Skip to main content

Radiation Biology and Therapy of Tumors of the Central Nervous System

  • Chapter
Book cover Brain Tumors

Abstract

Interaction of ionizing radiation with any biological material results in uneven energy deposition, which results in a variety of chemical modifications. This is the direct action of radiation that predominates for particulate radiation (protons, neutrons, or α-particles). Another mechanism is the interaction of a photon with orbital electrons of the absorbing intracellular medium, of which water molecules are the most common. This interaction ejects fast electrons from outer shells that create multiple ionizations along their tracks. This mechanism, the indirect action of radiation, is the predominant one for X-rays and γ-rays. The initial ionization occurs in 10−15 seconds while ion radicals and free radicals exist for only 10−10 to 10−5 s. The consequences of radiation-induced chemical alterations may not be expressed for hours or days, if the parameter is cell killing; and potentially years if genetic changes are not manifest until following generations (56).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abayomi O.K. 1996.Pathogenesis of irradiation-induced cognitive dysfunction. Acta. Oncol. 35: 659–663.

    PubMed  CAS  Google Scholar 

  2. Ang K.K. 2000. Radiobiology of the central nervous system, in Neuro-Oncology: The Essentials (Bernstein M., Berger M.S. eds.),Thieme Medical Publishers, Inc., New York, pp. 160–168.

    Google Scholar 

  3. Asai A., Matsutani M., Kohno T., Nakamura O., Tanaka H., Fujimaki T., et al. 1989. Subacute brain atrophy after radiation therapy for malignant brain tumor. Cancer 63:1962–1974.

    PubMed  CAS  Google Scholar 

  4. Barres B.A., Raff M.C. 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–260.

    PubMed  CAS  Google Scholar 

  5. Battermann J.J. 1980.Fast neutron therapy for advanced tumors. Intl. J. Rad. Oncol. Bio. Phys. 6:333–335.

    CAS  Google Scholar 

  6. Bayer S.A. 1982. Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp. Brain Res. 46:315–323.

    PubMed  CAS  Google Scholar 

  7. Bedford J.S., Mitchell J.B., Griggs H.G., Bender M.A. 1978. Radiation-induced cellular reproductive death and chromosome aberrations. Radiat. Res. 76:573–586.

    PubMed  CAS  Google Scholar 

  8. Bleehen N.M., Stenning S.P. 1991. A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. Br. J. Cancer 64:769–774.

    PubMed  CAS  Google Scholar 

  9. Bleehen N.M., Wiltshire D.R., Plowman P.N., Watson J.V., Gleave J.R.W., Holmes A.E., et al. 1981. A randomized study of misonidazole and radiotherapy for grade 3 and 4 cerebral astrocytoma. Br. J. Cancer 43:436–441.

    PubMed  CAS  Google Scholar 

  10. Brizel D.M., Scully S.P., Harrelson J.M., Layfield L.J., Bean J.M., Prosnitz L.R., Dewhirst M.W. 1996. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 56:941–943.

    PubMed  CAS  Google Scholar 

  11. Browder T., Butterfield C.E., Kraling B.M., Shi B., Marshall B., O’Reilly M.S., Folkman J. 2000. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60:1878–1886.

    PubMed  CAS  Google Scholar 

  12. Brown J.M., Giaccia A.J. 1998. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58:1408–1416.

    PubMed  CAS  Google Scholar 

  13. Bruce A.J., Boling W., Kindy M.S., Peschon J., Kraemer P.J., Carpenter M.K., et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med. 2: 788–794.

    Google Scholar 

  14. Burger P.C., Dubois P.J., Schold S.C., Jr., Smith K.R., Jr., Odom G.L., Crafts D.C., Giangaspero F. 1983. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J. Neurosurg. 58:159–169.

    PubMed  CAS  Google Scholar 

  15. Butler R.W., Hill J.M., Steinherz P.G., Meyers P.A., Finlay J.L. 1994. Neuropsychologic effects of cranial irradiation, intrathecal methotrexate, and systemic methotrexate in childhood cancer. J. Clin. Oncol. 12: 2621–2629.

    PubMed  CAS  Google Scholar 

  16. Calvo W., Hopewell J.W., Reinhold H.S., Yeung T.K. 1988. Time-and dose-related changes in the white matter of the rat brain after single doses of X rays. Brit. J. Radiol. 61:1043–1052.

    PubMed  CAS  Google Scholar 

  17. Cameron H.A., Woolley C.S., McEwen B.S., Gould E. 1993. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344.

    PubMed  CAS  Google Scholar 

  18. Cannella B., Hoban C.J., Gao Y.L., Garcia-Arenas R., Lawson D., Marchionni M., et al. 1998. The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc. Natl. Acad. Sci. USA 95:10,100–10,105.

    PubMed  CAS  Google Scholar 

  19. Caspari T. 2000. How to activate p53. Curr. Biol. 10:R315–317.

    PubMed  CAS  Google Scholar 

  20. Castro J.R., Phillips T.L., Prados M., Gutin P., Larson D.A., Petti P.L., et al. 1997. Neon heavy charged particle radiotherapy of glioblastoma of the brain. Int. J. Radiat. Oncol. Biol. Phys. 38:257–261.

    PubMed  CAS  Google Scholar 

  21. Catteral M., Bloom H.J.G., Ash D.V., Walsh L., Richardson A., Uttley D., et al. 1980. Fast neutrons compared with megavoltage X-rays in the treatment of patients with supratentorial glioblastoma: a controlled pilot study. Int. J. Radiat. Oncol. Biol. Phys. 6:261–266.

    Google Scholar 

  22. Cavanagh J.B., Hopewell J.W. 1972. Mitotic activity in the subependymal plate of rats and the long-term consequences of X-irradiation. J. Neurol. Sci. 15:471–482.

    PubMed  CAS  Google Scholar 

  23. Chadha M., Capala J., Coderre J.A., Elowitz E.H., Iwai J.-I., Joel D.D., et al. 1998. Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. Int. J. Radiat. Oncol. Biol. Phys. 40:829–834.

    PubMed  CAS  Google Scholar 

  24. Chanana A.D. Capala J., Chadha M., Coderre J.A., Diaz A.Z., Elowitz E.H., et al. 1999. Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies. Neurosurgery 44:1182–1192.

    PubMed  Google Scholar 

  25. Chang E.L., Loeffler J.S., Riese N.E., Wen P.Y., Alexander E., III, Black P.M., Coleman C.N. 1998. Survival results from a phase I study of etanidazole (SR2508) and radiotherapy in patients with malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 40:65–70.

    PubMed  CAS  Google Scholar 

  26. Chiang C.S., McBride W.H., Withers H.R. 1993. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother. Oncol. 29:60–68.

    PubMed  CAS  Google Scholar 

  27. Clarke A.R., Purdie C.A., Harrison D.J., Morris R.G., Bird C.C., et al. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852.

    PubMed  CAS  Google Scholar 

  28. Coderre J.A., Morris G.M. 1999. The radiation biology of boron neutron capture therapy. Radiat. Res. 151:1–18.

    PubMed  CAS  Google Scholar 

  29. Collier T.J., Quirk G.J., Routtenberg A. 1987. Separable roles of hippocampal granule cells in forgetting and pyramidal cells in remembering spatial information. Brain Res. 409:316–328.

    PubMed  CAS  Google Scholar 

  30. Collingridge D.R., Piepmeier J.M., Knisely J.P., Rockwell S. 1998. Polarographic measurement of oxygen tension in human brain glioma. Int. J. Radiat. Oncol. Biol. Phys. 42:267.

    Google Scholar 

  31. Craig C.G., Tropepe V., Morshead C.M., Reynolds B.A., Weiss S., van der Kooy D. 1996. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16: 2649–2658.

    PubMed  CAS  Google Scholar 

  32. Crossen J.R., Garwood D., Glatstein E., Neuwelt E.A. 1994. Neurobehavioral sequelae of cranial irradiation in adults: A review of radiation-induced encephalopathy. J. Clin. Oncol. 12:627–642.

    PubMed  CAS  Google Scholar 

  33. Czurko A., Czeh B., Seress L., Nadel L., Bures J. 1997. Severe spatial navigation deficit in the Morris water maze after single high dose of neonatal X-ray irradiation in the rat. Proc. Natl. Acad. Sci. U S A 94:2766–2771.

    PubMed  CAS  Google Scholar 

  34. Dachs G.U., Patterson A.V., Firth J.D., Ratcliffe P.J., Townsend K.M.S., Stratford I.J., Harris A.L. 1997. Targeting gene expression to hypoxic tumor cells. Nature Med. 3:515–520.

    PubMed  CAS  Google Scholar 

  35. Daigle J.L., Hong J.H., Chiang C.S., McBride W.H. 2001. The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation. Cancer Res. 6 1:8859–8865.

    Google Scholar 

  36. Dennis M., Spiegler B.J., Obonsawin M.C., Maria B.L., Cowell C., Hoffman H.J., et al. 1992. Brain tumors in children and adolescents-III. Effects of radiation and hormone status on intelligence and on working, associative and serial-order memory. Neuropsychologia 30:257–275.

    PubMed  CAS  Google Scholar 

  37. Dewey W.C., Freeman M.L., Raaphorst G.P., Clark E.P., Wong R.S.L., Highfield D.P., et al. 1980. Cell biology of hyperthermia and radiation, in Radiation Biology in Cancer Research (Meyn, R.E., Withers, H.R., eds.), Raven Press, New York, pp. 589–621.

    Google Scholar 

  38. Diller L., Kassel J., Nelson C.E., Gryka M.A., Litwak G., Gebhardt M., et al. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mo. Cellular Biol. 10:5772–5781.

    CAS  Google Scholar 

  39. Doetsch F., Caille I., Lim D.A., Garcia-Verdugo J.M., Alvarez-Buylla A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

    PubMed  CAS  Google Scholar 

  40. Doetsch F., Garcia-Verdugo J.M., Alvarez-Buylla A. 1997. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17: 5046–5061.

    PubMed  CAS  Google Scholar 

  41. Earnshaw W.C., Martins L.M., Kaufmann S.H. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann. Rev. Biochem. 68:383–424.

    PubMed  CAS  Google Scholar 

  42. Ellenberg L., McComb J.G., Siegel S.E., Stowe S. 1987. Factors affecting intellectual outcome in pediatric brain tumor patients. Neurosurgery 21:638–644.

    PubMed  CAS  Google Scholar 

  43. Eriksson P.S., Perfilieva E., Bjork-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H. 1998. Neurogenesis in the adult human hippocampus. Nat. Med. 4:1313–1317.

    PubMed  CAS  Google Scholar 

  44. Fike J.R., Cann C.E., Turowski K., Higgins R.J., Chan A.S., Phillips T.L., Davis R.L. 1988. Radiation dose response of normal brain. Int. J. Radiat. Oncol. Biol. Phys. 14:63–70.

    PubMed  CAS  Google Scholar 

  45. Fitzek M.M., Thornton A.F., Harsh G., IV, Rabinov J.D., Menzenrider J.E., Lev M., et al. 2001. Dose-escalation with proton/photon irradiation for Daumas-Duport lower-grade glioma: results of an institutional phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys. 51:131–137.

    PubMed  CAS  Google Scholar 

  46. Fitzek M.M., Thornton A.F., Rabinov J.D., Lev M.H., Pardo F.S., Menzenrider J.E., et al. 1999. Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J. Neurosurgery 91:251–260.

    CAS  Google Scholar 

  47. Futaki M., Liu J.M. 2001. Chromosomal breakage syndromes and the BRCA1 genome surveillance complex. Trends Mol. Med. 7:560–565.

    PubMed  CAS  Google Scholar 

  48. Gage F.H. 2000. Mammalian neural stem cells. Science 287:1433–1438.

    PubMed  CAS  Google Scholar 

  49. Gould E., Beylin A., Tanapat P., Reeves A., Shors T.J. 1999. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2:260–265.

    PubMed  CAS  Google Scholar 

  50. Gould E., McEwen B.S., Tanapat P., Galea L.A., Fuchs E. 1997. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17: 2492–2498.

    PubMed  CAS  Google Scholar 

  51. Green S.B., Byar D.P., Strike T.A., Alexander E., Brooks W.H., Burger P.C., et al. Randomized comparisons of BCNU, streptozotocin, radiosensitizer, and fractionation of radiotherapy in the postoperative treatment of malignant glioma (study 7702) (abstr.). Proc. Am. Soc. Clin. Oncol. 3:260, 1984.

    Google Scholar 

  52. Griffin T.W., Davis R. Laramore G. 1983. Fast neutron radiation therapy for glioblastoma multiforme—results of an RTOG study. Am. J. Clin.l Oncol. 6:661–667.

    CAS  Google Scholar 

  53. Gutin P.H., Leibel S.A., Hosobuchi Y., Crumley R.L., Edwards M.S., Wilson C.B., et al. 1987. Brachytherapy of recurrent tumors of the skull base and spine with iodine-125 sources. Neurosurgery 20: 938–945.

    PubMed  CAS  Google Scholar 

  54. Haber J.E. 2000. Partners and pathwaysrepairing a double-strand break. Trends Genet. 16: 259–264.

    PubMed  CAS  Google Scholar 

  55. Hall E.J. 1988. Radiobiology for the Radiologist. J. B. Lippincott Co., Philadelphia, PA.

    Google Scholar 

  56. Hall E.J. 1994. Radiobiology for the Radiologist. J. B. Lippincott Co., Philadelphia, PA.

    Google Scholar 

  57. Halligan J.B., Stelzer K.J. Rostomily R.C., Spence A.M., Griffin T.W., Berger M.S. 1996. Operation and permanent low activity 125I brachytherapy for recurrent high-grade astrocytomas. Int. J. Radiat. Oncol. Biol. Phys. 35:541–547.

    PubMed  CAS  Google Scholar 

  58. Hanahan D., Bergers G., Bergsland E. 2000. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105:1045–1047.

    PubMed  CAS  Google Scholar 

  59. Hengartner M.O. 2000. The biochemistry of apoptosis. Nature 407:770–776.

    PubMed  CAS  Google Scholar 

  60. Herzog K.H., Chong M.J., Kapsetaki M., Morgan J.I., McKinnon P.J. 1998. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280:1089–1091.

    PubMed  CAS  Google Scholar 

  61. Hong J.H., Chiang C.S., Campbell I.L., Sun J.R., Withers H.R., McBride W.H. 1995. Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33:619–626.

    PubMed  CAS  Google Scholar 

  62. Hopewell J.W. 1971. A quantitative study on the mitotic activity in the subependymal plate of adult rats. Cell Tissue Kinet. 4:273–278.

    Google Scholar 

  63. Hopewell J.W., Cavanagh J.B. 1972. Effects of X irradiation on the mitotic activity of the subependymal plate of rats. Br.. J. Radiol. 45:461–465.

    PubMed  CAS  Google Scholar 

  64. Hopewell J.W., Wright E.A. 1970. The nature of latent cerebral irradiation damage and its modification by hypertension. Br. J. Radiol. 43:161–167.

    PubMed  CAS  Google Scholar 

  65. Hornsey S., Myers R., Coultas P.G., Rogers M.A., White A. 1981. Turnover of proliferative cells in the spinal cord after X irradiation and its relation to time-dependent repair of radiation damage. Br. J. Radiol. 54:1081–1085.

    PubMed  CAS  Google Scholar 

  66. Huang E., Teh B.S., Strother D.R., Davis Q.G., Chiu J.K., Lu H.H., Carpenter L.S., et al. 2002. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 52:599–605.

    PubMed  Google Scholar 

  67. Huang L.E., Gu J. Schau M., Bunn H.F. 1998. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95: 7987–7992.

    PubMed  CAS  Google Scholar 

  68. Hubbard B.M., Hopewell J.W. 1980. Quantitative changes in cellularity of the rat subependymal plate after x-irradiation. Cell Tissue Kinet. 13:403–413.

    PubMed  CAS  Google Scholar 

  69. Imperato J.P., Paleologos N.A., Vick N.A. 1990. Effects of treatment on long-term survivors with malignant astrocytomas. Ann. Neurol. 28:818–822.

    PubMed  CAS  Google Scholar 

  70. Johansson C.B., Momma S., Clarke D.L., Risling M., Lendahl U., Frisen J. 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34.

    PubMed  CAS  Google Scholar 

  71. Johnson M.D., Xiang H., London S., Kinoshita Y., Knudson M., Mayberg M, et al. 1998. Evidence for involvement of Bax and p53, but not caspases, in radiation-induced cell death of cultured postnatal hippocampal neurons. J. Neurosci. Res. 54:721–733.

    PubMed  CAS  Google Scholar 

  72. Kaplan M.I., Morgan W.F. 1998. The nucleus is the target for radiation-induced chromosomal instability. Radiat. Res. 150:382–390.

    PubMed  CAS  Google Scholar 

  73. Kayama T., Yoshimoto T., Fujimoto S., Sakurai Y. 1991. Intratumoral oxygen pressure in malignant brain tumor. J. Neurosurg. 74:55–59.

    PubMed  CAS  Google Scholar 

  74. Kempermann G., Kuhn H.G., Gage F.H. 1997. More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495.

    PubMed  CAS  Google Scholar 

  75. Kempermann G. Kuhn H.G., Gage F.H. 1998. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18:3206–3212.

    PubMed  CAS  Google Scholar 

  76. Khanna K.K. 2000. Cancer risk and the ATM gene: a continuing debate. J. Natl. Cancer Inst. 92:795–802.

    PubMed  CAS  Google Scholar 

  77. Khanna K.K., Jackson S.P. 2001. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27:247–254.

    PubMed  CAS  Google Scholar 

  78. Klement G., Baruchel S., Rak J., Man S., Clark K., Hicklin D.J., et al. 2000. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105:15–24.

    Google Scholar 

  79. Kondziolka D., Flickinger J.C., Lunsford L.D. 2000. Stereotactic radiosurgery and radiation therapy, in Neuro-Oncology: The Essentials (Berstein M., Berger M.S., eds.) Thieme Medical Publishers, Inc., New York, pp. 183–197.

    Google Scholar 

  80. Kondziolka D., Patel A., Lunsford L.D., Kassam A., Flickinger J.C. 1999. Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Inl. J. Rad. Oncol. Biol. Phys 45: 427–434.

    CAS  Google Scholar 

  81. Kramer J.H., Crittenden M.R., Halberg F.E., Wara W.M., Cowan M.J. 1992. A prospective study of cognitive functioning following low-dose cranial radiation for bone marrow transplantation. Pediatrics 90: 447–450.

    PubMed  CAS  Google Scholar 

  82. Kreth F.W., Faist M., Warnke P.C., Roßner R., Volk B., Ostertag C.B. 1995. Interstitial radiosurgery of low-grade gliomas. J. Neurosurgery 82:418–429.

    CAS  Google Scholar 

  83. Kuhn H.G., Dickinson-Anson H., Gage F.H. 1996. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16:2027–2033.

    PubMed  CAS  Google Scholar 

  84. Kuhn H.G., Winkler J., Kempermann G., Thal L.J., Gage F.H. 1997. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17: 5820–5829.

    PubMed  CAS  Google Scholar 

  85. Laperriere N.J., Leung P.M.K., McKenzie S., Milosevic M., Wong S., Glen J., Pintilie M., Bernstein M. 1998. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 41:1005–1011.

    PubMed  CAS  Google Scholar 

  86. Laramore G.E., Diener-West M., Griffin T.W., Nelson J.S., Griem M.L., Thomas F.J., et al. 1988. Randomized neutron dose searching study for malignant gliomas of the brain: results of an RTOG study. Int. J. Radiat. Oncol. Biol. Phys. 14:1093–1102.

    PubMed  CAS  Google Scholar 

  87. Laramore G.E., Griffin T.W., Gerdes A.J., Parker R.G. 1978. Fast neutron and mixed (neutron/photon) beam teletherapy for grades III and IV astrocytomas. Cancer 42:96–103.

    PubMed  CAS  Google Scholar 

  88. Laramore G.E., Martz K.L., Nelson J.S., Nelson D.F., Griffin T.W., Chang C.H., Horton J. 1988. RTOG survival data on anaplastic astrocytoma of the brain: does a more aggressive form of treatment adversely impact survival? (abstr.). Int. J. Radiat. Oncol. Biol. Phys. 15(Suppl. 1):195.

    Google Scholar 

  89. Lee P.W., Hung B.K., Woo E.K., Tai P.T., Choi D.T. 1989. Effects of radiation therapy on neuropsychological functioning in patients with nasopharyngeal carcinoma. J. Neurol. Neurosurg. Psychiatry 52:488–492.

    PubMed  CAS  Google Scholar 

  90. Li P. Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., Wang X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.

    PubMed  CAS  Google Scholar 

  91. Li Y.Q. Jay V., Wong C.S. 1996. Oligodendrocytes in the adult rat spinal cord undergo radiation-induced apoptosis. Cancer Res 56:5417–5422.

    PubMed  CAS  Google Scholar 

  92. Lim D.A., Fishell G.J., Alvarez-Buylla A. 1997. Postnatal mouse subventricular zone neuronal precursors can migrate and differentiate within multiple levels of the developing neuraxis. Proc. Natl. Acad. Sci. USA 94:14,832–14,836.

    PubMed  CAS  Google Scholar 

  93. Locher G.L. 1936. Biological effects and therapeutic possibilities of neutrons. Am. J Roentgenol. 36:1–13.

    CAS  Google Scholar 

  94. Lois C., Alvarez-Buylla A. 1994. Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148.

    PubMed  CAS  Google Scholar 

  95. Lowe S.W., Schmitt E.M., Smith S.W., Osborne B.A., Jacks T. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849.

    PubMed  CAS  Google Scholar 

  96. Lowenstein D.H., Parent J.M.. 1999. Brain, heal thyself. Science 283:1126–1127.

    PubMed  CAS  Google Scholar 

  97. Luskin M.B., McDermott K. 1994. Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11:211–226.

    PubMed  CAS  Google Scholar 

  98. Lutz P.L. 1992. Mechanisms for anoxic survival in the vertebrate brain. Ann. Rev. Physiol. 54:601–618.

    CAS  Google Scholar 

  99. Maity A., McKenna W.G., Muschel R.J. 1994. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother. Oncol. 31:1–13.

    PubMed  CAS  Google Scholar 

  100. Maletinska L.E., Blakely E.A., Bjornstad K.A., Deen D.F., Knoff L.J., Forte T.M. 2000. Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res. 60:2300–2303.

    PubMed  CAS  Google Scholar 

  101. Mandell L.R., Kadota R., Freeman C., Douglass E.C., Fontanesi J., Cohen M.E., et al. 1999. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group Phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 43:959–964.

    PubMed  CAS  Google Scholar 

  102. Marks J.E., Baglan R.J., Prassad S.C., Blank W.F. 1981. Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int. J. Radiat. Oncol. Biol. Phys. 7:243–252.

    PubMed  CAS  Google Scholar 

  103. Mastaglia F.L., McDonald W.I., Watson J.V., Yogendran K. 1976. Effects of x-radiation on the spinal cord: an experimental study of the morphological changes in central nerve fibres. Brain 99:101–122.

    PubMed  CAS  Google Scholar 

  104. Matsutani M., Nakamura O., Nagashima T., Asai A., Fujimaki T., Tanaka H., et al. 1994. Intra-operative radiation therapy for malignant brain tumors: rationale, method, and treatment results of cerebral glioblastomas. Acta. Neurochirurgica (Wien) 131:80–90.

    CAS  Google Scholar 

  105. McDermott M.W., Cosgrove G.R., Larson D.A., Sneed P.K., Gutin P.H. 1996. Interstitial brachytherapy for intracranial metastases. Neurosurgery Clinics of North America 7:485–495.

    PubMed  CAS  Google Scholar 

  106. McKenna W.G., Iliakis G., Weiss M.C., Bernhard E.J., Muschel R.J. 1991. Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and V-myc. Radiat. Res. 125:283–287.

    PubMed  CAS  Google Scholar 

  107. Mercer W.E., Shields M.T., Amin M., Sauve G.J., Appella E., Romano J.W., Ullrich S.J. 1990. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Nat. Acad. Sci. USA 87:6166–6170.

    PubMed  CAS  Google Scholar 

  108. Mickley G.A., Ferguson J.L., Mulvihill M.A., Nemeth T.J. 1989. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells. Neurotoxicol. Teratol. 11:385–393.

    PubMed  CAS  Google Scholar 

  109. Mocchetti I., Wrathall J.R. 1995. Neurotrophic factors in central nervous system trauma. J. Neurotrauma 12:853–870.

    PubMed  CAS  Google Scholar 

  110. Moreira R.C.M., Moreira M.V., Bueno J.L.O., Xavier G.F. 1997. Hippocampal lesions induced by ionizing radiation: a parametric study. J. Neurosci. Meth. 75:41–47.

    CAS  Google Scholar 

  111. Morgan D.O. 1995. Principles of CDK regulation. Nature 374:131–134.

    PubMed  CAS  Google Scholar 

  112. Morris G.M., Coderre J.A., Bywaters A., Whitehouse E., Hopewell J.W. 1996. Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat. Res. 146:313–320.

    PubMed  CAS  Google Scholar 

  113. Morshead C.M., van der Kooy D. 1992. Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J. Neurosci. 12:249–256.

    PubMed  CAS  Google Scholar 

  114. Moyer J.A., Wood A., Ay I., Finklestein S.P., Protter A.A. Basic fibroblast growth factor: a potential therapeutic agent for the treatment of acute neurodegenerative disorders and vascular insufficiency. Exp. Opin. Ther. Pat. 8:1425–1445.

    Google Scholar 

  115. Munro T.R. 1970. The relative radiosensitivity of the nucleus and cytoplasm of Chinese hamster fibroblasts. Radiat. Res. 42:451–470.

    PubMed  CAS  Google Scholar 

  116. Munzenrider J.E., Crowell C. 1994. Charged particles, in Radiation Oncology Technology and Biology (Mauch P.M., Loeffler J.S., eds.), W. B. Saunders, Philadelphia, PA, pp. 34–55.

    Google Scholar 

  117. Murnane J.P. 1995. Cell cycle regulation in response to DNA damage in mammalian cells: A historical perspective. Cancer and Metastasis Reviews 14:17–29.

    PubMed  CAS  Google Scholar 

  118. Murray A.W. 1992. Creative blocks: cell cycle checkpoints and feedback controls. Nature 359:599–604.

    PubMed  CAS  Google Scholar 

  119. Nelson D.F., Schoenfeld D., Weinstein A.S., Nelson J.S., Wasserman T., Goodman R.L., Carabell S. 1983. A randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery: preliminary results of an RTOG study. Int. J. Radiat. Oncol. Biol. Phys. 9:1143–1151.

    PubMed  CAS  Google Scholar 

  120. Oleson J.R. 1995. Hyperthermia from the clinic to the laboratory: a hypothesis. Int. J. Hyperthermia 11:315–322.

    PubMed  CAS  Google Scholar 

  121. Painter R.B. 1962. The direct effect of X-irradiation on HeLa S3 deoxyribonucleic acid synthesis. Radiat. Res. 16:846–859.

    PubMed  CAS  Google Scholar 

  122. Painter R.B., Robertson J.S. 1959. Effect of irradiation and theory of role of mitotic delay on the time course of labeling of HeLa S3 cells with tritiated thymidine. Radiat. Res. 11:206–217.

    PubMed  CAS  Google Scholar 

  123. Painter R.B., Young B.R. 1975. X-ray-induced inhibition of DNA synthesis in Chinese hamster ovary, human HeLa, and mouse L cells. Radiat. Res. 64:648–656.

    PubMed  CAS  Google Scholar 

  124. Parent J.M., Tada E., Fike J.R., Lowenstein D.H. 1999. Inhibition of dentate granuale cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J. Neurosci. 19:4508–4519.

    PubMed  CAS  Google Scholar 

  125. Patel S., Breneman J.C., Warnick R.E., Albright R.E., Jr., Tobler W.D., van Loveren H.R., Tew J.M., Jr.. 2000. Permanent iodine-125 interstitial implants for the treatment of recurrent glioblastoma multiforme. Neurosurgery 46:1123–1128.

    PubMed  CAS  Google Scholar 

  126. Peissner W., Kocher M., Treuer H., Gillardon F. 1999. Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res. Mol. Brain Res. 71: 61–68.

    PubMed  CAS  Google Scholar 

  127. Pirzkall A., Carol M., Lohr F., Hoss A., Wannenmacher M., Debus J. 2000. Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors Int. J. Radiat. Oncol. Biol. Phys. 48: 1371–1380.

    PubMed  CAS  Google Scholar 

  128. Pirzkall A., McKnight T.R., Graves E.E., Carol M.P., Sneed P.K., Wara W.M., et al. 2001. MR-spectroscopy guided target delineation for high-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 50:915–928.

    PubMed  CAS  Google Scholar 

  129. Prados MD, Scott C, Sandler H, Buckner JC, Phillips T, Schultz C, et al. 1999. A phase 3 randomized study of radiotherapy plus procarbazine, CCNU, and vincristine (PCV) with or without BUdR for the treatment of anaplastic astrocytoma: a preliminary report of RTOG 9404. Int. J. Radiat. Oncol. Biol. Phys. 45:1109–1115.

    PubMed  CAS  Google Scholar 

  130. Prados M.D., Wara W.M., Sneed P.K., McDermott M., Chang S.M., Rabbit J., et al. Phase III trial of accelerated hyperfractionation with or without difluoromethylornithine (DFMO) versus standard fractionated radiotherapy with or without DFMO for newly diagnosed patients with glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 49:71–77.

    Google Scholar 

  131. Puck T.T. 1958. Action of radiation on mammalian cells. III. Relationship between reproductive death and induction of chromosome anomalies by X-irradiation of euploid human cells in vitro. Proc. Nat. Acad. Sci. USA 44:772–780.

    PubMed  CAS  Google Scholar 

  132. Raff M.C. Social controls on cell survival and cell death. Nature 356:397–400.

    Google Scholar 

  133. Raff M.C., Barres B.A., Burne J.F., Coles H.S., Ishizaki Y., Jacobson M.D. 1993. Programmed cell death and control of cell survival: Lessons from the nervous system. Science 262:695–700.

    PubMed  CAS  Google Scholar 

  134. Raff M.C., Miller R.H., Noble M. 1983. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396.

    PubMed  CAS  Google Scholar 

  135. Raju U., Gumin G.J., Tofilon P.J. 2000. Radiation-induced transcription factor activation in the rat cerebral cortex. Int. J. Radiat. Biol. 76:1045–1053.

    PubMed  CAS  Google Scholar 

  136. Rampling R., Cruickshank G., Lewis A.D., Fitzsimmons S.A., Workman P. 1994. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 29:427–431.

    PubMed  CAS  Google Scholar 

  137. Reinhold H.S., Calvo W., Hopewell J.W., van der Berg A.P. 1990. Development of blood vessel-related radiation damage in the fimbria of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 18: 37–42.

    PubMed  CAS  Google Scholar 

  138. Rogulski K.R., Kim J.H., Kim S.H., Freytag S.O. 1997. Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum. Gene. Ther. 8: 73–85.

    PubMed  CAS  Google Scholar 

  139. Roman D.D., Sperduto P.W. 1995. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int. J. Radiat. Oncol. Biol. Phys. 31:983–998.

    PubMed  CAS  Google Scholar 

  140. Ruan H. Su H., Hu L., Lamborn K.R., Kan Y.W., Deen D.F. 2001. A hypoxia-regulated adeno-associated virus vector for cancer-specific gene therapy. Neoplasia 3:255–263.

    PubMed  CAS  Google Scholar 

  141. Sakakura C., Sweeney E.A., Shirahama T., Igarashi Y., Hakomori S., Tsujimoto H., et al. Overexpression of bax enhances the radiation sensitivity in human breast cancer cells. Surg. Today 27:90–93.

    Google Scholar 

  142. Salazar O.M., Rubin P., Feldstein M.L., Pizzutiello R. 1979. High dose radiation therapy in the treatment of malignant gliomas: final report. Int. J. Radiat. Oncol. Biol. Phys. 5:1733–1740.

    PubMed  CAS  Google Scholar 

  143. Salceda S., Caro J. 1997. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272:22,642–22,647.

    PubMed  CAS  Google Scholar 

  144. Schmidt J.V. Bradfield C.A. 1996. Ah receptor signaling pathways. Ann. Rev. Cell. Dev. Biol. 12:55–89.

    CAS  Google Scholar 

  145. Schultheiss T.E., Stephens L.C. 1992. Invited review: permanent radiation myelopathy. Br. J. Radiol. 65:737–753.

    PubMed  CAS  Google Scholar 

  146. Schwab M.E., Bartholdi D. 1996. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76:319–370.

    PubMed  CAS  Google Scholar 

  147. Scott C.B., Scarantino C., Urtasun R., Movsas B., Jones C.U., Simpson J.R., Fischbach A.J., Curran W.J., Jr. 1998. Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int. J. Radiat. Oncol. Biol. Phys. 40:51–55.

    PubMed  CAS  Google Scholar 

  148. Seegenschmiedt M.H., Klautke G., Grabenbauer G.G., Sauer R. 1995.Thermoradiotherapy for malignant brain tumors: review of biological and clinical studies. Endocurietherapy/Hyperthermia Oncology 11:201–221.

    Google Scholar 

  149. Selker R.G., Shapiro W.R., Green S., Burger P., Van Gilder J., Saris S., et al. 1995. A randomized trial of interstitial radiotherapy (IRT) boost for the treatment of newly diagnosed malignant glioma (glioblastoma multiforme, anaplastic astrocytoma, anaplastic oligodendroglioma, malignant mixed glioma): BTCG study 87-01 (abstract). Presented at Program of the Congress of Neurological Surgeons 45th Annual Meeting, San Francisco, CA.

    Google Scholar 

  150. Semenza G.L. 1998. Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J. Lab. Clin. Med. 131:207–214.

    PubMed  CAS  Google Scholar 

  151. Semenza G.L., Wang G.L. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12: 5447–5454.

    PubMed  CAS  Google Scholar 

  152. Seri B., Garcia-Verdugo J.M., McEwen B.S., Alvarez-Buylla A. 2001. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21:7153–7160.

    PubMed  CAS  Google Scholar 

  153. Shaw P. Bovey R., Tardy S., Sahli R., Sordat B., Costa J. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Nat. Acad. Sci. USA 89:4495–4499.

    PubMed  CAS  Google Scholar 

  154. Sheline G.E., Wara W.M., Smith V. 1980. Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 6:1215–1228.

    PubMed  CAS  Google Scholar 

  155. Shibata T., Akiyama N., Noda M., Sasai K., Hiraoka M. 1998. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes. Int. J. Radiat. Oncol. Biol. Phys. 42:913–916.

    PubMed  CAS  Google Scholar 

  156. Shibata T., Giaccia A.J., Laderoute K.R., Brown J.M. 1999. Tumor-specific gene therapy using hypoxia-responsive gene expression. AACR Proc. 40:632.

    Google Scholar 

  157. Shinohara C., Gobbel G.T., Lamborn K.R., Tada E., Fike J.R. 1997. Apoptosis in the subependyma of young adult rats after single and fractionated doses of X-rays. Cancer Res. 57:2694–2702.

    PubMed  CAS  Google Scholar 

  158. Shors T.J., Miesegaes G., Beylin A., Zhao M., Rydel T., Gould E. 2001. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376.

    PubMed  CAS  Google Scholar 

  159. Shrieve D.C., Alexander E., 3rd, Black P.M., Wen P.Y., Fine H.A., Kooy H.M., Loeffler J.S. 1999. Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J. Neurosurgery 90:72–77.

    CAS  Google Scholar 

  160. Shrieve D.C., Alexander E., 3rd, Wen P.Y., Fine H.A., Kooy H.M., Black P.M., Loeffler J.S. 1995. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36: 275–284.

    PubMed  CAS  Google Scholar 

  161. Siegal T., Pfeffer M.R. 1995. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability. Int. J. Radiat. Oncol. Biol. Phys. 31:57–64.

    PubMed  CAS  Google Scholar 

  162. Sienkiewicz Z.J., Saunders R.D., Butland B.K. 1992.Prenatal irradiation and spatial memory in mice: investigation of critical period. Int. J. Radiat. Biol. 62:211–219.

    PubMed  CAS  Google Scholar 

  163. Smith GC, Jackson SP. 1999. The DNA-dependent protein kinase. Genes Dev. 13:916–934.

    PubMed  CAS  Google Scholar 

  164. Sneed P.K., McDermott M.W., Gutin P.H. 1997. Interstitial brachytherapy procedures for brain tumors. Sem. Surg. Oncol. 13:157–166.

    CAS  Google Scholar 

  165. Sneed P.K., Stauffer P.R., McDermott M.W., Diederich C.J., Lamborn K.R., Prados M.D., et al. 1998. Survival benefit of hyperthermia in a prospective, randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 40:287–295.

    PubMed  CAS  Google Scholar 

  166. Squire L.R., Zola-Morgan S. 1991. The medial temporal lobe memory system. Science 253: 1380–1386.

    PubMed  CAS  Google Scholar 

  167. Stanfield B.B., Trice J.E. 1988. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp. Brain Res. 73:399–406.

    Google Scholar 

  168. Stuschke M., Thames H.D. 1997. Hyperfractionated radiotherapy of human tumors: overview of the randomized clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 37:259–267.

    PubMed  CAS  Google Scholar 

  169. Su L.N., Little J.B. 1993. Prolonged cell cycle delay in radioresistant human cell lines transfected with activated ras oncogene and/or Simian Virus 40 T-antigen. Rad. Res. 133:73–79.

    CAS  Google Scholar 

  170. Sutherland R.M. 1998. Tumor hypoxia and gene expression-implications for malignant progression and therapy. Acta. Oncologica 37:567–574.

    PubMed  CAS  Google Scholar 

  171. Tada E., Parent J.M., Lowenstein D.H., Fike J.R. 2000. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99:33–41.

    PubMed  CAS  Google Scholar 

  172. Tada E., Yang C., Gobbel G.T., Lamborn K.R., Fike J.R. 1999. Long term impairment of subependymal repopulation following damage by ionizing irradiation. Exptl. Neurol. 160:66–77.

    CAS  Google Scholar 

  173. Tashiro S., Walter J., Shinohara A., Kamada N., Cremer T. 2000. Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J. Cell Biol. 150:283–291.

    PubMed  CAS  Google Scholar 

  174. Temple S., Alvarez-Buylla A. 1999. Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9:135–141.

    PubMed  CAS  Google Scholar 

  175. Thomlinson R.H., Gray L.H. 1955. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9:539–549.

    PubMed  CAS  Google Scholar 

  176. Tsuzuki T., Fujii Y., Sakumi K., Tominaga Y., Nakao K., Sekiguchi M., et al. 1996. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93:6236–6240.

    PubMed  CAS  Google Scholar 

  177. Urtasun R., Felstein M.L., Partington J., Tanasichuk H., Miller J.D.R., Russell D.B., et al. 1982. Radiation and nitroimidazoles in supratentorial high grade gliomas: a second clinical trial. Br. J Cancer 46:101–108.

    PubMed  CAS  Google Scholar 

  178. van der Kogel AJ. 1991. Central nervous system injury in small animal models, in Radiation Injury to the Nervous System (Gutin R.H., Leibel S.A., Sheline G.E. eds), Raven Press, Ltd., New York, pp. 91–111.

    Google Scholar 

  179. van der Maazen R.W., Kleiboer B.J., Verhagen I., van der Kogel A.J. 1991. Irradiation in vitro discriminates between different O-2A progenitor cell subpopulations in the perinatal central nervous system of rats. Radiat. Res. 128:64–72.

    PubMed  Google Scholar 

  180. van der Maazen R.W., Kleiboer B.J., Verhagen I., van der Kogel A.J. 1993. Repair capacity of adult rat glial progenitor cells determined by an in vitro clonogenic assay after in vitro or in vivo fractionated irradiation. Int. J. Radiat. Biol. 63:661–666.

    PubMed  Google Scholar 

  181. van der Maazen R.W., Verhagen I., Kleiboer B.J., van der Kogel A.J. 1991. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay. Radiother. Oncol. 20:258–264, 1991.

    PubMed  Google Scholar 

  182. Vaupel P.W. 1993.Oxygenation of solid tumors, in Drug Resistance in Oncology (Teicher B.A. ed.),Marcel Dekker, New York, pp. 53–85.

    Google Scholar 

  183. Walker M.D. Strike T.A., Sheline G.E. 1979. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 5:1725–1731.

    PubMed  CAS  Google Scholar 

  184. Wallace R.B., Graziadei R., Werboff J. 1981. Behavioral correlates of focal hippocampal x-irradiation in rats II. Behavior related to adaptive function in a natural setting. Exp. Brain Res. 43:207–212.

    PubMed  CAS  Google Scholar 

  185. Wallner K.E., Galicich J.H., Krol G., Arbit E., Malkin M.G. 1989. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Rad.Oncol. Biol. Phys. 16:1405–1409.

    CAS  Google Scholar 

  186. Weinert T.A., Hartwell L.H. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322.

    PubMed  CAS  Google Scholar 

  187. Wen P.Y., Alexander E., 3rd, Black P.M., Fine H.A., Riese N., Levin J.M., Coleman C.N., Loeffler J.S. 1994. Long term results of stereotactic brachytherapy used in the initial treatment of patients with glioblastomas. Cancer 73:3029–3036.

    PubMed  CAS  Google Scholar 

  188. Wenger R.H., Gassman M. 1997. Oxygen(es) and the hypoxia-inducible factor-1. J. Biol. Chem. 378:609–616.

    CAS  Google Scholar 

  189. Wouters B.G., Brown J.M. 1997. Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat. Res. 147: 541–550.

    PubMed  CAS  Google Scholar 

  190. Yeh H.J., Ruit K.G., Wang Y.X., Parks W.C., Snider W.D., Deuel T.F. 1991. PDGF A-chain gene is expressed by mammalian neurons during development and in maturity. Cell 64:209–216.

    PubMed  CAS  Google Scholar 

  191. Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347.

    PubMed  CAS  Google Scholar 

  192. Yuan J., Yankner B.A. 2000. Apoptosis in the nervous system. Nature 407:802–809.

    PubMed  CAS  Google Scholar 

  193. Yuan S.S., Lee S.Y., Chen G., Song M., Tomlinson G.E., Lee E.Y. 1999. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547–3551.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gupta, N., Fike, J.R., Sneed, P.K., Tofilon, P.J., Deen, D.F. (2005). Radiation Biology and Therapy of Tumors of the Central Nervous System. In: Ali-Osman, F. (eds) Brain Tumors. Contemporary Cancer Research. Humana Press. https://doi.org/10.1385/1-59259-843-9:279

Download citation

Publish with us

Policies and ethics