubMed  CAS  Google Scholar 

  110. Zimmerman KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther 2001;92:57–70.

    Article  Google Scholar 

  111. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ. BID: a novel BH3 domain-only death agonist. Genes Dev 1996;10:2859–2869.

    Article  PubMed  CAS  Google Scholar 

  112. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–490.

    Article  PubMed  CAS  Google Scholar 

  113. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    Article  PubMed  CAS  Google Scholar 

  114. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 2000;290:1761–1765.

    Article  PubMed  CAS  Google Scholar 

  115. Stegh AH, Herrmann H, Lampel S, et al. Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95-and tumor necrosis factor receptor-mediated apoptosis. Mol Cell Biol 2000;20:5665–5679.

    Article  PubMed  CAS  Google Scholar 

  116. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 1997;278:294–298.

    Article  PubMed  CAS  Google Scholar 

  117. Ku NO, Liao J, Omary MB. Apoptosis generates stable fragments of human type I keratins. J Biol Chem 1997;272:33,197–33,203.

    Article  PubMed  CAS  Google Scholar 

  118. Caulin C, Salvesen GS, Oshima RG. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 1997;138:1379–1394.

    Article  PubMed  CAS  Google Scholar 

  119. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspasemediated activation of PAK2. Science 1997;276:1571–1574.

    Article  PubMed  CAS  Google Scholar 

  120. Martin SJ, O’Brien GA, Nishioka WK, et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 1995;270:6425–6428.

    Article  PubMed  CAS  Google Scholar 

  121. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCKI. Nat Cell Biol 2001;3:339–345.

    Article  PubMed  CAS  Google Scholar 

  122. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001;3:346–352.

    Article  PubMed  CAS  Google Scholar 

  123. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281–292.

    Article  PubMed  CAS  Google Scholar 

  124. Kawahara A, Enari M, Talanian RV, Wong WW, Nagata S. Fas-induced DNA fragmentation and protelysis of nuclear proteins. Genes Cells 1998;3:297–306.

    Article  PubMed  CAS  Google Scholar 

  125. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980;284:555–556.

    Article  PubMed  CAS  Google Scholar 

  126. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998;391:96–99.

    Article  PubMed  CAS  Google Scholar 

  127. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391:43–50.

    Article  PubMed  CAS  Google Scholar 

  128. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997;89:175–184.

    Article  PubMed  CAS  Google Scholar 

  129. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412:95–99.

    Article  PubMed  CAS  Google Scholar 

  130. McIlroy D, Tanaka M, Sakahira H, et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 2000;14:549–558.

    PubMed  CAS  Google Scholar 

  131. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 1999;401:168–173.

    Article  PubMed  CAS  Google Scholar 

  132. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–446.

    Article  PubMed  CAS  Google Scholar 

  133. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994;371:346–347.

    Article  PubMed  CAS  Google Scholar 

  134. Tewari M, Quan LT, O’Rourke K, et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995;81:801–809.

    Article  PubMed  CAS  Google Scholar 

  135. Casciola-Rosen LA, Anhalt GJ, Rosen A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 1995;182:1625–1634.

    Article  PubMed  CAS  Google Scholar 

  136. Zheng TS, Hunot S, Kuida K, et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 2000;6:1241–1247.

    Article  PubMed  CAS  Google Scholar 

  137. Janicke RU, Ng P, Sprengart ML, Porter AG. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 1998;273:15,540–15,545.

    Article  PubMed  CAS  Google Scholar 

  138. Ruchaud S, Korfali N, Villa P, et al. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J 2002;21:1967–1977.

    Article  PubMed  CAS  Google Scholar 

  139. Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of capsase-6 prodomain. Cell Death Differ 2002;9:1046–1056.

    Article  PubMed  CAS  Google Scholar 

  140. Ren Y, Savill J. Apoptosis: the importance of being eaten. Cell Death Differ 1998;5:563–568.

    Article  PubMed  CAS  Google Scholar 

  141. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000;407:784–788.

    Article  PubMed  CAS  Google Scholar 

  142. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phospatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998;5:551–562.

    Article  PubMed  CAS  Google Scholar 

  143. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000;405:85–90.

    Article  PubMed  CAS  Google Scholar 

  144. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature 2002; 417:182–187.

    Article  PubMed  CAS  Google Scholar 

  145. Hengartner MO. Apoptosis: corralling the corpses. Cell 2001;104:325–328.

    Article  PubMed  CAS  Google Scholar 

  146. Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C. elegans. Nature 2001;412:198–202.

    Article  PubMed  CAS  Google Scholar 

  147. Hoeppner DJ, Hengartner MO, Schnabel R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 2001;412:202–206.

    Article  PubMed  CAS  Google Scholar 

  148. Conradt B. With a little help form your friends: cells don’t die alone. Nat Cell Biol 2002;4:E139–E143.

    Article  PubMed  CAS  Google Scholar 

  149. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with cmyc to immortalize pre-B cells. Nature 1988;335:440–442.

    Article  PubMed  CAS  Google Scholar 

  150. Vaux DL, Weissman IL, Kim SK. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 1992;258:1955–1957.

    Article  PubMed  CAS  Google Scholar 

  151. McDonnell TJ, Deane N, Platt FM, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989;57:79–88.

    Article  PubMed  CAS  Google Scholar 

  152. Strasser A, Harris AW, Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991;67:889–899.

    Article  PubMed  CAS  Google Scholar 

  153. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991;67:879–888.

    Article  PubMed  CAS  Google Scholar 

  154. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993;75:229–240.

    Article  PubMed  CAS  Google Scholar 

  155. Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000;103:839–842.

    Article  PubMed  CAS  Google Scholar 

  156. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286:1735–1738.

    Article  PubMed  CAS  Google Scholar 

  157. Bouillet P, Cory S, Zhang LC, Strasser A, Adams JM. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev Cell 2001;1:645–653.

    Article  PubMed  CAS  Google Scholar 

  158. Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000;6:1389–1399.

    Article  PubMed  CAS  Google Scholar 

  159. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind-prosurvival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001;15:1481–1486.

    Article  PubMed  CAS  Google Scholar 

  160. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–730.

    Article  PubMed  CAS  Google Scholar 

  161. Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8:705–711.

    Article  PubMed  CAS  Google Scholar 

  162. Newmeyer DD, Ferguson-Miller S. Mitochondrian. Releasing power for life nad unleashing the machineries of death. Cell 2003;112:481–490.

    Article  PubMed  CAS  Google Scholar 

  163. Marsden VS, O’Connor L, O’Reilly LA, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 2002;419:634–637.

    Article  PubMed  CAS  Google Scholar 

  164. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002;297:1352–1354.

    Article  PubMed  CAS  Google Scholar 

  165. Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 1998;12:1304–1314.

    PubMed  CAS  Google Scholar 

  166. Read SH, Baliga BC, Ekert PG, Vaux DL, Kumar S. A novel Apaf-2-independent putative capsase-2 activation complex. J Cell Biol 2002;159:739–745.

    Article  PubMed  CAS  Google Scholar 

  167. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15:2922–2933.

    PubMed  CAS  Google Scholar 

  168. Zou H, Yang R, Hao J, et al. Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP. J Biol Chem 2003;278:8091–8098.

    Article  PubMed  CAS  Google Scholar 

  169. Kawane K, Fukuyama H, Yoshida H, et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 2003:4:138–144.

    Article  PubMed  CAS  Google Scholar 

  170. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 2001;412:90–94.

    Article  PubMed  CAS  Google Scholar 

  171. Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med 2000;192:571–580.

    Article  PubMed  CAS  Google Scholar 

  172. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001;410:549–554.

    Article  PubMed  CAS  Google Scholar 

  173. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001;3:839–843.

    Article  PubMed  CAS  Google Scholar 

  174. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–1308.

    Article  PubMed  CAS  Google Scholar 

  175. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002;2:277–288.

    Article  PubMed  CAS  Google Scholar 

  176. Stennicke HR, Salvesen GS. Caspases—controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta 2000;1477:299–306.

    PubMed  CAS  Google Scholar 

  177. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002;2:420–430.

    Article  PubMed  CAS  Google Scholar 

  178. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 1975;72:3666–3670.

    Article  PubMed  CAS  Google Scholar 

  179. Helson L, Green S, Carswell E, Old LJ. Effect of tumour necrosis factor on cultured human melanoma cells. Nature 1975;258:731–732.

    Article  PubMed  CAS  Google Scholar 

  180. Pennica D, Nedwin GE, Hayflick JS, et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 1984;312:724–729.

    Article  PubMed  CAS  Google Scholar 

  181. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    Article  PubMed  CAS  Google Scholar 

  182. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634–1635.

    Article  PubMed  CAS  Google Scholar 

  183. Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 2002;109(Suppl):S97–S107.

    Article  PubMed  CAS  Google Scholar 

  184. Chou AH, Tsai HF, Lin LL, Hsieh SL, Hsu PI, Hsu PN. Enhanced proliferation and increased IFNgamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol 2001;167:1347–1352.

    PubMed  CAS  Google Scholar 

  185. Fesik SW. Insights into programmed cell death through structural biology. Cell 2000;103:273–282.

    Article  PubMed  CAS  Google Scholar 

  186. MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 2002;14:477–492.

    Article  PubMed  CAS  Google Scholar 

  187. Krammer PH. CD95’s deadly mission in the immune system. Nature 2000;407:789–795.

    Article  PubMed  CAS  Google Scholar 

  188. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–682.

    Article  PubMed  CAS  Google Scholar 

  189. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12,687–12,690.

    Article  PubMed  CAS  Google Scholar 

  190. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5:157–163.

    Article  PubMed  CAS  Google Scholar 

  191. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104:155–162.

    PubMed  CAS  Google Scholar 

  192. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 2001;7:94–100.

    Article  PubMed  CAS  Google Scholar 

  193. Smyth MJ, Cretney E, Takeda K, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 2001;193:661–670.

    Article  PubMed  CAS  Google Scholar 

  194. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 2002;168:1356–1361.

    PubMed  CAS  Google Scholar 

  195. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002;195:161–169.

    Article  PubMed  CAS  Google Scholar 

  196. Ichikawa K, Liu W, Zhao L, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001;7:954–960.

    Article  PubMed  CAS  Google Scholar 

  197. Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell 2003;3:17–22.

    Article  PubMed  CAS  Google Scholar 

  198. Schmaltz C, Alpdogan O, Kappel BJ, et al. T cells require TRAIL for optimal graftversus-tumor activity. Nat Med 2002;8:1433–1437.

    Article  PubMed  CAS  Google Scholar 

  199. Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993;268:10,932–10,937.

    PubMed  CAS  Google Scholar 

  200. Trauth BC, Klas C, Peters AM, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989;245:301–305.

    Article  PubMed  CAS  Google Scholar 

  201. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989;169:1747–1756.

    Article  PubMed  CAS  Google Scholar 

  202. Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991;66:233–243.

    Article  PubMed  CAS  Google Scholar 

  203. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand-in lung and colon cancer. Nature 1998;396:699–703.

    Article  PubMed  CAS  Google Scholar 

  204. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000;288:2351–2354.

    Article  PubMed  CAS  Google Scholar 

  205. Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000;288:2354–2357.

    Article  PubMed  CAS  Google Scholar 

  206. Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999;283:543–546.

    Article  PubMed  CAS  Google Scholar 

  207. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;14:5579–5588.

    PubMed  CAS  Google Scholar 

  208. Vincenz C, Dixit VM. Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), and ICE/Ced-3 homologue, is proximally involved in CD95-and p55-mediated death signaling. J Biol Chem 1997;272:6578–6583.

    Article  PubMed  CAS  Google Scholar 

  209. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA 2001;98:13,884–13,888.

    Article  PubMed  CAS  Google Scholar 

  210. Kischkel FC, Lawrence DA, Tinel A, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001;276:46,639–46,646.

    Article  PubMed  CAS  Google Scholar 

  211. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J 2002;21:4520–4530.

    Article  PubMed  CAS  Google Scholar 

  212. Wang J, Zheng L, Lobito A, et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoprolierative syndrome type II. Cell 1999;98:47–58.

    Article  PubMed  CAS  Google Scholar 

  213. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995;81:513–523.

    Article  PubMed  CAS  Google Scholar 

  214. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998;8:297–303.

    Article  PubMed  CAS  Google Scholar 

  215. Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 1999;398:777–785.

    Article  PubMed  CAS  Google Scholar 

  216. Suzuki A, Obata S, Hayashida M, Kawano H, Nakano T, Shiraki K. SADS: A new component of Fas-DISC is the accelerator for cell death signaling and is downregulated in patients with colon carcinoma. Nat Med 2001;7:88–93.

    Article  PubMed  CAS  Google Scholar 

  217. Suzuki A, Obata S, Hayashida M, Kawano H, Nakano T, Shiraki K. Retraction: SADS: A new component of Fas-DISC is the accelerator for cell death signaling and is downregulated in patients with colon carcinoma. Nat Med 2001;7:749.

    Article  PubMed  CAS  Google Scholar 

  218. Choi YH, Kim KB, Kim HH, et al. FLASH coordinates NF-kappa B activity via TRAF2. J Biol Chem 2001;276:25,073–25,077.

    Article  PubMed  CAS  Google Scholar 

  219. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–195.

    Article  PubMed  CAS  Google Scholar 

  220. Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, Wallach D. CASH, a novel caspase homologue with death effector domains. J Biol Chem 1997;272:19,641–19,644.

    Article  PubMed  CAS  Google Scholar 

  221. Han DK, Chaudhary PM, Wright ME, et al. MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death. Proc Natl Acad Sci USA 1997;94:11,333–11,338.

    Article  PubMed  CAS  Google Scholar 

  222. Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1-and CD-95-induced apoptosis. J Biol Chem 1997;272:17,255–17,257.

    Article  PubMed  CAS  Google Scholar 

  223. Inohara N, Koseki T, Hu Y, Chen S, Nunez G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci U S A 1997;94:10,717–10,722.

    Article  PubMed  CAS  Google Scholar 

  224. Shu HB, Halpin DR, Goeddel DV. Casper is a FADD-and caspase-related inducer of apoptosis. Immunity 1997;6:751–763.

    Article  PubMed  CAS  Google Scholar 

  225. Srinivasula SM, Ahmad M, Ottilie S, et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997;272:18,542–18,545.

    Article  PubMed  CAS  Google Scholar 

  226. Rasper DM, Vaillancourt JP, Hadano S, et al. Cell death attenuation by attenuation by ÄòUsurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 1998;5:271–288.

    Article  PubMed  CAS  Google Scholar 

  227. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002;21:3704–3714.

    Article  PubMed  CAS  Google Scholar 

  228. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002;277:45,162–45,171.

    Article  PubMed  CAS  Google Scholar 

  229. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995;81:495–504.

    Article  PubMed  CAS  Google Scholar 

  230. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84:299–308.

    Article  PubMed  CAS  Google Scholar 

  231. Harper N, Hughes M, MacFarlane M, Cohen GM. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 2003;278:25,534–25,541.

    Article  PubMed  CAS  Google Scholar 

  232. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996;87:565–576.

    Article  PubMed  CAS  Google Scholar 

  233. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301–310.

    Article  PubMed  CAS  Google Scholar 

  234. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 2000;12:419–429.

    Article  PubMed  CAS  Google Scholar 

  235. Lee SY, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 1997;7:703–713.

    Article  PubMed  CAS  Google Scholar 

  236. Hsu H, Huang J, Shu HB, Baichwal V, Goedel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996;4:387–396.

    Article  PubMed  CAS  Google Scholar 

  237. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998;17:1675–1687.

    Article  PubMed  CAS  Google Scholar 

  238. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400:886–891.

    Article  PubMed  CAS  Google Scholar 

  239. Ozoren N, Kim K, Burns TF, Dicker DT, Moscioni AD, El-Deiry WS. The caspase 9 inhibitor Z-LEHDFMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2000;60:6259–6265.

    PubMed  CAS  Google Scholar 

  240. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–310.

    Article  PubMed  CAS  Google Scholar 

  241. Soengas MS, Alarcon RM, Yoshida H, et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999;284:156–159.

    Article  PubMed  CAS  Google Scholar 

  242. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cell suface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998;282:20–293.

    Article  Google Scholar 

  243. Wu GS, Burns TF, McDonald ER, 3rd, et al. KILLER/DR5 is a DNA damag-inducible p53-regulated death receptor gene. Nat Genet 1997;17:141–143.

    Article  PubMed  CAS  Google Scholar 

  244. Embree-Ku M, Venturini D, Boekelheide K. Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol Reprod 2002;66:1456–1461.

    Article  PubMed  CAS  Google Scholar 

  245. Engels IH, Stepczynska A, Stroh C, et al. Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 2000;19:4563–4573.

    Article  PubMed  CAS  Google Scholar 

  246. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 1999;93:3053–3063.

    PubMed  CAS  Google Scholar 

  247. Tang D, Lahti JM, Kidd VJ. Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 2000;275:9303–9307.

    Article  PubMed  CAS  Google Scholar 

  248. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perpective. Nature 2000;408:433–439.

    Article  PubMed  CAS  Google Scholar 

  249. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer 2002;2:594–604.

    Article  PubMed  CAS  Google Scholar 

  250. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 2002;4:842–849.

    Article  PubMed  CAS  Google Scholar 

  251. MacLachlan TK, El-Deiry WS. Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A 2002;99:9492–9497.

    Article  PubMed  CAS  Google Scholar 

  252. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002;108:153–164.

    Article  PubMed  CAS  Google Scholar 

  253. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.

    Article  PubMed  CAS  Google Scholar 

  254. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Experssion of the proapoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 2000;10:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  255. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cellintrinsic death machinery. Cell 1997;91:231–241.

    Article  PubMed  CAS  Google Scholar 

  256. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278:687–689.

    Article  PubMed  Google Scholar 

  257. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–1321.

    Article  PubMed  CAS  Google Scholar 

  258. Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 1999;264:550–555.

    Article  PubMed  CAS  Google Scholar 

  259. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001;98:11,598–11,603.

    Article  PubMed  CAS  Google Scholar 

  260. Zhou BP, Liao Y, Xia W, Zou Y, Spoh B, Hung MC. HER-2/neu induces p53 ubiquitination via Aktmediated MDM2 phosphorylation. Nat Cell Biol 2001;3:973–982.

    Article  PubMed  CAS  Google Scholar 

  261. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  262. Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair aopoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995;81:935–946.

    Article  PubMed  CAS  Google Scholar 

  263. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995;268:1347–1349.

    Article  PubMed  CAS  Google Scholar 

  264. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996;98:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  265. Jackson CE, Puck JM. Autoimmune lymphoproliferative syndrome, a disorder of apoptosis. Curr Opin Pediatr 1999;11:521–527.

    Article  PubMed  CAS  Google Scholar 

  266. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356:314–317.

    Article  PubMed  CAS  Google Scholar 

  267. Takahashi T, Tanaka M, Branna CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994;76:969–976.

    Article  PubMed  CAS  Google Scholar 

  268. Lee SH, Shin MS, Park WS, et al. Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res 1999;59:3068–3072.

    PubMed  CAS  Google Scholar 

  269. Lee SH, Shin MS, Park WS, et al. Alterations of Fas (APO-1/CD95) gene in non-small cell lung cancer. Oncogene 1999;18:3754–3760.

    Article  PubMed  CAS  Google Scholar 

  270. Lee SH, Shin MS, Park WS, et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 1999;154:1785–1791.

    PubMed  Google Scholar 

  271. Shin MS, Kim HS, Lee SH, et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 2002;32:4129–4136.

    Article  CAS  Google Scholar 

  272. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999;97:133–144.

    Article  PubMed  CAS  Google Scholar 

  273. Pai SI, Wu GS, Ozoren N, et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 1998;59:3513–3518.

    Google Scholar 

  274. Lee SH, Shin MS, Kim HS, et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res 1999;59:5683–5686.

    PubMed  CAS  Google Scholar 

  275. Ozoren N, Fisher MJ, Kim K, et al. Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance. Int J Oncol 2000;16:917–925.

    PubMed  CAS  Google Scholar 

  276. Shin MS, Kim HS, Lee SH, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 2001;61:4942–4946.

    PubMed  CAS  Google Scholar 

  277. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene 2001;20:399–403.

    Article  PubMed  CAS  Google Scholar 

  278. Bai C, Connolly B, Metzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A 2000;160:89–97.

    Google Scholar 

  279. Ohshima K, Haraoka S, Sugihara M, et al. Amplification and expression of a decoy receptor for fas ligand (DcR3) in virus (EBV or HTLV-I) associated lymphomas. Cancer Lett 2000;160:89–97.

    Article  PubMed  CAS  Google Scholar 

  280. Roth W, Isenmann S, Nakamura M, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001;61:2759–2765.

    PubMed  CAS  Google Scholar 

  281. Takahama Y, Yamada Y, Emoto K, et al. The prognostic significance of overexpression of the decoy receptor for Fas ligand (DcR3) in patients with gastric carcinomas. Gastric Cancer 2002;5:61–68.

    Article  PubMed  CAS  Google Scholar 

  282. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domaincontaining receptor for TRAIL. Science 1997;277:815–818.

    Article  PubMed  CAS  Google Scholar 

  283. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–821.

    Article  PubMed  CAS  Google Scholar 

  284. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997;7:1003–1006.

    Article  PubMed  CAS  Google Scholar 

  285. Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998;424:41–45.

    Article  PubMed  CAS  Google Scholar 

  286. Rieger J, Naumann U, Glaser T, Ashkenazi A, Weller M. APO2 ligand: a novel lethal weapon against malignant glioma? FEBS Lett 1998;427:124–128.

    Article  PubMed  CAS  Google Scholar 

  287. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998;161:2833–2840.

    PubMed  CAS  Google Scholar 

  288. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 1999; 59:2747–2753.

    PubMed  CAS  Google Scholar 

  289. Kim K, Fisher MJ, Xu SQ, El-Deiry WS. Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 2000;6:335–346.

    PubMed  CAS  Google Scholar 

  290. Thome M, Tschopp J. Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001;1:50–58.

    Article  PubMed  CAS  Google Scholar 

  291. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastaomas with amplification of MYCN. Nat Med 2000;6:529–535.

    Article  PubMed  CAS  Google Scholar 

  292. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000;60:4315–4319.

    PubMed  CAS  Google Scholar 

  293. Grotzer MA, Eggert A, Zuzak TJ, et al. Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogne 2000; 19:4606–4610.

    Google Scholar 

  294. Eggert A, Grotzer MA, Zuzak TJ, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 2001; 61:1314–1319.

    PubMed  CAS  Google Scholar 

  295. Liu B, Pend D, Lu Y, Jin W, Fan Z. A novel single amino acid deletion caspase-8 mutant in cancer cells that lost proapoptotic activity. J Biol Chem 2002;277:30,159–30,164.

    Article  PubMed  CAS  Google Scholar 

  296. Park WS, Lee JH, Shin MS, et al. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 2002;21:2919–2925.

    Article  PubMed  CAS  Google Scholar 

  297. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002;419:395–399.

    Article  PubMed  CAS  Google Scholar 

  298. Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001;409:207–211.

    Article  PubMed  CAS  Google Scholar 

  299. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998;17:3247–3259.

    Article  PubMed  Google Scholar 

  300. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  301. Rampino N, Yamamoto H, Ionov Y, et al. Somatic fameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997;275:967–969.

    Article  PubMed  CAS  Google Scholar 

  302. Kondo S, Shinomura Y, Miyazaki Y, et al. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 2000;60:4328–4330.

    PubMed  CAS  Google Scholar 

  303. McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A 1997;94:2345–2349.

    Article  PubMed  CAS  Google Scholar 

  304. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 1997;385:637–640.

    Article  PubMed  CAS  Google Scholar 

  305. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M. Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 2000;97:10,872–10,877.

    Article  PubMed  CAS  Google Scholar 

  306. Mullauer L, Gruber P, Sebinger D, Buch J, Wohlfart S, Chott A. Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res 2001;488:211–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McDonald, E.R., El-Deiry, W.S. (2005). Mammalian Cell Death Pathways. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics