Skip to main content

Genetic Modeling of Glioma Formation in Mice

  • Chapter
Brain Tumors

Abstract

In humans, gliomas are the most common form of primary brain tumors. These tumors are traditionally categorized, based on their histological features, into several groups with the majority displaying either astrocytic or oligodendroglial differentiation. Both groups can appear as high-grade (malignant) or low-grade forms of tumor. In addition, tumors present that carry mixed features of oligodendroglial and astrocytic components (159). To date, a wide variety of genetic and environmental factors have been found to represent a causal link in gliomagenesis. One of the best established environmental causes of human gliomas is ionizing radiation, which was demonstrated in follow-up studies of patients who received treatment for acute lymphocytic leukemia (ALL), craniopharyngioma, or pituitary adenoma during childhood (21,293). Furthermore, patients with certain enzyme deficiencies are particularly susceptible to develop gliomas upon exposure to particular chemicals (87,237). Patients with neurofibromatosis I and II (137,143,159,163), Li-Fraumeni (176), and Turcot’s syndrome (115) are predisposed to develop high-grade astrocytoma. An increased tumor incidence, particularly lymphomas, but also gliomas and medulloblastomas were described in ataxia-teleangiectasia (200). Some familial gliomas are related to mutations in TP53 (161,169,185), CHK2 (18, 288) or the p16 INK4A/p14ARF locus (8,270); others exist in the absence of a known genetic syndrome (108,182). Familial gliomas represent only a small fraction of all gliomas; the majority of gliomas are sporadic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasieva T.A., Pekarik V., Grazia D’Angelo M., Klein M.A., Voigtlander T., Stocking C., Aguzzi A. 2001. Insertional mutagenesis of preneoplastic astrocytes by Moloney murine leukemia virus. J. Neurovirol. 7:169–181.

    PubMed  CAS  Google Scholar 

  2. Alderson L.M., Castleberg R.L., Harsh G.R.T., Louis D.N., Henson J.W. 1995. Human gliomas with wild-type p53 express bcl-2. Cancer Res. 55:999–1001.

    PubMed  CAS  Google Scholar 

  3. Aoki M., Batista O., Bellacosa A., Tsichlis P., Vogt P.K. 1998. The akt kinase: molecular determinants of oncogenicity. Proc. Natl. Acad. Sci. USA 95:14,950–14,955.

    PubMed  CAS  Google Scholar 

  4. Aoki M., Blazek E., Vogt P.K. 2001. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl. Acad. Sci. USA 98:136–141.

    PubMed  CAS  Google Scholar 

  5. Arch E. M., Goodman B.K., Van Wesep R.A., Liaw D., Clarke K., Parsons R, et al. 1997. Deletion of PTEN in a patient with Bannayan-Riley-Ruvalcaba syndrome suggests allelism with Cowden disease. Am. J. Med. Genet. 71:489–493.

    PubMed  CAS  Google Scholar 

  6. Auger K.R., Carpenter C.L., Shoelson S.E., Piwnica-Worms H., Cantley L.C. 1992. Polyoma virus middle T antigen-pp60c-src complex associates with purified phosphatidylinositol 3-kinase in vitro. J. Biol. Chem. 267:5408–5415.

    PubMed  CAS  Google Scholar 

  7. Backman S.A., Stambolic V., Suzuki A., Haight J., Elia A., Pretorius J., et al. 2001. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat. Genet. 29:396–403.

    PubMed  CAS  Google Scholar 

  8. Bahuau M., Vidaud D., Jenkins R.B., Bieche I., Kimmel D.W., Assouline B., et al. 1998. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res. 58: 2298–2303.

    PubMed  CAS  Google Scholar 

  9. Barry O.P., Kazanietz M.G. 2001. Protein kinase C isozymes, novel phorbol ester receptors and cancer chemotherapy. Curr. Pharm. Des. 7:1725–1744.

    PubMed  CAS  Google Scholar 

  10. Bar-Sagi D., Hall A. 2000. Ras and Rho GTPases: a family reunion. Cell 103:227–238.

    PubMed  CAS  Google Scholar 

  11. Bartek J., Falck J., Lukas J. 2001. CHK2 kinase—a busy messenger. Nat. Rev. Mol. Cell Biol. 2:877–886.

    PubMed  CAS  Google Scholar 

  12. Bates P., Rong L., Varmus H.E., Young J.A., Crittenden L.B. 1998. Genetic mapping of the cloned subgroup A avian sarcoma and leukosis virus receptor gene to the TVA locus. J. Virol. 72:2505–2508.

    PubMed  CAS  Google Scholar 

  13. Bates P., Young J.A., Varmus H.E. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74:1043–1051.

    PubMed  CAS  Google Scholar 

  14. Bates S., Phillips A.C., Clark P.A., Stott F., Peters G., Ludwig R.L., Vousden K.H. 1998. p14ARF links the tumour suppressors RB and p53. Nature 395:124–125.

    PubMed  CAS  Google Scholar 

  15. Begemann M., Kashimawo S.A., Choi Y.A., Kim S., Christiansen K.M., Duigou G., et al. 1996. Inhibition of the growth of glioblastomas by CGP 41251, an inhibitor of protein kinase C, and by a phorbol ester tumor promoter. Clin. Cancer Res. 2:1017–1030.

    PubMed  CAS  Google Scholar 

  16. Begemann M., Kashimawo S.A., Heitjan D.F., Schiff P.B., Bruce J.N., Weinstein I.B.. 1998. Treatment of human glioblastoma cells with the staurosporine derivative CGP 41251 inhibits CDC2 and CDK2 kinase activity and increases radiation sensitivity. Anticancer Res. 18:2275–2282.

    PubMed  CAS  Google Scholar 

  17. Begemann M., Kashimawo S.A., Lunn R.M., Delohery T., Choi Y.J., Kim S., et al. 1998. Growth inhibition induced by Ro 31-8220 and calphostin C in human glioblastoma cell lines is associated with apoptosis and inhibition of CDC2 kinase. Anticancer Res. 18:3139–3152.

    PubMed  CAS  Google Scholar 

  18. Bell D.W., Varley J.M., Szydlo T.E., Kang D.H., Wahrer D.C., Shannon K.E., et al. 1999. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531.

    PubMed  CAS  Google Scholar 

  19. Bellacosa A., Testa J.R., Staal S.P., Tsichlis P.N. 1991. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254:274–277.

    PubMed  CAS  Google Scholar 

  20. Benzil D.L., Finkelstein S.D., Epstein M.H., Finch P.W. 1992. Expression pattern of alpha-protein kinase C in human astrocytomas indicates a role in malignant progression. Cancer Res. 52:2951–2956.

    PubMed  CAS  Google Scholar 

  21. Bhatia S., Sklar C. 2002. Second Cancers in survivors of childhood cancers. Nature Reviews Cancer 2:124–132.

    PubMed  Google Scholar 

  22. Biernat W., Aguzzi A., Sure U., Grant J.W., Kleihues P., Hegi M.E. 1995. Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J. Neuropathol. Exp. Neurol. 54:651–656.

    PubMed  CAS  Google Scholar 

  23. Biernat W., Kleihues P., Yonekawa Y., Ohgaki H. 1997. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J. Neuropathol. Exp. Neurol. 56:180–185.

    PubMed  CAS  Google Scholar 

  24. Biggs W.H. 3rd, Meisenhelder J., Hunter T., Cavenee W.K., Arden K.C. 1999. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96:7421–7426.

    PubMed  CAS  Google Scholar 

  25. Bigner S.H., Bjerkvig R., Laerum O.D. 1985. DNA content and chromosomal composition of malignant human gliomas. Neurol. Clin. 3:769–784.

    PubMed  CAS  Google Scholar 

  26. Bigner S.H., Rasheed B.K., Wiltshire R., McLendon R.E. 1999. Morphologic and molecular genetic aspects of oligodendroglial neoplasms. Neuro-oncol. 1:52–60.

    PubMed  CAS  Google Scholar 

  27. Bjornson C.R., Rietze R.L., Reynolds B.A., Magli M.C., Vescovi A.L. 1999. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537.

    PubMed  CAS  Google Scholar 

  28. Boerman R.H., Anderl K., Herath J., Borell T., Johnson N., Schaeffer-Klein J., et al. 1996. The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J. Neuropathol. Exp. Neurol. 55: 973–981.

    PubMed  CAS  Google Scholar 

  29. Bogler O., Huang H.J., Kleihues P., Cavenee W.K. 1995. The p53 gene and its role in human brain tumors. Glia 15:308–327.

    PubMed  CAS  Google Scholar 

  30. Bredel M., Pollack I.F., Hamilton R.L., James C.D. 1999. Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin. Cancer Res. 5:1786–1792.

    PubMed  CAS  Google Scholar 

  31. Brown E.J., Beal P.A., Keith C.T., Chen J., Shin T.B., Schreiber S.L. 1995. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377:441–446.

    PubMed  CAS  Google Scholar 

  32. Brown E.J., Schreiber S.L. 1996. A signaling pathway to translational control. Cell 86: 517–520.

    PubMed  CAS  Google Scholar 

  33. Brownawell A.M., Kops G.J., Macara I.G., Burgering B.M. 2001. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell Biol. 21:3534–3546.

    PubMed  CAS  Google Scholar 

  34. Brunet A., Bonni A., Zigmond M.J., Lin M.Z., Juo P., Hu L.S., et al. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–88.

    PubMed  CAS  Google Scholar 

  35. Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J.P., et al. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501.

    PubMed  CAS  Google Scholar 

  36. Burrows R.C., Lillien L., Levitt P. 2000. Mechanisms of progenitor maturation are conserved in the striatum and cortex. De. Neurosci. 22:7–15.

    CAS  Google Scholar 

  37. Burrows R.C., Wancio D., Levitt P., Lillien L. 1997. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19: 251–267.

    PubMed  CAS  Google Scholar 

  38. Burton E.C., Lamborn K.R., Forsyth P., Scott J., O’Campo J., Uyehara-Lock J.,et al. 2002. Aberrant p53, mdm2, and Proliferation Differ in Glioblastomas from Long-Term Compared with Typical Survivors(1). Clin. Cancer. Res. 8:180–187.

    PubMed  CAS  Google Scholar 

  39. Buschges R., Weber R.G., Actor B., Lichter P., Collins V.P., Reifenberger G. 1999. Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol. 9: 435–42; discussion 432–433.

    PubMed  CAS  Google Scholar 

  40. Calver A.R., Hall A.C., Yu W.P., Walsh F.S., Heath J.K., Betsholtz C., Richardson W.D. 1998. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20:869–882.

    PubMed  CAS  Google Scholar 

  41. Campbell K.S., Ogris E., Burke B., Su W., Auger K.R., Druker B.J., et al. 1994. Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc. Natl. Acad. Sci. USA 91:6344–6348.

    PubMed  CAS  Google Scholar 

  42. Campomenosi P., Ottaggio L., Moro F., Urbini S., Bogliolo M., Zunino A., et al. 1996. Study on aneuploidy and p53 mutations in astrocytomas. Cancer Genet. Cytogenet. 88:95–102.

    PubMed  CAS  Google Scholar 

  43. Cardone M.H., Roy N., Stennicke H.R., Salvesen G.S., Franke T.F., Stanbridge E., et al. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321.

    PubMed  CAS  Google Scholar 

  44. Carpenter C.L., Auger K.R., Chanudhuri M., Yoakim M., Schaffhausen B., Shoelson S., Cantley L.C.. 1993. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J. Biol. Chem. 268:9478–9483.

    PubMed  CAS  Google Scholar 

  45. Caspari T. 2000. How to activate p53. Curr. Biol. 10:R315–R317.

    PubMed  CAS  Google Scholar 

  46. Chakravarti A., Delaney M.A., Noll E., Black P.M., Loeffler J.S., Muzikansky A., Dyson N.J. 2001. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin. Cancer Res. 7:2387–2395.

    PubMed  CAS  Google Scholar 

  47. Chan D.W., Son S.C., Block W., Ye R., Khanna K.K., Wold M.S., et al. 2000. Purification and characterization of ATM from human placenta. A manganese-dependent, wortmannin-sensitive serine/threonine protein kinase. J. Biol. Chem. 275:7803–7810.

    PubMed  CAS  Google Scholar 

  48. Chan T.A., Hermeking H., Lengauer C., Kinzler K.W., Vogelstein B. 1999. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620.

    PubMed  CAS  Google Scholar 

  49. Chan T.O., Rittenhouse S.E., Tsichlis P.N. 1999. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68:965–1014.

    PubMed  CAS  Google Scholar 

  50. Chaturvedi P., Eng W.K., Zhu Y., Mattern M.R., Mishra R., Hurle M.R., et al. 1999. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18:4047–4054.

    PubMed  CAS  Google Scholar 

  51. Chellappan S.P., Hiebert S., Mudryj M., Horowitz J.M., Nevins J.R. 1991. The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061.

    PubMed  CAS  Google Scholar 

  52. Cheney I.W., Neuteboom S.T., Vaillancourt M.T., Ramachandra M., Bookstein R. 1999. Adenovirus-mediated gene transfer of MMAC1/PTEN to glioblastoma cells inhibits S phase entry by the recruitment of p27Kip1 into cyclin E/CDK2 complexes. Cancer Res. 59:2318–2323.

    PubMed  CAS  Google Scholar 

  53. Cheng J.Q., Godwin A.K., Bellacosa A., Taguchi T., Franke T.F., Hamilton T.C., et al. 1992. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. USA 89:9267–9271.

    PubMed  CAS  Google Scholar 

  54. Cheng M., Olivier P., Diehl J.A., Fero M., Roussel M.F., Roberts J.M., Sherr C.J. 1999. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. Embo. J. 18:1571–1583.

    PubMed  CAS  Google Scholar 

  55. Chin L., Merlino G., DePinho R.A. 1998. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 12:3467–3481.

    PubMed  CAS  Google Scholar 

  56. Chin L., Tam A., Pomerantz J., Wong M., Holash J., Bardeesy N., et al. 1999. Essential role for oncogenic Ras in tumour maintenance. Nature 400:468–472.

    PubMed  CAS  Google Scholar 

  57. Cichowski K., Jacks T.. 2001. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604.

    PubMed  CAS  Google Scholar 

  58. Clarke A.R., Maandag E.R., van Roon M., van der Lugt N.M., van der Valk M., Hooper M.L., et al. 1992. Requirement for a functional Rb-1 gene in murine development. Nature 359:328–30.

    PubMed  CAS  Google Scholar 

  59. Clarke D.L., Johansson C.B., Wilbertz J., Veress B., Nilsson E., Karlstrom H., Lendahl U., Frisen J. 2000. Generalized potential of adult neural stem cells. Science 288:1660–1663.

    PubMed  CAS  Google Scholar 

  60. Collado M., Medema R.H., Garcia-Cao I., Dubuisson M.L., Barradas M., J. Glassford, et al. 2000. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J. Biol. Chem. 275:21,960–21,968.

    PubMed  CAS  Google Scholar 

  61. Costello J.F., Berger M.S., Huang H.S., Cavenee W.K. 1996. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 56:2405–2410.

    PubMed  CAS  Google Scholar 

  62. Costello J.F., Plass C., Arap W., Chapman V.M., Held W.A., Berger M.S., et al. 1997. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res 57:1250–1254.

    PubMed  CAS  Google Scholar 

  63. Crafts D., Wilson C.B. 1977. Animal models of brain tumors. Natl. Cancer Inst. Monogr 46: 11–17.

    PubMed  CAS  Google Scholar 

  64. Cross D.A., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789.

    PubMed  CAS  Google Scholar 

  65. Dai C., Celestino J.C., Okada Y., Louis D.N., Fuller G.N., Holland E.C. 2001. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15:1913–1925.

    PubMed  CAS  Google Scholar 

  66. Datta K., Bellacosa A., Chan T.O., Tsichlis P.N. 1996. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J. Biol. Chem. 271:30,835–30,839.

    PubMed  CAS  Google Scholar 

  67. Datta S.R., Brunet A., Greenberg M.E. 1999. Cellular survival: a play in three Akts. Genes Dev. 13:2905–2927.

    PubMed  CAS  Google Scholar 

  68. Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241.

    PubMed  CAS  Google Scholar 

  69. Davies M.A., Lu Y., Sano T., Fang X., Tang P., LaPushin R., et al. 1998. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res. 58: 5285–5290.

    PubMed  CAS  Google Scholar 

  70. Davis R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239–252.

    PubMed  CAS  Google Scholar 

  71. De Vivo I., Gertig D.M., Nagase S., Hankinson S.E., O’Brien R., Speizer F.E., et al. 2000. Novel germline mutations in the PTEN tumour suppressor gene found in women with multiple cancers. J. Med. Genet. 37:336–341.

    PubMed  Google Scholar 

  72. Delcommenne M., Tan C., Gray V., Rue L., Woodgett J., Dedhar S. 1998. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 95:11,211–11,216.

    PubMed  CAS  Google Scholar 

  73. Di Rocco F., Carroll R.S., Zhang J., Black P.M.. 1998. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42:341–346.

    PubMed  Google Scholar 

  74. Diehl J.A., Cheng M., Roussel M.F., Sherr C.J. 1998. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–3511.

    PubMed  CAS  Google Scholar 

  75. Dilworth S.M., Brewster C.E., Jones M.D., Lanfrancone L., Pelicci G., Pelicci P.G. 1994. Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature 367: 87–90.

    PubMed  CAS  Google Scholar 

  76. Ding H., Roncari L., Shannon P., Wu X., Lau N., Karaskova J., et al. 2001. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 61:3826–3836.

    PubMed  CAS  Google Scholar 

  77. Ding H., Shannon P., Lau N., Wu X., Roncari L., Baldwin R.L., et al. 2003. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 63:1106–1113.

    PubMed  CAS  Google Scholar 

  78. Doetsch F., Caille I., Lim D.A., Garcia-Verdugo J.M., Alvarez-Buylla A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

    PubMed  CAS  Google Scholar 

  79. Doetsch F., Garcia-Verdugo J.M., Alvarez-Buylla A. 1999. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 96:11,619–11,624.

    PubMed  CAS  Google Scholar 

  80. Donehower L.A., Harvey M., Slagle B.L., McArthur M.J., Montgomery C.A. Jr., Butel J.S., Bradley A. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221.

    PubMed  CAS  Google Scholar 

  81. Duerr E.M., Rollbrocker B., Hayashi Y., Peters N., Meyer-Puttlitz B., Louis D.N., et al. 1998. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259–2264.

    PubMed  CAS  Google Scholar 

  82. Ekstrand A.J., James C.D., Cavenee W.K., Seliger B., Pettersson R.F., Collins V.P. 1991. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 51:2164–2172.

    PubMed  CAS  Google Scholar 

  83. Ekstrand A.J., Longo N., Hamid M.L., Olson J.J., Liu L., Collins V.P., James C.D. 1994. Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9:2313–2320.

    PubMed  CAS  Google Scholar 

  84. Ekstrand A.J., Sugawa N., James C.D., Collins V.P. 1992. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N-and/or C-terminal tails. Proc. Natl. Acad. Sci. USA 89:4309–4313.

    PubMed  CAS  Google Scholar 

  85. El-Deiry W.S. 2001. Akt takes centre stage in cell-cycle deregulation. Nat. Cell Biol. 3: E71–E73.

    PubMed  CAS  Google Scholar 

  86. El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., et al. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.

    PubMed  CAS  Google Scholar 

  87. Elexpuru-Camiruaga J., Buxton N., Kandula V., Dias P.S., Campbell D., McIntosh J., et al. 1995. Susceptibility to astrocytoma and meningioma: influence of allelism at glutathione S-transferase (GSTT1 and GSTM1) and cytochrome P-450 (CYP2D6) loci. Cancer Res. 55:4237–4239.

    PubMed  CAS  Google Scholar 

  88. Falck J., Mailand N., Syljuasen R.G., Bartek J., Lukas J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847.

    PubMed  CAS  Google Scholar 

  89. Federspiel M.J., Bates P., Young J.A., Varmus H.E., Hughes S.H. 1994. A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc. Natl. Acad. Sci. USA 91:11,241–11,245.

    PubMed  CAS  Google Scholar 

  90. Feldkamp M.M., Lala P., Lau N., Roncari L., Guha A. 1999. Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45:1442–1453.

    PubMed  CAS  Google Scholar 

  91. Fisher G.H., Orsulic S., Holland E., Hively W.P., Li Y., Lewis B.C., et al. 1999. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18: 5253–5260.

    PubMed  CAS  Google Scholar 

  92. Fisher G.H., Wellen S.L., Klimstra D., Lenczowski J.M., Tichelaar J.W., Lizak M.J., et al. 2001. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15:3249–3262.

    PubMed  CAS  Google Scholar 

  93. Fleming T.P., Saxena A., Clark W.C., Robertson J.T., Oldfield E.H., Aaronson S.A., Ali I.U. 1992. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res. 52:4550–4553.

    PubMed  CAS  Google Scholar 

  94. Flemington E.K., Speck S.H., Kaelin W.G. Jr. 1993. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 90: 6914–6918.

    PubMed  CAS  Google Scholar 

  95. Franke T.F., Yang S.I., Chan T.O., Datta K., Kazlauskas A., Morrison D.K., et al. 1995. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736.

    PubMed  CAS  Google Scholar 

  96. Fricker-Gates R.A., Winkler C., Kirik D., Rosenblad C., Carpenter M.K., Bjorklund A. 2000. EGF infusion stimulates the proliferation and migration of embryonic progenitor cells transplanted in the adult rat striatum. Exp. Neurol. 165:237–247.

    PubMed  CAS  Google Scholar 

  97. Frodin M., Gammeltoft S. 1999. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell Endocrinol. 151:65–77.

    PubMed  CAS  Google Scholar 

  98. Fruttiger M., Karlsson L., Hall A.C., Abramsson A., Calver A.R., Bostrom H., et al. 1999. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126: 457–467.

    PubMed  CAS  Google Scholar 

  99. Fuchs S.Y., Adler V., Buschmann T., Wu X., Ronai Z. 1998. Mdm2 association with p53 targets its ubiquitination. Oncogene 17:2543–2547.

    PubMed  CAS  Google Scholar 

  100. Fueyo J., Gomez-Manzano C., Bruner J.M., Saito Y., Zhang B., Zhang W., et al. 1996. Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene 13:1615–1619.

    PubMed  CAS  Google Scholar 

  101. Galli R., Borello U., Gritti A., Minasi M.G., Bjornson C., Coletta M., et al. 2000. Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 3:986–991.

    PubMed  CAS  Google Scholar 

  102. Gesbert F., Sellers W.R., Signoretti S., Loda M., Griffin J.D. 2000. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J. Biol. Chem. 275:39,223–39,230.

    PubMed  CAS  Google Scholar 

  103. Gingras A.C., Gygi S.P., Raught B., Polakiewicz R.D., Abraham R.T., Hoekstra M.F., et al. 1999. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13:1422–1437.

    PubMed  CAS  Google Scholar 

  104. Gomez-Manzano C., Mitlianga P., Fueyo J., Lee H.Y., Hu M., Spurgers K.B., et al. 2001. Transfer of E2F-1 to human glioma cells results in transcriptional up-regulation of Bcl-2. Cancer Res. 61:6693–6697.

    PubMed  CAS  Google Scholar 

  105. Gomori E., Doczi T., Pajor L., Matolcsy A. 1999. Sporadic p53 mutations and absence of ras mutations in glioblastomas. Acta. Neurochir. (Wien) 141:593–599.

    CAS  Google Scholar 

  106. Gottschalk A.R., Basila D., Wong M., Dean N.M., Brandts C.H., Stokoe D., Haas-Kogan D.A. 2001. p27Kip1 is required for PTEN-induced G1 growth arrest. Cancer Res. 61:2105–2111.

    PubMed  CAS  Google Scholar 

  107. Graff J.R., Konicek B.W., McNulty A.M., Wang Z., Houck K., Allen S., et al. 2000. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J. Biol. Chem. 275:24,500–24,505.

    PubMed  CAS  Google Scholar 

  108. Grossman S.A., Osman M., Hruban R., Piantadosi S. 1999. Central nervous system cancers in first-degree relatives and spouses. Cancer Invest. 17:299–308.

    PubMed  CAS  Google Scholar 

  109. Groszer M., Erickson R., Scripture-Adams D.D., Lesche R., Trumpp A., Zack J.A, et al. 2001. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189.

    PubMed  CAS  Google Scholar 

  110. Groth A., Weber J.D., Willumsen B.M., Sherr C.J., Roussel M.F. 2000. Oncogenic Ras induces p19ARF and growth arrest in mouse embryo fibroblasts lacking p21Cip1 and p27Kip1 without activating cyclin D-dependent kinases. J. Biol. Chem. 275:27,473–27,480.

    PubMed  CAS  Google Scholar 

  111. Guha A., Dashner K., Black P.M., Wagner J.A., Stiles C.D. 1995. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int. J. Cancer 60: 168–173.

    PubMed  CAS  Google Scholar 

  112. Guha A., Feldkamp M.M., Lau N., Boss G., Pawson A. 1997. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15:2755–2765.

    PubMed  CAS  Google Scholar 

  113. Guha C., Guha U., Tribius S., Alfieri A., Casper D., Chakravarty P., et al. 2000. Antisense ATM gene therapy: a strategy to increase the radiosensitivity of human tumors. Gene Ther. 7:852–858.

    PubMed  CAS  Google Scholar 

  114. Hahn W.C., Counter C.M., Lundberg A.S., Beijersbergen R.L., Brooks M.W., Weinberg R.A.. 1999. Creation of human tumour cells with defined genetic elements. Nature 400:464–468.

    PubMed  CAS  Google Scholar 

  115. Hamilton S.R., Liu B., Parsons R.E., Papadopoulos N., Jen J., Powell S.M., et al. 1995. The molecular basis of Turcot’s syndrome. N. Engl. J. Med. 332:839–847.

    PubMed  CAS  Google Scholar 

  116. Hann B., Balmain A. 2001. Building ‘validated’ mouse models of human cancer. Curr. Opin. Cell Biol. 13:778–784.

    PubMed  CAS  Google Scholar 

  117. Harlow E. 1992. Retinoblastoma. For our eyes only. Nature 359:270–271.

    PubMed  CAS  Google Scholar 

  118. Harvey M., McArthur M.J., Montgomery C.A. Jr., Bradley A., Donehower L.A. 1993. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. Faseb J. 7:938–943.

    PubMed  CAS  Google Scholar 

  119. Haupt Y., Maya R., Kazaz A., Oren M. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.

    PubMed  CAS  Google Scholar 

  120. Hayakawa J., Ohmichi M., Kurachi H., Kanda Y., Hisamoto K., Nishio Y., et al. 2000. Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res. 60:5988–5994.

    PubMed  CAS  Google Scholar 

  121. Heldin C.H., Westermark B. 1999. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283–1316.

    PubMed  CAS  Google Scholar 

  122. Hermanson M., Funa K., Hartman M., Claesson-Welsh L., Heldin C.H., Westermark B., Nister M. 1992. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 52:3213–3219.

    PubMed  CAS  Google Scholar 

  123. Hesselager G., Uhrbom L., Westermark B., Nister M. 2003. Complementary effects of platelet-derived growth factor autocrine stimulation and p53 or Ink4a-Arf deletion in a mouse glioma model.Cancer Res. 63: 4305–4309.

    PubMed  CAS  Google Scholar 

  124. Hirao A., Kong Y.Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., et al. 2000. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827.

    PubMed  CAS  Google Scholar 

  125. Hirose Y., Berger M.S., Pieper R.O. 2001. Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. 61:5843–5849.

    PubMed  CAS  Google Scholar 

  126. Hogan B., Costantini F., Lacy E. 1986. Manipulating the Mouse Embryo, CSH Press, Cold Spring Harbor, New York.

    Google Scholar 

  127. Holland E.C. 2000. A mouse model for glioma: biology, pathology, and therapeutic opportunities. Toxicol. Pathol. 28:171–177.

    PubMed  CAS  Google Scholar 

  128. Holland E.C., Celestino J., Dai C., Schaefer L., Sawaya R.E., Fuller G.N. 2000. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25:55–57.

    PubMed  CAS  Google Scholar 

  129. Holland E.C., Hively W.P., DePinho R.A., Varmus H.E. 1998. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 12:3675–3685.

    PubMed  CAS  Google Scholar 

  130. Holland E.C., Hively W.P., Gallo V., Varmus H.E. 1998. Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev. 12:3644–3649.

    PubMed  CAS  Google Scholar 

  131. Holland E.C., Li Y., Celestino J., Dai C., Schaefer L., Sawaya R.A., Fuller G.N. 2000. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am. J. Pathol. 157:1031–1037.

    PubMed  CAS  Google Scholar 

  132. Holland E.C., Varmus H.E. 1998. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc. Natl. Acad. Sci. USA 95:1218–1223.

    PubMed  CAS  Google Scholar 

  133. Holliday R. 1992. Of mice and men. Nature 360:270–271.

    Google Scholar 

  134. Humphrey P.A., Wong A.J., Vogelstein B., Friedman H.S., Werner M.H., Bigner D.D., Bigner S.H. 1988. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res. 48:2231–2238.

    PubMed  CAS  Google Scholar 

  135. Ichaso N., Dilworth S.M. 2001. Cell transformation by the middle T-antigen of polyoma virus. Oncogene 20:7908–7916.

    PubMed  CAS  Google Scholar 

  136. Ichimura K., Bolin M.B., Goike H.M., Schmidt E.E., Moshref A., Collins V.P. 2000. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res. 60:417–424.

    PubMed  CAS  Google Scholar 

  137. Ichimura K., Schmidt E.E., Goike H.M., Collins V.P. 1996. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065–1672.

    PubMed  CAS  Google Scholar 

  138. Ilgren E.B., Kinnier-Wilson L.M., Stiller C.A. 1985. Gliomas in neurofibromatosis: a series of 89 cases with evidence for enhanced malignancy in associated cerebellar astrocytomas. Pathol. Annu. 20(Pt 1): 331–358.

    PubMed  Google Scholar 

  139. Ishida S., Huang E., Zuzan H., Spang R., Leone G., West M., Nevins J.R. 2001. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell Biol. 21:4684–4699.

    PubMed  CAS  Google Scholar 

  140. Jacks T., Fazeli A., Schmitt E.M., Bronson R.T., Goodell M.A., Weinberg R.A. 1992. Effects of an Rb mutation in the mouse. Nature 359:295–300.

    PubMed  CAS  Google Scholar 

  141. Jacks T., Remington L., Williams B.O., Schmitt E.M., Halachmi S., Bronson R.T., Weinberg R.A. 1994. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4:1–7.

    PubMed  CAS  Google Scholar 

  142. Jacks T., Shih T.S., Schmitt E.M., Bronson R.T., Bernards A., Weinberg R.A. 1994. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7:353–361.

    PubMed  CAS  Google Scholar 

  143. Jay V., Edwards V., Varela-Stavrinou M., Rutka J. 1997. Unique intracerebral tumor with divergent differentiation in a patient presenting as NF2: report of a case with features of astrocytoma, ependymoma, and PNET. Ultrastruct. Pathol. 21:57–71.

    PubMed  CAS  Google Scholar 

  144. Johnson D.G., Schwarz J.K., Cress W.D., Nevins J.R. 1993. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365:349–352.

    PubMed  CAS  Google Scholar 

  145. Jones S.N., Hancock A.R., Vogel H., Donehower L.A., Bradley A. 1998. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc. Natl. Acad. Sci. USA 95: 15,608–15,612.

    PubMed  CAS  Google Scholar 

  146. Jones S.N., Roe A.E., Donehower L.A., Bradley A. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208.

    PubMed  CAS  Google Scholar 

  147. Jones S.N., Sands A.T., Hancock A.R., Vogel H., Donehower L.A., Linke S.P., Wahl G.M., Bradley A. 1996. The tumorigenic potential and cell growth characteristics of p53-deficient cells are equivalent in the presence or absence of Mdm2. Proc. Natl. Acad. Sci. USA 93:14,106–14,111.

    PubMed  CAS  Google Scholar 

  148. Jung J.M., Bruner J.M., Ruan S., Langford L.A., Kyritsis A.P., Kobayashi T., et al. 1995. Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene 11:2021–2028.

    PubMed  CAS  Google Scholar 

  149. Kaelin W.G. Jr., Krek W., Sellers W.R., DeCaprio J.A., Ajchenbaum F., Fuchs C.S., et al. 1992. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70:351–364.

    PubMed  CAS  Google Scholar 

  150. Kalma Y., Marash L., Lamed Y., Ginsberg D. 2001. Expression analysis using DNA microarrays demonstrates that E2F-1 up-regulates expression of DNA replication genes including replication protein A2. Oncogene 20: 1379–1387.

    PubMed  CAS  Google Scholar 

  151. Kamijo T., Bodner S., van de Kamp E., Randle D.H., Sherr C.J. 1999. Tumor spectrum in ARF-deficient mice. Cancer Res. 59:2217–2222.

    PubMed  CAS  Google Scholar 

  152. Kamijo T., van de Kamp E., Chong M.J., Zindy F., Diehl J.A., Sherr C.J., McKinnon P.J. 1999. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res. 59:2464–2469.

    PubMed  CAS  Google Scholar 

  153. Kamijo T., Weber J.D., Zambetti G., Zindy F., Roussel M.F., Sherr C.J. 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 95:8292–8297.

    PubMed  CAS  Google Scholar 

  154. Kamijo T., Zindy F., Roussel M.F., Quelle D.E., Downing J.R., Ashmun R.A., et al. 1997. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    PubMed  CAS  Google Scholar 

  155. Kane L.P., Shapiro V.S., Stokoe D., Weiss A. 1999. Induction of NF-kappaB by the Akt/PKB kinase. Curr. Biol. 9:601–604.

    PubMed  CAS  Google Scholar 

  156. Kato J., Matsushime H., Hiebert S.W., Ewen M.E., Sherr C.J. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7:331–342.

    PubMed  CAS  Google Scholar 

  157. Khosravi R., Maya R., Gottlieb T., Oren M., Shiloh Y., Shkedy D. 1999. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl. Acad. Sci. USA 96:14,973–14,977.

    PubMed  CAS  Google Scholar 

  158. Kipling D. 1997. Telomere structure and telomerase expression during mouse development and tumorigenesis. Eur. J. Cancer 33:792–800.

    PubMed  CAS  Google Scholar 

  159. Kleihues P., Cavenee W.K. 2000. Pathology and Genetics of Tumours of the Nervous System. IARC Press, Lyon, France.

    Google Scholar 

  160. Kleihues P., Lantos P.L., Magee P.N. 1976. Chemical carcinogenesis in the nervous system. Int. Rev. Exp. Pathol. 15:153–232.

    PubMed  CAS  Google Scholar 

  161. Kleihues P., Schauble B., zur Hausen A., Esteve J., Ohgaki H. 1997. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am. J. Pathol. 150:1–13.

    PubMed  CAS  Google Scholar 

  162. Kops G.J., de Ruiter N.D., De Vries-Smits A.M., Powell D.R., Bos J.L., Burgering B.M. 1999. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634.

    PubMed  CAS  Google Scholar 

  163. Korf B.R. 2000. Malignancy in neurofibromatosis type 1. Oncologist 5:477–485.

    PubMed  CAS  Google Scholar 

  164. Kraus, J. A., J. Koopmann, P. Kaskel, D. Maintz, S. Brandner, J. Schramm, et al. 1995. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J. Neuropathol. Exp. Neurol. 54:91–95.

    PubMed  CAS  Google Scholar 

  165. Krause K., Haugwitz U., Wasner M., Wiedmann M., Mossner J., Engeland K. 2001. Expression of the cell cycle phosphatase cdc25C is down-regulated by the tumor suppressor protein p53 but not by p73. Biochem. Biophys. Res. Commun. 284:743–770.

    PubMed  CAS  Google Scholar 

  166. Krimpenfort P., Quon K.C., Mooi W.J., Loonstra A., Berns A. 2001. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86.

    PubMed  CAS  Google Scholar 

  167. Kubbutat M.H., Jones S.N., Vousden K.H. 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303.

    PubMed  CAS  Google Scholar 

  168. Kwon C.H., Zhu X., Zhang J., Knoop L.L., Tharp R., Smeyne R.J., et al. 2001. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat. Genet. 29:404–411.

    PubMed  CAS  Google Scholar 

  169. Kyritsis A.P., Bondy M.L., Xiao M., Berman E.L., Cunningham J.E., Lee P.S., et al. 1994. Germline p53 gene mutations in subsets of glioma patients. J. Natl. Cancer Inst. 86:344–349.

    PubMed  CAS  Google Scholar 

  170. LaBaer J., Garrett M.D., Stevenson L.F., Slingerland J.M., Sandhu C., Chou H.S., et al. 1997. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11:847–862.

    PubMed  CAS  Google Scholar 

  171. Lee E.Y., Chang C.Y., Hu N., Wang Y.C., Lai C.C., Herrup K., et al. 1992. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294.

    PubMed  CAS  Google Scholar 

  172. Lee J.O., Yang H., Georgescu M.M., Di Cristofano A., Maehama T., Shi Y., et al. 1999. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334.

    PubMed  CAS  Google Scholar 

  173. Levine A.J., Momand J., Finlay C.A. 1991. The p53 tumour suppressor gene. Nature 351: 453–456.

    PubMed  CAS  Google Scholar 

  174. Lewandoski M. 2001. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2:743–755.

    PubMed  CAS  Google Scholar 

  175. Li D. M., Sun H. 1998. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc.Natl. Acad. Sci. USA 95:15,406–15,411.

    PubMed  CAS  Google Scholar 

  176. Li F.P., Fraumeni J.F. Jr. 1969. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 71:747–752.

    PubMed  CAS  Google Scholar 

  177. Li J., Simpson L., Takahashi M., Miliaresis C., Myers M.P., Tonks N., Parsons R. 1998. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res. 58: 5667–5672.

    PubMed  CAS  Google Scholar 

  178. Li J., Yen C., Liaw D., Podsypanina K., Bose S., Wang S.I., et al. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    PubMed  CAS  Google Scholar 

  179. Liaw D., Marsh D.J., Li J., Dahia P.L., Wang S.I., Zheng Z., et al. 1997. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16:64–67.

    PubMed  CAS  Google Scholar 

  180. Lillien L., Raphael H. 2000. BMP and FGF regulate the development of EGF-responsive neural progenitor cells. Development 127:4993–5005.

    PubMed  CAS  Google Scholar 

  181. Lohr M., Maisonneuve P., Lowenfels A.B. 2000. K-Ras mutations and benign pancreatic disease. Int. J. Pancreatol. 27:93–103.

    PubMed  CAS  Google Scholar 

  182. Lossignol D., Grossman S.A., Sheidler V.R., Griffin C.A., Piantadosi S. 1990. Familial clustering of malignant astrocytomas. J. Neurooncol. 9:139–145.

    PubMed  CAS  Google Scholar 

  183. Luetteke N.C., Phillips H.K., Qiu T.H., Copeland N.G., Earp H.S., Jenkins N.A., Lee D.C. 1994. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 8: 399–413.

    PubMed  CAS  Google Scholar 

  184. Maehama T., Dixon J.E. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol. Chem. 273:13,375–13,378.

    PubMed  CAS  Google Scholar 

  185. Malkin D., Li F.P., Strong L.C., Fraumeni J.F. Jr., Nelson C.E., Kim D.H., et al. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238.

    PubMed  CAS  Google Scholar 

  186. Marsh D.J., Coulon V., Lunetta K.L., Rocca-Serra P., Dahia P.L., Zheng Z., et al. 1998. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7:507–515.

    PubMed  CAS  Google Scholar 

  187. Marsh D.J., Dahia P.L., Zheng Z., Liaw D., Parsons R., Gorlin R.J., Eng C. 1997. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat. Genet. 16:333–334.

    PubMed  CAS  Google Scholar 

  188. Marsh D.J., Kum J.B., Lunetta K.L., Bennett M.J., Gorlin R.J., Ahmed S.F.,. et al. 1999. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum. Mol. Genet. 8:1461–1472.

    PubMed  CAS  Google Scholar 

  189. Martelli F., Hamilton T., Silver D.P., Sharpless N.E., Bardeesy N., Rokas M., et al. 2001. p19ARF targets certain E2F species for degradation. Proc. Natl. Acad. Sci. USA 98:4455–4460.

    PubMed  CAS  Google Scholar 

  190. Matsuoka S., Huang M., Elledge S.J. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897.

    PubMed  CAS  Google Scholar 

  191. Matsuoka S., Rotman G., Ogawa A., Shiloh Y., Tamai K., Elledge S.J. 2000. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 97:10,389–10,394.

    PubMed  CAS  Google Scholar 

  192. Mayo L.D., Dixon J.E., Durden D.L., Tonks N.K., Donner D.B. 2001. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J. Biol. Chem. 277:5484–5489.

    PubMed  Google Scholar 

  193. Mayo L.D., Donner D.B. 2001. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA 98:11,598–11,603.

    PubMed  CAS  Google Scholar 

  194. Mayo M.W., Madrid L.V., Westerheide S.D., Jones D.R., Yuan X.J., Baldwin A.S. Jr., Whang Y.E. 2002. PTEN blocks TNF-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277:11,116–11,125.

    PubMed  CAS  Google Scholar 

  195. McKinnon R.D., Matsui T., Dubois-Dalcq M., Aaronson S.A. 1990. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5:603–614.

    PubMed  CAS  Google Scholar 

  196. Mende I., Malstrom S., Tsichlis P.N., Vogt P.K., Aoki M. 2001. Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene 20:4419–4423.

    PubMed  CAS  Google Scholar 

  197. Miettinen P.J., Berger J.E., Meneses J., Phung Y., Pedersen R.A., Werb Z., Derynck R. 1995. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376: 337–341.

    PubMed  CAS  Google Scholar 

  198. Miettinen P.J., Chin J.R., Shum L., Slavkin H.C., Shuler C.F., Derynck R., Werb Z. 1999. Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Nat. Genet. 22:69–73.

    PubMed  CAS  Google Scholar 

  199. Minamoto T., Mai M., Ronai Z. 2000. K-ras mutation: early detection in molecular diagnosis and risk assessment of colorectal, pancreas, and lung cancers—a review. Cancer Detect. Prev. 24:1–12.

    PubMed  CAS  Google Scholar 

  200. Miyagi K., Mukawa J., Kinjo N., Horikawa K., Mekaru S., Nakasone S., et al. 1995. Astrocytoma linked to familial ataxia-telangiectasia. Acta. Neurochir. (Wien) 135:87–92.

    CAS  Google Scholar 

  201. Momand J., Zambetti G.P., Olson D.C., George D., Levine A.J. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.

    PubMed  CAS  Google Scholar 

  202. Montes de Oca Luna R., Wagner D.S., Lozano G. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206.

    PubMed  CAS  Google Scholar 

  203. Mueller W., Lass U., Herms J., Kuchelmeister K., Bergmann M., von Deimling A. 2001. Clonal analysis in glioblastoma with epithelial differentiation. Brain Pathol. 11:39–43.

    PubMed  CAS  Google Scholar 

  204. Muise-Helmericks R.C., Grimes H.L., Bellacosa A., Malstrom S.E., Tsichlis P.N., Rosen N. 1998. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 273:29,864–29,872.

    PubMed  CAS  Google Scholar 

  205. Myers M.P., Pass I., Batty I.H., Van der Kaay J., Stolarov J.P., Hemmings B.A., et al. 1998. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl. Acad. Sci. USA 95:13,513–13,518.

    PubMed  CAS  Google Scholar 

  206. Nakamura M., Watanabe T., Klangby U., Asker C., Wiman K., Yonekawa Y., Kleihues P., Ohgaki H. 2001. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 11:159–168.

    PubMed  CAS  Google Scholar 

  207. Neshat M.S., Mellinghoff I.K., Tran C., Stiles B., Thomas G., Petersen R., et al. 2001. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98: 10,314–10,319.

    PubMed  CAS  Google Scholar 

  208. Nevins J.R. 1992. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429.

    PubMed  CAS  Google Scholar 

  209. Newcomb E.W., Alonso M., Sung T., Miller D.C. 2000. Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum. Pathol. 31:115–119.

    PubMed  CAS  Google Scholar 

  210. Nishikawa R., Furnari F.B., Lin H., Arap W., Berger M.S., Cavenee W.K., Su Huang H.J. 1995. Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res. 55:1941–1945.

    PubMed  CAS  Google Scholar 

  211. Nishizuka Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614.

    PubMed  CAS  Google Scholar 

  212. Nishizuka Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. Faseb J. 9:484–496.

    PubMed  CAS  Google Scholar 

  213. Noble M., Murray K., Stroobant P., Waterfield M.D., Riddle P. 1988. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562.

    PubMed  CAS  Google Scholar 

  214. Ohgaki H., Eibl R.H., Wiestler O.D., Yasargil M.G., Newcomb E.W., Kleihues P. 1991. p53 mutations in nonastrocytic human brain tumors. Cancer Res. 51:6202–6205.

    PubMed  CAS  Google Scholar 

  215. Ono Y., Tamiya T., Ichikawa T., Matsumoto K., Furuta T., Ohmoto T., et al. 1997. Accumulation of wild-type p53 in astrocytomas is associated with increased p21 expression. Acta. Neuropathol. (Berl) 94: 21–27.

    CAS  Google Scholar 

  216. Ozes O.N., Mayo L.D., Gustin J.A., Pfeffer S.R., Pfeffer L.M., Donner D.B. 1999. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85.

    PubMed  CAS  Google Scholar 

  217. Pacold M.E., Suire S., Perisic O., Lara-Gonzalez S., Davis C.T., Walker E.H., et al. 2000. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103:931–943.

    PubMed  CAS  Google Scholar 

  218. Page C., Lin H.J., Jin Y., Castle V.P., Nunez G., Huang M., Lin J. 2000. Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res. 20:407–416.

    PubMed  CAS  Google Scholar 

  219. Palmero I., Pantoja C., Serrano M. 1998. p19ARF links the tumour suppressor p53 to Ras. Nature 395:125–126.

    PubMed  CAS  Google Scholar 

  220. Pardee A.B. 1989. G1 events and regulation of cell proliferation. Science 246:603–608.

    PubMed  CAS  Google Scholar 

  221. Pianetti S., Arsura M., Romieu-Mourez R., Coffey R.J., Sonenshein G.E. 2001. Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene 20:1287–1299.

    PubMed  CAS  Google Scholar 

  222. Podsypanina K., Ellenson L.H., Nemes A., Gu J., Tamura M., Yamada K.M., et al. 1999. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl. Acad. Sci. USA 96: 1563–1568.

    PubMed  CAS  Google Scholar 

  223. Podsypanina K., Lee R.T., Politis C., Hennessy I., Crane A., Puc J., et al. 2001. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. USA 98:10,320–10,325.

    PubMed  CAS  Google Scholar 

  224. Pollack I.F., Finkelstein S.D., Woods J., Burnham J., Holmes E.M., Hamilton R.L., et al. 2002. Expression of p53 and prognosis in children with malignant gliomas. N. Engl. J. Med. 346:420–427.

    PubMed  CAS  Google Scholar 

  225. Prives C., Manley J.L. 2001. Why is p53 acetylated? Cell 107:815–818.

    PubMed  CAS  Google Scholar 

  226. Quelle D.E., Ashmun R.A., Hannon G.J., Rehberger P.A., Trono D., Richter K.H., et al. 1995. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11:635–645.

    PubMed  CAS  Google Scholar 

  227. Quelle D.E., Cheng M., Ashmun R.A., Sherr C.J. 1997. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc. Natl. Acad. Sci. USA 94:669–673.

    PubMed  CAS  Google Scholar 

  228. Quelle D.E., Zindy F., Ashmun R.A., Sherr C.J. 1995. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    PubMed  CAS  Google Scholar 

  229. Ramaswamy S., Nakamura N., Vazquez F., Batt D.B., Perera S., Roberts T.M., Sellers W.R. 1999. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 96:2110–2115.

    PubMed  CAS  Google Scholar 

  230. Randerson-Moor J.A., Harland M., Williams S., Cuthbert-Heavens D., Sheridan E., Aveyard J., et al. 2001. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum. Mol. Genet. 10:55–62.

    PubMed  CAS  Google Scholar 

  231. Rasheed B.K., Stenzel T.T., McLendon R.E., Parsons R., Friedman A.H., Friedman H.S., et al. 1997. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res. 57:4187–4190.

    PubMed  CAS  Google Scholar 

  232. Raught B., Gingras A.C., Sonenberg N. 2001. The target of rapamycin (TOR) proteins. Proc. Natl. Acad. Sci. USA 98:7037–7044.

    PubMed  CAS  Google Scholar 

  233. Reifenberger G., Ichimura K., Reifenberger J., Elkahloun A.G., Meltzer P.S., Collins V.P. 1996. Refined mapping of 12q13-q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56:5141–5145.

    PubMed  CAS  Google Scholar 

  234. Reifenberger G., Liu L., Ichimura K., Schmidt E.E., Collins V.P. 1993. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53: 2736–2739.

    PubMed  CAS  Google Scholar 

  235. Reifenberger G., Reifenberger J., Ichimura K., Meltzer P.S., Collins V.P. 1994. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res. 54:4299–4303.

    PubMed  CAS  Google Scholar 

  236. Reilly K.M., Loisel D.A., Bronson R.T., McLaughlin M.E., Jacks T. 2000. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat. Genet. 26:109–113.

    PubMed  CAS  Google Scholar 

  237. Relling M.V., Rubnitz J.E., Rivera G.K., Boyett J.M., Hancock M.L., Felix C.A., et al. 1999. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 354:34–39.

    PubMed  CAS  Google Scholar 

  238. Reynolds B.A., Weiss S. 1996. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175:1–13.

    PubMed  CAS  Google Scholar 

  239. Reynolds B.A., Weiss S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.

    PubMed  CAS  Google Scholar 

  240. Rich J.N., Guo C., McLendon R.E., Bigner D.D., Wang X.F., Counter C.M. 2001. A genetically tractable model of human glioma formation. Cancer Res. 61:3556–3560.

    PubMed  CAS  Google Scholar 

  241. Ries S., Biederer C., Woods D., Shifman O., Shirasawa S., Sasazuki T.et al. 2000. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103:321–330.

    PubMed  CAS  Google Scholar 

  242. Rollbrocker B., Waha A., Louis D.N., Wiestler O.D., von Deimling A. 1996. Amplification of the cyclin-dependent kinase 4 (CDK4) gene is associated with high cdk4 protein levels in glioblastoma multiforme. Acta. Neuropathol. (Berl) 92:70–74.

    CAS  Google Scholar 

  243. Romashkova J.A., Makarov S.S. 1999. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90.

    PubMed  CAS  Google Scholar 

  244. Rommel C., Clarke B.A., Zimmermann S., Nunez L., Rossman R., Reid K., et al. 1999. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741.

    PubMed  CAS  Google Scholar 

  245. Ryan K.M., Phillips A.C., Vousden K.H. 2001. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13:332–337.

    PubMed  CAS  Google Scholar 

  246. Sara V.R., Prisell P., Sjogren B., Persson L., Boethius J., Enberg G. 1986. Enhancement of insulin-like growth factor 2 receptors in glioblastoma. Cancer Lett. 32:229–234.

    PubMed  CAS  Google Scholar 

  247. Schlessinger J. 2000. Cell signaling by receptor tyrosine kinases. Cell 103:211–225.

    PubMed  CAS  Google Scholar 

  248. Schmelzle T., Hall M.N. 2000. TOR, a central controller of cell growth. Cell 103: 253–262.

    PubMed  CAS  Google Scholar 

  249. Schmidt E.E., Ichimura K., Reifenberger G., Collins V.P. 1994. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 54:6321–6324.

    PubMed  CAS  Google Scholar 

  250. Seri B., Garcia-Verdugo J.M., McEwen B.S., Alvarez-Buylla A. 2001. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21:7153–7160.

    PubMed  CAS  Google Scholar 

  251. Serrano M., Lee H., Chin L., Cordon-Cardo C., Beach D., DePinho R.A. 1996. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37.

    PubMed  CAS  Google Scholar 

  252. Sharif T.R., Sasakawa N., Sharif M. 2001. Regulated expression of a dominant negative protein kinase C epsilon mutant inhibits the proliferation of U-373MG human astrocytoma cells. Int. J. Mol. Med. 7: 373–380.

    PubMed  CAS  Google Scholar 

  253. Sharpless N.E., Bardeesy N., Lee K.H., Carrasco D., Castrillon D.H., Aguirre A.J., et al. 2001. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91.

    PubMed  CAS  Google Scholar 

  254. Sherr C. J. 2001. The INK4a/ARF network in tumour suppression. Nat. Rev. Mol. Cell Biol. 2: 731–737.

    PubMed  CAS  Google Scholar 

  255. Sherr C. J. 2001. Parsing Ink4a/Arf: “pure” p16-null mice. Cell 106: 531–534.

    PubMed  CAS  Google Scholar 

  256. Sherr C. J. 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60: 3689–3695.

    PubMed  CAS  Google Scholar 

  257. Shiloh Y. 2001. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11:71–77.

    PubMed  CAS  Google Scholar 

  258. Shiloh Y., Kastan M.B. 2001. ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res. 83:209–254.

    PubMed  CAS  Google Scholar 

  259. Sibilia M., Steinbach J.P., Stingl L., Aguzzi A., Wagner E.F. 1998. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. Embo. J. 17:719–731.

    PubMed  CAS  Google Scholar 

  260. Smith J.S., Wang X.Y., Qian J., Hosek S.M., Scheithauer B.W., Jenkins R.B., James C.D. 2000. Amplification of the platelet-derived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J. Neuropathol. Exp. Neurol. 59:495–503.

    PubMed  CAS  Google Scholar 

  261. Sonoda Y., Ozawa T., Aldape K.D., Deen D.F., Berger M.S., Pieper R.O. 2001. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 61:6674–6678.

    PubMed  CAS  Google Scholar 

  262. Sonoda Y., Ozawa T., Hirose Y., Aldape K.D., McMahon M., Berger M.S., Pieper R.O. 2001. Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res. 61:4956–4960.

    PubMed  CAS  Google Scholar 

  263. Staal S. P. 1987. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl. Acad. Sci. USA 84:5034–5037.

    PubMed  CAS  Google Scholar 

  264. Stambolic V., MacPherson D., Sas D., Lin Y., Snow B., Jang Y., Benchimol S., Mak T.W. 2001. Regulation of PTEN transcription by p53. Mol. Cell 8:317–325.

    PubMed  CAS  Google Scholar 

  265. Summers S.A., Lipfert L., Birnbaum M.J. 1998. Polyoma middle T antigen activates the Ser/Thr kinase Akt in a PI3-kinase-dependent manner. Biochem. Biophys. Res. Commun 246:76–81.

    PubMed  CAS  Google Scholar 

  266. Sun H., Lesche R., Li D.M., Liliental J., Zhang H., Gao J., et al. 1999. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA 96:6199–6204.

    PubMed  CAS  Google Scholar 

  267. Sung T., Miller D.C., Hayes R.L., Alonso M., Yee H., Newcomb E.W. 2000. Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol. 10:249–259.

    PubMed  CAS  Google Scholar 

  268. Suzuki A., de la Pompa J.L., Stambolic V., Elia A.J., Sasaki T., del Barco Barrantes I., et al. 1998. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8:1169–1178.

    PubMed  CAS  Google Scholar 

  269. Swenberg J.A. 1977. Chemical-and virus-induced brain tumors. Natl. Cancer Inst. Monogr. 46:3–10.

    PubMed  CAS  Google Scholar 

  270. Tachibana I., Smith J.S., Sato K., Hosek S.M., Kimmel D.W., Jenkins R.B. 2000. Investigation of germline PTEN, p53, p16(INK4A)/p14(ARF), and CDK4 alterations in familial glioma. Am. J. Med. Genet. 92: 136–141.

    PubMed  CAS  Google Scholar 

  271. Tada K., Shiraishi S., Kamiryo T., Nakamura H., Hirano H., Kuratsu J., et al. 2001. Analysis of loss of heterozygosity on chromosome 10 in patients with malignant astrocytic tumors: correlation with patient age and survival. J. Neurosurg. 95:651–659.

    PubMed  CAS  Google Scholar 

  272. Takaishi H., Konishi H., Matsuzaki H., Ono Y., Shirai Y., Saito N., et al. 1999. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc. Natl. Acad. Sci. USA 96: 11836–11841.

    PubMed  CAS  Google Scholar 

  273. Takimoto R., El-Deiry W.S. 2001. DNA replication blockade impairs p53-transactivation. Proc. Natl. Acad. Sci. USA 98:781–783.

    PubMed  CAS  Google Scholar 

  274. Tamura M., Gu J., Danen E.H., Takino T., Miyamoto S., Yamada K.M. 1999. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 274:20,693–20,703.

    PubMed  CAS  Google Scholar 

  275. Tamura M., Gu J., Matsumoto K., Aota S., Parsons R., Yamada K.M. 1998. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280:1614–1617.

    PubMed  CAS  Google Scholar 

  276. Tao W., Levine A.J. 1999. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA 96:6937–6941.

    PubMed  CAS  Google Scholar 

  277. Temple S. 2001. The development of neural stem cells. Nature 414:112–117.

    PubMed  CAS  Google Scholar 

  278. Temple S. 2001. Stem cell plasticity—building the brain of our dreams. Nat. Rev. Neurosci. 2:513–520.

    PubMed  CAS  Google Scholar 

  279. Testa J. R., Bellacosa A. 2001. AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA 98:10,983–10,985.

    PubMed  CAS  Google Scholar 

  280. Theurillat J.P., Hainfellner J., Maddalena A., Weissenberger J., Aguzzi A. 1999. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Proc. Natl. Acad. Sci. USA 154: 581–590.

    CAS  Google Scholar 

  281. Threadgill D.W., Dlugosz A.A., Hansen L.A., Tennenbaum T., Lichti U., Yee D., et al. 1995. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 230–234.

    PubMed  CAS  Google Scholar 

  282. Tominaga K., Morisaki H., Kaneko Y., Fujimoto A., Tanaka T., Ohtsubo M., et al. 1999. Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. J. Biol. Chem. 274:31,463–31,467.

    PubMed  CAS  Google Scholar 

  283. Trent J., Meltzer P., Rosenblum M., Harsh G., Kinzler K., Mashal R., et al. 1986. Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma. Proc. Natl. Acad. Sci. USA 83:470–473.

    PubMed  CAS  Google Scholar 

  284. Tsai R. Y., McKay R.D. 2000. Cell contact regulates fate choice by cortical stem cells. J. Neurosci. 20:3725–3735.

    PubMed  CAS  Google Scholar 

  285. Ueki K., Nishikawa R., Nakazato Y., Hirose T., Hirato J., Funada N., et al. 2002. Correlation of Histology and Molecular Genetic Analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 Astrocytic and Oligodendroglial Tumors. Clin. Cancer Res. 8:196–201.

    PubMed  CAS  Google Scholar 

  286. Ueki K., Ono Y., Henson J.W., Efird J.T., von Deimling A., Louis D.N. 1996. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 56: 150–153.

    PubMed  CAS  Google Scholar 

  287. Uhrbom L., Hesselager G., Nister M., Westermark B. 1998. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279.

    PubMed  CAS  Google Scholar 

  288. Uhrbom L., Dai C., Celestino J.C., Rosenblum M.K., Fuller G.N., Holland E.C. 2003. Ink4a-Arf loss cooperates with Kras activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on acivated Akt. Cancer Res. 62:5551–5558.

    Google Scholar 

  289. Vahteristo P., Tamminen A., Karvinen P., Eerola H., Eklund C., Aaltonen L.A., et al. 2001. p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res. 61:5718–5722.

    PubMed  CAS  Google Scholar 

  290. van Dyke R., Jacks T. 2002. Cancer modeling in the modern era: progress and challenges. Cell 108:135–144.

    PubMed  Google Scholar 

  291. Vescovi A.L., Reynolds B.A., Fraser D.D., Weiss S. 1993. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966.

    PubMed  CAS  Google Scholar 

  292. von Deimling A., Eibl R.H., Ohgaki H., Louis D.N., von Ammon K., Petersen I., et al. 1992. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res. 52: 2987–2990.

    Google Scholar 

  293. Vousden K.H. 2000. p53: death star. Cell 103:691–694.

    PubMed  CAS  Google Scholar 

  294. Walter A.W., Hancock M.L., Pui C.H., Hudson M.M., Ochs J.S., Rivera G.K., et al. 1998. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J. Clin. Oncol. 16:3761–3767.

    PubMed  CAS  Google Scholar 

  295. Wang S.I., Puc J., Li J., Bruce J.N., Cairns P., Sidransky D., Parsons R. 1997. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 57:4183–4186.

    PubMed  CAS  Google Scholar 

  296. Watanabe K., Sato K., Biernat W., Tachibana O., von Ammon K., Ogata N., et al. 1997. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin. Cancer Res. 3:523–530.

    PubMed  CAS  Google Scholar 

  297. Watanabe K., Tachibana O., Sata K., Yonekawa Y., Kleihues P., Ohgaki H. 1996. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 6:217–223; discussion 23–24.

    PubMed  CAS  Google Scholar 

  298. Watanabe T., Nakamura M., Yonekawa Y., Kleihues P., Ohgaki H. 2001. Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta. Neuropathol. (Berl) 101:185–189.

    CAS  Google Scholar 

  299. Watanabe T., Yokoo H., Yokoo M., Yonekawa Y., Kleihues P., Ohgaki H. 2001. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J. Neuropathol. Exp. Neurol. 60:1181–1189.

    PubMed  CAS  Google Scholar 

  300. Weber J.D., Hu W., Jefcoat S.C. Jr., Raben D.M., Baldassare J.J. 1997. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J. Biol. Chem. 272:32,966–32,971.

    PubMed  CAS  Google Scholar 

  301. Weber J.D., Jeffers J.R., Rehg J.E., Randle D.H., Lozano G., Roussel M.F., et al. 2000. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 14:2358–2365.

    PubMed  CAS  Google Scholar 

  302. Weber J.D., Kuo M.L., Bothner B., DiGiammarino E.L., Kriwacki R.W., Roussel M.F., Sherr C.J. 2000. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. 20:2517–2528.

    PubMed  CAS  Google Scholar 

  303. Weber J.D., Taylor L.J., Roussel M.F., Sherr C.J., Bar-Sagi D. 1999. Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1:20–26.

    PubMed  CAS  Google Scholar 

  304. Weiss W.A., Burns M.J., Hackett C., Aldape K., Hill J.R., Kuriyama H., et al. 2003. Genetic determinants of malignancy in a mouse model for oligodendrogliomas. Cancer Cell 63:1589–1595.

    CAS  Google Scholar 

  305. Weissenberger J., Steinbach J.P., Malin G., Spada S., Rulicke T., Aguzzi A. 1997. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14:2005–2013.

    PubMed  CAS  Google Scholar 

  306. Weissleder R. 2002. Scaling down imaging: molecular mapping of cancer in mice. Nature Reviews Cancer 2:11–18.

    PubMed  CAS  Google Scholar 

  307. Wen S., Stolarov J., Myers M.P., Su J.D., Wigler M.H., Tonks N.K., Durden D.L. 2001. PTEN controls tumor-induced angiogenesis. Proc. Natl. Acad. Sci. USA 98:4622–4627.

    PubMed  CAS  Google Scholar 

  308. Weng L.P., Brown J.L., Eng C. 2001. PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum. Mol. Genet. 10:599–604.

    PubMed  CAS  Google Scholar 

  309. Wong A.J., Bigner S.H., Bigner D.D., Kinzler K.W., Hamilton S.R., Vogelstein B. 1987. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl. Acad. Sci. USA 84:6899–6903.

    PubMed  CAS  Google Scholar 

  310. Wong A.J., Ruppert J.M., Bigner S.H., Grzeschik C.H., Humphrey P.A., Bigner D.S., Vogelstein B. 1992. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl. Acad. Sci. USA 89:2965–2969.

    PubMed  CAS  Google Scholar 

  311. Wu L., Timmers C., Maiti B., Saavedra H.I., Sang L., Chong G.T., et al. 2001. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414:457–462.

    PubMed  CAS  Google Scholar 

  312. Wu X., Bayle J.H., Olson D., Levine A.J. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.

    PubMed  CAS  Google Scholar 

  313. Wu X., Senechal K., Neshat M.S., Whang Y.E., Sawyers C.L. 1998. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 95:15,587–15,591.

    PubMed  CAS  Google Scholar 

  314. Xiao A., Wu H., Pandolfi P.P., Louis D.N., VanDyke T. 2002. Astrocyte inactivation of the pRb pathwy predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1: 157–168.

    PubMed  CAS  Google Scholar 

  315. Yang M., Baranov E., Moossa A.R., Penman S., Hoffman R.M. 2000. Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA 97:12,278–12,282.

    PubMed  CAS  Google Scholar 

  316. Yeh H.J., Ruit K.G., Wang Y.X., Parks W.C., Snider W.D., Deuel T.F. 1991. PDGF A-chain gene is expressed by mammalian neurons during development and in maturity. Cell 64:209–216.

    PubMed  CAS  Google Scholar 

  317. Yeh H.J., Silos-Santiago I., Wang Y.X., George R.J., Snider W.D., Deuel T.F. 1993. Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system. Proc. Natl. Acad. Sci. USA 90:1952–1956.

    PubMed  CAS  Google Scholar 

  318. You M.J., Castrillon D.H., Bastian B.C., O’Hagan R.C., Bosenberg M.W., Parsons R., et al. 2002. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl. Acad. Sci. USA 99:1455–1460.

    PubMed  CAS  Google Scholar 

  319. Yu Y., Bradley A. 2001. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2:780–790.

    PubMed  CAS  Google Scholar 

  320. Zhou B.B., Elledge S.J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.

    PubMed  CAS  Google Scholar 

  321. Zhou B.P., Liao Y., Xia W., Spohn B., Lee M.H., Hung M.C. 2001. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol. 3:245–252.

    PubMed  CAS  Google Scholar 

  322. Zhou B.P., Liao Y., Xia W., Zou Y., Spohn B., Hung M.C. 2001. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol. 3:973–982.

    PubMed  CAS  Google Scholar 

  323. Zimmermann S., Moelling K. 1999. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286: 1741–1744.

    PubMed  CAS  Google Scholar 

  324. Zindy F., Eischen C.M., Randle D.H., Kamijo T., Cleveland J.L., Sherr C.J., Roussel M.F. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433.

    PubMed  CAS  Google Scholar 

  325. Zundel W., Schindler C., Haas-Kogan D., Koong A., Kaper F., Chen E., et al. 2000. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14:391–396.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Begemann, M., Rajasekhar, V.K., Fuller, G.N., Holland, E.C. (2005). Genetic Modeling of Glioma Formation in Mice. In: Ali-Osman, F. (eds) Brain Tumors. Contemporary Cancer Research. Humana Press. https://doi.org/10.1385/1-59259-843-9:055

Download citation

Publish with us

Policies and ethics