Skip to main content

Role of Electrophysiology in Diagnosis and Research in Atypical Parkinsonian Disorders

  • Chapter

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Correct clinical diagnosis of patients with parkinsonism is not always possible in spite of the continuous effort in defining diagnostic criteria (1). Parkinsonism, defined as the combination of bradykinesia and rigidity (2), may be a predominant clinical feature of several diseases, including idiopathic Parkinson’s disease (IPD) and several other entities commonly known as “Parkinson-plus” syndromes or atypical parkinsonian disorders (APDs). In these entities, parkinsonism is accompanied by other clinical signs, or red flags (3), that should warn the physician of the existence of a degenerative disorder. Even though rather specific clinical patterns have been described in patients with APDs, such as predominantly autonomic failure, cerebellar, or pyramidal dysfunction, in multiple system atrophy (MSA), axial rigidity, ocular motility disorders, and falls early in the course of the disease, in progressive supranuclear palsy (PSP), myoclonus and asymmetrical higher cortical limb dysfunction, in corticobasal degeneration (CBD), and fluctuating cognitive deficits, visual hallucinations, and REM sleep behavior disorder, in diffuse Lewy-body disease (LBD), these signs are not always evident or they may pass unrecognized by nonspecialized neurologists. In some conditions, such as for instance CBD, similar clinical expressions may be common to different pathologies (4), and the same disease may encompass diverse clinical presentations (5). In others, such as MSA with parkinsonian features (MSA-P), patients may behave like IPD until death (6), making it almost impossible to establish a clinical separation between the two diseases. Nowadays, the definite clinical diagnosis still resides in the pathological postmortem examination (1,7,8).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Litvan I, Bhatia KP, Burn DJ, et al. SIC Task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 2003;18:467–486.

    Article  PubMed  Google Scholar 

  2. Jankovic J, Rajput AH, McDermott MP, Perl DP. The evolution of diagnosis in early Parkinson’s disease. Arch Neurol 2000;57:369–372.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn N. Multiple system atrophy—the nature of the beast. J Neurol Neursurg Psychiatry 1989;Suppl:78–89.

    Google Scholar 

  4. Boeve BF, Maraganore DM, Parisi JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal ganglionic degeneration. Neurology 1999;53:795–800.

    PubMed  CAS  Google Scholar 

  5. Bergeron C, Pollanen MS, Weyer L, Black SE, Lang AE. Unusual clinical presentations of cortical basal ganglionic degeneration. Ann Neurol 1996;40:893–900.

    Article  PubMed  CAS  Google Scholar 

  6. Hughes AJ, Colosimo C, Kleedorfer B, Daniel SE, Lees AJ. The dopaminergic response in multiple system atrophy. J Neurol Neurosurg Psychiatry 1992;55:1009–1013.

    PubMed  CAS  Google Scholar 

  7. Poewe W, Wenning G. The differential diagnosis of Parkinson’s disease. Eur J Neurol 2002;9(Suppl 3):23–30.

    Article  PubMed  Google Scholar 

  8. Dickson DW, Bergeron C, Chin SS, et al. Office of rare diseases neuropathologic criteria for corticobasal degeneration. Exp Neurol 2002;61:935–946.

    CAS  Google Scholar 

  9. Brooks DJ, Ibáñez V, Sawle GV, et al. Striatal D2 receptor status in patients with parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with IIC-raclopride and positron emission tomography. Ann Neurol 1992;31:184–192.

    Article  PubMed  CAS  Google Scholar 

  10. Hallett M, Khoshbin SA. A physiological mechanism of bradykinesia. Brain 1980;103:301–314.

    Article  PubMed  CAS  Google Scholar 

  11. Berardelli A, Sabra AF, Hallett M. Physiological mechanisms of rigidity in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1983;46:45–83.

    PubMed  CAS  Google Scholar 

  12. Delwaide P, Pepin JL, DePasqua V, Maertens de Noordhout A. Projections from the basal ganglia to tegmentum: a subcortical route for explaining the pathophysiology of Parkinson’s disease signs? J Neurol 2000;247(Suppl 2):75–81.

    Google Scholar 

  13. Hallett M. Clinical neurophysiology of akinesia. Rev Neurol 1990;146:585–590.

    PubMed  CAS  Google Scholar 

  14. Rafal RD, Posner MI, Walker JA, Friedrich FJ. Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson’s disease. Brain 1984;107:1083–1094.

    Article  PubMed  Google Scholar 

  15. Bloxham CA, Dick DJ, Moore M. Reaction times and attention in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1987;50:1178–1183.

    PubMed  CAS  Google Scholar 

  16. Daum I, Quinn N. Reaction times and visuospatial processing in Parkinson’s disease. J Clin Exp Neuropsychol 1991;13:972–982.

    PubMed  CAS  Google Scholar 

  17. Godaux E, Koulischer D, Jacquy J. Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Ann Neurol 1992;31:93–100.

    Article  PubMed  CAS  Google Scholar 

  18. Evarts EV, Teravainen H, Calne DB. Reaction time in Parkinson’s disease. Brain 1981;104:167–186.

    Article  PubMed  CAS  Google Scholar 

  19. Pullman SL, Watts RL, Juncos JL, Chase TN, Sanes JN. Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology 1988;38:249–254.

    PubMed  CAS  Google Scholar 

  20. Berardelli A, Dick JPR, Rothwell JC, Day BL, Marsden CD. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1986;49:1273–1279.

    PubMed  CAS  Google Scholar 

  21. Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cohen LG, Hallett M. Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single pulse transcranial magnetic stimulation. Neurology 1994;44:884–891.

    PubMed  CAS  Google Scholar 

  22. Valldeoriola F, Valls-Solé J, Tolosa E, Ventura PJ, Nobbe FA, Martí MJ. The effects of a startling acoustic stimulus on reaction time in patients with different parkinsonian syndromes. Neurology 1998;51:1315–1320.

    PubMed  CAS  Google Scholar 

  23. Dubois B, Pillon B, Legault F, Agid Y, Lhermitte F. Slowing of cognitive processing in progressive supranuclear palsy. A comparison with Parkinson’s disease. Arch Neurol 1988;45:1194–1199.

    PubMed  CAS  Google Scholar 

  24. Johnson R Jr, Litvan I, Grafman J. Progressive supranuclear palsy: altered sensory processing leads to degraded cognition. Neurology 1991;41:1257–1262.

    PubMed  Google Scholar 

  25. Molinuevo JL, Valls-Solé J, Valldeoriola F. The effect of transcranial magnetic stimulation on reaction time in progressive supranuclear palsy. Clinical Neurophysiology 2000;111:2008–2013.

    Article  PubMed  CAS  Google Scholar 

  26. Abbruzzese G, Vische M, Ratto S, Abbruzzese M, Favale E. Assessment of motor neuron excitability in parkinsonian rigidity by the F wave. J Neurol 1985;232:246–249.

    Article  PubMed  CAS  Google Scholar 

  27. Rothwell JC, Obeso JA, Traub MM, Marsden CD. The behavior of the long latency stretch reflex in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1983;46:35–44.

    PubMed  CAS  Google Scholar 

  28. Deuschl G, Lucking CH. Physiology and clinical applications of hand muscle reflexes. Electroenceph Clin Neurophysiol 1990;Suppl 41:84–101.

    Google Scholar 

  29. Fuhr P, Zeffiro T, Hallett M. Cutaneous reflexes in Parkinson’s disease. Muscle Nerve 1992;15:733–739.

    Article  PubMed  CAS  Google Scholar 

  30. Chen R, Ashby P, Lang AE. Stimulus-sensitive myoclonus in akinetic rigid syndromes. Brain 1992;115:1875–1888.

    Article  PubMed  Google Scholar 

  31. Cantello R, Gianelli M, Bettucci D, Civardi C, De Angelis MS, Mutani R. Parkinson’s disease rigidity: magnetic MEPs in a small hand muscle. Neurology 1991;41:1449–1456.

    PubMed  CAS  Google Scholar 

  32. Valls-Solé J, Pascual-Leone A, Brasil-Neto JP, McShane L, Hallett M. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 1994;44: 735–741.

    PubMed  Google Scholar 

  33. Bathien N, Rondot P. Reciprocal continuous inhibition in rigidity of parkinsonism J Neurol Neurosurg Psychiatry 1977;40:20–24.

    Article  PubMed  CAS  Google Scholar 

  34. Lelli S, Panizza M, Hallett M. Spinal cord inhibitory mechanisms in Parkinson’s disease. Neurology 1991;41:553–556

    PubMed  CAS  Google Scholar 

  35. Delwaide P, Pepin JL, Maertens de Noordhout A. Short latency autogenic inhibition in patients with parkinsonian rigidity. Ann Neurol 1991;30:83–89.

    Article  PubMed  CAS  Google Scholar 

  36. Grasso M, Mazzini L, Schieppati M. Muscle relaxation in Parkinson’s disease: a reaction time study. Mov Disord 1996;11:411–420.

    Article  PubMed  CAS  Google Scholar 

  37. Angel RW, Lewitt PA. Unloading and shortening reactions in Parkinson’s disease. J Neurol Neurosurg Psych 1978;41:919–923.

    Article  CAS  Google Scholar 

  38. Bathien N, Toma S, Rondot P. Étude de la réaction de raccourcissement présente chez l’homme dans diverses affections neurologiques. Electroenceph Clin Neurophys 1981;51:156–164.

    Article  CAS  Google Scholar 

  39. Berardelli A, Hallett M. Shortening reaction of human tibialis anterior. Neurology 1984;34:242–246.

    PubMed  CAS  Google Scholar 

  40. Diener C, Scholz E, Guschlbauer B, Dichgans J. Increased shortening reaction in Parkinson’s disease reflects a difficulty in modulating long loop reflexes. Mov Disord 1987;2:31–36.

    Article  PubMed  CAS  Google Scholar 

  41. Fine EJ, Hallett M, Litvan I, Tresser N, Katz D. Dysfunction of Ib (autogenic) spinal inhibition in patients with progressive supranuclear palsy. Mov Disord 1998;13:668–672.

    Article  PubMed  CAS  Google Scholar 

  42. Golbe LI, Davis PH, Lepore FE. Eyelid movement abnormalities in progressive supranuclear palsy. Mov Disord 1989;4:297–302.

    Article  PubMed  CAS  Google Scholar 

  43. Karson CN, Burns S, LeWitt P, Foster NL, Newman RP. Blink rates and disorders of movement. Neurology 1984;34:677–678.

    PubMed  CAS  Google Scholar 

  44. Heide W, Koenig E, Trillenberg P, Kömpf D, Zee DS. Electrooculography: technical standards and applications. Electroenceph Clin Neurophysiol 1999;(Suppl 52):223–240.

    Google Scholar 

  45. Chu FC, Reingold DB, Cogan DG, Williams AC. The eye movement disorders of progressive supranuclear palsy. Ophthalmology 1979;86:422–428.

    PubMed  CAS  Google Scholar 

  46. Vidailhet M, Rivaud S, Gouider-Khouja N, et al. Eye movements in parkinsonian syndromes. Ann Neurol 1994;35:420–426.

    Article  PubMed  CAS  Google Scholar 

  47. Valls-Solé J, Valldeoriola F, Tolosa E, Martí MJ. Distinctive abnormalities of facial reflexes in patients with progressive supranuclear palsy. Brain 1997;120:1877–1883.

    Article  PubMed  Google Scholar 

  48. Vidailhet M, Rothwell JC, Thompson PD, Lees AJ, Marsden CD. The auditory startle response in the Steele-Richardson-Olszewsky syndrome and Parkinson’s disease. Brain 1991;115:1181–1192.

    Article  Google Scholar 

  49. Brown P, Rothwell JC, Thompson PD, Day BL, Marsden CD. New observations on the normal auditory startle reflex in man. Brain 1991;114:1891–1902.

    Article  PubMed  Google Scholar 

  50. Valls-Solé J, Valldeoriola F, Molinuervo JL, Cossu G, Nobbe F. Prepulse modulation of the startle reaction and the blink reflex in normal human subjects. Exp Brain Res 1999;129:49–56.

    Article  PubMed  Google Scholar 

  51. Heilman KM. Exploring the enigmas of frontal lobe dysfunction. Geriatrics 1976;31:81–87.

    PubMed  CAS  Google Scholar 

  52. Dehen H, Bathien N, Cambier J. The palmo-mental reflex. An electrophysiological study. Eur Neurol 1975;13:395–404.

    PubMed  CAS  Google Scholar 

  53. Jenny AB, Saper CB. Organization of the facial nucleus and corticofacial projection in the monkey: a reconsideration of the upper motor neuron facial palsy. Neurology 1987;37:930–939.

    PubMed  CAS  Google Scholar 

  54. Maertens de Noordhout A, Delwaide PJ. The palmomental reflex in Parkinson’s disease. Comparisons with normal subjects and clinical relevance. Arch Neurol 1988;45:425–427.

    PubMed  CAS  Google Scholar 

  55. Kimura J. Disorders of interneurons in parkinsonism. The orbicularis oculi reflex to paired stimuli. Brain 1973;96:87–96.

    Article  PubMed  CAS  Google Scholar 

  56. Smith SJ, Lees AJ. Abnormalities of the blink reflex in Gilles de la Tourette syndrome. J Neurol Neurosurg Psychiatry 1989;52:895–898.

    PubMed  CAS  Google Scholar 

  57. Eekhof JL, Aramideh M, Bour LJ, Hilgevoord AA, Speelman HD, Ongerboer de Visser BW. Blink reflex recovery curves in blepharospasm, torticollis spasmodica, and hemifacial spasm. Muscle Nerve 1996;19:10–15

    Article  PubMed  CAS  Google Scholar 

  58. Basso MA, Powers AS, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. J Neurosci 1996;16:7308–7317.

    PubMed  CAS  Google Scholar 

  59. Basso MA, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson’s disease. II Nucleus raphe magnus. J Neurosci 1996;16:7318–7330.

    PubMed  CAS  Google Scholar 

  60. Cruccu G, Pauletti G, Agostino R, Berardelli A, Manfredi M. Masseter inhibitory reflex in movement disorders. Huntington’s chorea, Parkinson’s disease, dystonia, and unilateral masticatory spasm. Electroenceph Clin Neurophysiol 1991;81:24–30.

    Article  PubMed  CAS  Google Scholar 

  61. Alfonsi E, Nappi G, Pacchetti C, et al. Changes in motoneuron excitability of masseter muscle following exteroceptive stimuli in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 1993;89:29–34

    Article  PubMed  CAS  Google Scholar 

  62. Deuschl G, Goddemeier C. Spontaneous and reflex activity of facial muscles in dystonia, Parkinson’s disease, and in normal subjects. J Neurol Neurosurg Psychiatry 1998;64:320–324.

    PubMed  CAS  Google Scholar 

  63. Davis M, Gendelman DS, Tischler MD, Gendelman PM. A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 1982;2:791–805.

    PubMed  CAS  Google Scholar 

  64. Brown P, Rothwell JC, Thompson PD, Britton TC, Day BL, Marsden CD. The hyperekplexias and their relationship to the normal startle reflex. Brain 1991;114:1903–1928.

    Article  PubMed  Google Scholar 

  65. Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL. Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 1987;22:18–25.

    Article  PubMed  CAS  Google Scholar 

  66. Malessa S, Hirsch EC, Cervera P, et al. Progressive supranuclear palsy: loss of cholinergic acetyltransferase-like immunoreactive neurons in the pontine reticular formation. Neurology 1991;41:1593–1597.

    PubMed  CAS  Google Scholar 

  67. Juncos JL, Hirsch EC, Malessa S, Duyckaerts C, Hersh LB, Agid Y. Mesencephalic cholinergic nuclei in progressive supranuclear palsy. Neurology 1991;41:25–30.

    PubMed  CAS  Google Scholar 

  68. Valls-Solé J, Solé A, Valldeoriola F, Muñoz E, González LE, Tolosa ES. Reaction time and acoustic startle. Neurosci Lett 1995;195:97–100

    Article  PubMed  Google Scholar 

  69. Valls-Solé J, Valldeoriola F, Tolosa E, Nobbe F. Habituation of the startle reaction is reduced during preparation for execution of a motor taskin normal human subjects. Brain Res 1997;751:155–159.

    Article  PubMed  Google Scholar 

  70. Valls-Solé J, Rothwell JC, Goulart F, Cossu G, Muñoz JE. Patterned ballistic movements triggered by a startle in healthy humans. J Physiol 1999;516:931–938.

    Article  PubMed  Google Scholar 

  71. Valldeoriola F, Valls-Solé J, Toloa E, Nobbe FA, Muñoz JE, Martí MJ. The acoustic startle response is normal in patients with multiple system atrophy. Mov Disord 1997;12:697–700.

    Article  PubMed  CAS  Google Scholar 

  72. Kofler M, Müller J, Seppi K, Wenning GK. Exaggerated auditory startle responses in multiple system atrophy: a comparative study of parkinson and cerebellar subtypes. Clin Neurophysiol 2003;114:541–547.

    Article  PubMed  Google Scholar 

  73. Kofler M, Müller J, Wenning G, et al. The auditory startle reaction in parkinsonian syndromes. Mov Disord 2001;16:62–71.

    Article  PubMed  CAS  Google Scholar 

  74. Ison JR, Sanes JN, Foss JA, Pinckney LA. Facilitation and inhibition of the human startle blink reflexes by stimulus anticipation. Behav Neurosci 1990;104:418–429.

    Article  PubMed  CAS  Google Scholar 

  75. Nakashima K, Shimoyama R, Yokoyama Y, Takahashi K. Auditory effects on the electrically elicited blink reflex in patients with Parkinson’s disease. Electroenceph Clin Neurophysiol 1993;89:108–112.

    Article  PubMed  CAS  Google Scholar 

  76. Lozza A, Pepin JL, Rapisarda G, Moglia A, Delwaide PJ. Functional changes of brainstem reflexes in Parkinson’s disease. Conditioning of the blink reflex R2 component by paired and index finger stimulation. J Neural Transm 1997;104:679–687.

    Article  PubMed  CAS  Google Scholar 

  77. Valls-Solé J. Neurophysiological characterization of parkinsonian syndromes. Neurophysiol Clin 2000;30:352–367.

    Article  PubMed  Google Scholar 

  78. Pierrot-Deseilligny E, Mazières L. Circuits réflexes de la moelle epinière chez l’ homme. Rev Neurol 1984;140(Part I):605–614

    PubMed  CAS  Google Scholar 

  79. Pierrot-Deseilligny E, Mazières L. Circuits réflexes de la moelle epinière chez l’ homme. Rev Neurol 1984;140(Part II):681–694.

    PubMed  CAS  Google Scholar 

  80. Rossignol S, Jones GM. Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroenceph Clin Neurophysiol 1976;41:83–92.

    Article  PubMed  CAS  Google Scholar 

  81. Delwaide P, Pepin JL, Maertens de Noordhout A. The audiospinal reaction in Parkinsonian patients reflects functional changes in reticular nuclei. Ann Neurol 1993;33:63–69

    Article  PubMed  CAS  Google Scholar 

  82. Valls-Solé J, Valldeoriola F. Neurophysiological correlate of clinical signs in Parkinson’s disease. Clinical Neurophysiology 2002;113:792–805.

    Article  PubMed  Google Scholar 

  83. Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 1994;117:835–845.

    Article  PubMed  Google Scholar 

  84. Salazar G, Valls-Solé J, Martí MJ, Chang H, Tolosa ES. Postural and action myoclonus in patients with parkinsonian type multiple system atrophy. Mov Disord 2000;15:77–83.

    Article  PubMed  CAS  Google Scholar 

  85. Gouider-Khouja N, Vidailhet M, Bonnet AM, Pichon J, Agid Y. “Pure” striatonigral degeneration and Parkinson’s disease: a comparative clinical study. Mov Disord 1995;10:288–294.

    Article  PubMed  CAS  Google Scholar 

  86. Patel S, Slater P. Analysis of the brain regions involved in myoclonus produced by intracerebral picrotoxin. Neuroscience 1987;20:687–693.

    Article  PubMed  CAS  Google Scholar 

  87. Thompson PD, Day BL, Rothwell JC, Brown P, Britton TC, Marsden CD. The myoclonus in corticobasal degeneration. Evidence for two forms of cortical reflex myoclonus. Brain 1994;117:1197–1208.

    Article  PubMed  Google Scholar 

  88. Gibb WRG, Luthert PJ, Marsden CD. Corticobasal degeneration Brain 1989;112:1171–1192.

    Article  PubMed  Google Scholar 

  89. Brunt ERP, vanWeerden TW, Pruim J, Lakke JWPF. Unique myoclonic pattern in corticobasal degeneration. Mov Disord 1995;10:132–142.

    Article  PubMed  CAS  Google Scholar 

  90. Sutton GG, Mayer RF. Focal reflex myoclonus. J Neurol Neurosurg Psychiatry 1974;37:207–217.

    PubMed  CAS  Google Scholar 

  91. Mauguière F, Desmedt JE, Courjon J. Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions: detailed correlations with clinical signs and computerized tomographic scanning. Brain 1983;106:271–311.

    Article  PubMed  Google Scholar 

  92. Caccia MR, McComas AJ, Upton ARM, Blogg T. Cutaneous reflexes in small muscles of the hand. J Neurol Neursurg Psychiatry 1973;36:960–977.

    CAS  Google Scholar 

  93. Jenner JR, Stephens JA. Cutaneous reflex responses and their central nervous pathways studied in man. J Physiol 1982;333:405–419.

    PubMed  CAS  Google Scholar 

  94. Gilman S, Low PA, Quinn N, et al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 1999;163:94–98.

    Article  PubMed  CAS  Google Scholar 

  95. Horimoto Y, Matsumoto M, Akatsu H, et al. Autonomic dysfunctions in dementia with Lewy bodies. J Neurol 2003;250:530–533.

    Article  PubMed  Google Scholar 

  96. Benarroch EE, Chang FLF. Central autonomic disorders. J Clin Neurophysiol 1993;10:39–50.

    Article  PubMed  CAS  Google Scholar 

  97. Holand S, Girard A, Laude D, Meyer-Bisch C, Elghozi JL. Effects of an auditory startle stimulus on blood pressure and heart rate in humans. J Hypertens 1999;17:1893–1897.

    Article  PubMed  CAS  Google Scholar 

  98. Valls-Solé J, Veciana M, León L, Valldeoriola F. Effects of a startle on heart rate in patients with multiple system atrophy. Mov Disord 2002;17:546–549.

    Article  PubMed  Google Scholar 

  99. Shahani BW, Halperin JJ, Boulu P, Cohen J. Sympathetic skin response: a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. J Neurol Neurosurg Psychiatry 1984;47:536–542.

    PubMed  CAS  Google Scholar 

  100. Bordet R, Benhadjali J, Destee A, Hurtevent JF, Bourriez JL, Guieu JD. Sympathetic skin response and R-R interval variability in multiple system atrophy and idiopathic Parkinson’s disease. Mov Dis 1996;11:268–272.

    Article  CAS  Google Scholar 

  101. Baser SM, Meer J, Polinsky RJ, Hallett M. Sudomotor function in autonomic failure. Neurology 1991;41:1564–1566.

    PubMed  CAS  Google Scholar 

  102. Plazzi G, Corsini R, Provini F, et al. REM sleep behavior disorders in multiple system atrophy. Neurology 1997;48:1094–1097.

    PubMed  CAS  Google Scholar 

  103. Bannister R, Gibson W, Michaels L, Oppenheimer DR. Laryngeal abductor paralsysis in multiple system atrophy. A report on three necropsied cases, with observation on the laryngeal muscles and the nuclei ambigui. Brain 1981;104:351–368.

    Article  PubMed  CAS  Google Scholar 

  104. Isozaki E, Naito A, Horiguchi S, Kawamura R, Hayashida T, Tanabe H. Early diagnosis and stage classification of vocal cord abductor paralysis in patients with multiple system atrophy. J Neurol Neurosurg Psychiatry 1996;60:399–402.

    PubMed  CAS  Google Scholar 

  105. Iranzo A, Santamaría J, Tolosa E, et al. Continuous positive air pressure eliminates nocturnal stridor in multiple system atrophy. The Lancet 2000;356:1329–1330.

    Article  CAS  Google Scholar 

  106. Turner RS. Idiopathic rapid eye movement sleep behavior disorder is a harbinger of dementia with Lewy bodies. J Geriatr Psychiatry Neurol 2002;15:195–199.

    PubMed  Google Scholar 

  107. Boeve BF, Silber MH, Parisi JE, et al. Synucleinopathy pathology and REM sleep behavior disorder plus dementia or parkinsonism. Neurology 2003;61:40–45.

    PubMed  CAS  Google Scholar 

  108. Kirby R, Fowler CJ, Gosling J, Bannister R. Urethro-vesical dysfunction in progressive autonomic failure with multiple system atrophy. J Neurol Neurosurg Psychiatry 1986;49:554–562.

    PubMed  CAS  Google Scholar 

  109. Sakuta M, Nakanishi T, Toyokura Y. Anal muscle electromyograms differ in amyotrophic lateral sclerosis and Shy-Drager syndrome. Neurology 1978;28:1289–1293.

    PubMed  CAS  Google Scholar 

  110. Eardley I, Quinn NP, Fowler CJ, et al. The value of urethral sphincter electromyography in the differential diagnosis of parkinsonism. Br J Urol 1989;64:360–362.

    PubMed  CAS  Google Scholar 

  111. Valldeoriola F, Valls-Solé J, Tolosa ES, Martí MJ. Striated anal sphincter denervation in patients with progressive supranuclear palsy. Mov Disord 1995;10:550–555.

    Article  PubMed  CAS  Google Scholar 

  112. Giladi N, Simon ES, Korczyn AD, et al. Anal sphincter EMG does not distinguish between multiple system atrophy and Parkinson’s disease. Muscle Nerve 2000;23:731–734.

    Article  PubMed  CAS  Google Scholar 

  113. Rodi Z, Denislic M, Vodusek DB. External anal sphincter electromyography in the differential diagnosis of parkinsonism. J Neurol Neurosurg Psychiatry 1996;60:460–461.

    Article  PubMed  CAS  Google Scholar 

  114. Libelius R, Johansson F. Quantitative electromyography of the external anal sphincter in Parkinson’s disease and multiple system atrophy. Muscle Nerve 2000;23:1250–1256.

    Article  PubMed  CAS  Google Scholar 

  115. Kiff ES, Swash M. Slowed conduction in the pudendal nerves in idiopathic (neurogenic) faecal incontinence. Br J Surg 1984;71:614–616.

    Article  PubMed  CAS  Google Scholar 

  116. Podnar S, Vodusek DB. Standardization of anal sphincter electromyography: effect of chronic constipation. Muscle Nerve 2000;23:1748–1751.

    Article  PubMed  CAS  Google Scholar 

  117. Abbruzzese G, Marchese R, Trompetto C. Sensory and motor evoked potentials in multiple system atrophy: a comparative study with Parkinson’s disease. Mov Disord 1997;12:315–321.

    Article  PubMed  CAS  Google Scholar 

  118. Cruz Martinez A, Arpa J, Alonso M, Palomo F, Villoslada C. Transcranial magnetic stimulation in multiple system and late onset cerebellar atrophies. Acta Neurol Scand 1995;92:218–224.

    Article  PubMed  CAS  Google Scholar 

  119. Lu CS, Ikeda A, Terada K, et al. Electrophysiological studies of early stage corticobasal degeneration. Mov Disord 1998;13:140–146.

    Article  PubMed  CAS  Google Scholar 

  120. Strafella A, Ashby P, Lang AE. Reflex myoclonus in cortical-basal ganglionic degeneration involves a transcortical pathway. Mov Disord 1997;12:360–369.

    Article  PubMed  CAS  Google Scholar 

  121. Goldberg G, Mayer NH, Toglia JU. Medial frontal cortex infarction and the alien hand sign. Arch Neurol 1981;38:683–686.

    PubMed  CAS  Google Scholar 

  122. Feinberg TE, Schindler RJ, Flanagan NG, Haber LD. Two alien hand syndromes. Neurology 1992;42:19–24.

    PubMed  CAS  Google Scholar 

  123. Valls-Solé J, Tolosa E, Martí MJ, et al. Examination of motor output pathways in patients with corticobasal ganglionic degeneration using transcranial magnetic stimulation. Brain 2001;124:1131–1137.

    Article  PubMed  Google Scholar 

  124. Marchese R, Trompetto C, Buccolieri A, Abbruzzese G. Abnormalities of motor cortical excitability are not correlated with clinical features in atypical parkinsonism. Mov Disord 2000;15:1210–1214.

    Article  PubMed  CAS  Google Scholar 

  125. Hanajima R, Ugawa Y, Terao Y, Ogata K, Kanazawa I. Ipsilateral cortico-cortical inhibition of the motor cortex in various neurological disorders. J Neurol Sci 1996;140:109–116.

    Article  PubMed  CAS  Google Scholar 

  126. Frasson E, Bertolasi L, Bertasi V, et al. Paired transcranial magnetic stimulation for the early diagnosis of corticobasal ganglionic degeneration. Clin Neurophysiol 2003;114:272–278.

    Article  PubMed  CAS  Google Scholar 

  127. Goulart F, Valls-Solé J, Alvarez R. Posture-related modification of soleus H reflex excitability. Muscle Nerve 2000;23:925–932.

    Article  PubMed  CAS  Google Scholar 

  128. Rossini PM, Babiloni F, Bernardi G, et al. Abnormalities of short-latency somatosensory evoked potentials in parkinsonian patients. Electroenceph Clin Neurophysiol 1989;74:277–289.

    Article  PubMed  CAS  Google Scholar 

  129. Rossini PM, Filippi MM, Vernieri F. Neurophysiology of sensorimotor integration in Parkinson’s disease. Clin Neurosci 1998;5:121–130.

    Article  PubMed  CAS  Google Scholar 

  130. Kofler M, Müller J, Reggiani L, Wenning GK. Somatosensory evoked potentials in progressive supranuclear palsy. J Neurol Sci 2000;179:85–91.

    Article  PubMed  CAS  Google Scholar 

  131. Miwa H, Mizuno Y. Enlargements of somatosensory-evoked potentials in progressive supranuclear palsy. Acta Neurol Scand 2002;106:209–212.

    Article  PubMed  CAS  Google Scholar 

  132. Deecke L, Englitz HG, Kornhuber HH, Schmitt G. Cerebral potential preceding voluntary movement in patients with bilateral or unilateral Parkinson akinesia. In: Desmedt JE, ed. Progress in Clinical Neurophysiology, vol. 1. Basel: Karger, 1977:151–163.

    Google Scholar 

  133. Rizzo V, Siebner HR, Modugno N, et al. Shaping the excitability of human motor cortex with premotor rTMS. J Physiol 2004;554:483–495.

    Article  PubMed  CAS  Google Scholar 

  134. Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M. Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 1994;44:892–898.

    PubMed  CAS  Google Scholar 

  135. Ikeguchi M, Touge T, Nishiyama Y, Takeuchi H, Kuriyama S, Ohkawa M. Effects of successive repetitive transcranial magnetic stimulation on motor performances and brain perfusion in idiopathic Parkinson’s disease. J Neurol Sci 2003;209:41–46.

    Article  PubMed  Google Scholar 

  136. Okabe S, Ugawa Y, Kanazawa I. Effectiveness of rTMS on Parkinson’s Disease Study Group. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 2003;18:382–388.

    Article  PubMed  Google Scholar 

  137. Gerschlager W, Alesch F, Cunnington R, et al. Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson’s disease. An electrophysiological study of the contingent negative variation. Brain 1999;122:2365–2373.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Valls-Solé, J. (2005). Role of Electrophysiology in Diagnosis and Research in Atypical Parkinsonian Disorders. In: Litvan, I. (eds) Atypical Parkinsonian Disorders. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-834-X:409

Download citation

  • DOI: https://doi.org/10.1385/1-59259-834-X:409

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-331-2

  • Online ISBN: 978-1-59259-834-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics