Skip to main content

Genetics of Atypical Parkinsonism

Implications for Nosology

  • Chapter
Atypical Parkinsonian Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Parkinson’s disease (PD) is traditionally defined as a clinico-pathologic entity, characterized by a core syndrome of akinesia, rigidity, tremor, and postural instability, and pathologically by a more or less selective degeneration of dopaminergic neurons of the substantia nigra, leading to a deficiency of dopamine in the striatal projection areas of these neurons. Characteristic eosinophilic inclusions, the Lewy bodies (LBs), are found in surviving dopaminergic neurons but also, although less abundantly, in other parts of the brain in most cases (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Gibb WR, Lees AJ. The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol Appl Neurobiol 1989;15(1):27–44.

    PubMed  CAS  Google Scholar 

  2. Perl DP, Olanow CW, Calne D. Alzheimer’s disease and Parkinson’s disease: distinct entities or extremes of a spectrum of neurodegeneration? Ann Neurol 1998;44(3 Suppl 1):S19–S31.

    PubMed  CAS  Google Scholar 

  3. Hardy J, Duff K, Hardy KG, Perez-Tur J, Hutton M. Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat Neurosci 1998;1(5):355–358.

    Article  PubMed  CAS  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997;276:2045–2047.

    Article  PubMed  CAS  Google Scholar 

  5. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 1998;273(41):26292–26294.

    Article  PubMed  CAS  Google Scholar 

  6. McLean PJ, Kawamata H, Ribich S, Hyman BT. Membrane association and protein conformation of alpha-synuclein in intact neurons. Effect of Parkinson’s disease-linked mutations. J Biol Chem 2000;275(12): 8812–8816.

    Article  PubMed  CAS  Google Scholar 

  7. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000;25(1):239–252.

    Article  PubMed  CAS  Google Scholar 

  8. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998; 251(3):205–208.

    Article  PubMed  CAS  Google Scholar 

  9. Neumann M, Adler S, Schluter O, Kremmer E, Benecke R, Kretzschmar HA. Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol (Berl) 2000;100(5):568–574.

    Article  CAS  Google Scholar 

  10. Giasson BI, Uryu K, Trojanowski JQ, Lee VM. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 1999;274(12):7619–7622.

    Article  PubMed  CAS  Google Scholar 

  11. Biere AL, Wood SJ, Wypych J, Steavenson S, Jiang Y, Anafi D, et al. Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta-and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 2000;275(44):34574–34579.

    Article  PubMed  CAS  Google Scholar 

  12. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PTJ. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 2000;97(2):571–576.

    Article  PubMed  CAS  Google Scholar 

  13. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998;4(11):1318–1320.

    Article  PubMed  CAS  Google Scholar 

  14. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, et al. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 1999;10(4):717–721.

    Article  PubMed  CAS  Google Scholar 

  15. Conway KA, Rochet JC, Bieganski RM, Lansbury PT, Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 2001;294(5545):1346–1349.

    Article  PubMed  CAS  Google Scholar 

  16. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2001;2(8):589–594.

    Article  PubMed  CAS  Google Scholar 

  17. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 2001;297(3):191–194.

    Article  PubMed  CAS  Google Scholar 

  18. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, et al. Ala39Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998;18:106–108.

    Article  PubMed  Google Scholar 

  19. Golbe LI, Di Iorio G, Sanges G, Lazzarini A, LaSala S, Bonavita V, et al. Clinical genetic analysis of Parkinson’s disease in the Contursi kindred. Ann Neurol 1996;40:767–775.

    Article  PubMed  CAS  Google Scholar 

  20. Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 2001;49(3): 313–319.

    Article  PubMed  CAS  Google Scholar 

  21. Duda JE, Giasson BI, Mabon ME, Miller DC, Golbe LI, Lee VM et al. Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol (Berl) 2002;104(1):7–11.

    Article  CAS  Google Scholar 

  22. Galloway PG, Bergeron C, Perry G. The presence of tau distinguishes Lewy bodies of diffuse Lewy body disease from those of idiopathic Parkinson disease. Neurosci Lett 1989;100(1–3):6–10.

    Article  PubMed  CAS  Google Scholar 

  23. Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004;55(2):164–173.

    Article  PubMed  CAS  Google Scholar 

  24. Markopoulou K, Wszolek ZK, Pfeiffer RF. A Greek-American kindred with autosomal dominant, levodopa-responsive parkinsonism and anticipation. Ann Neurol 1995;38(3):373–378.

    Article  PubMed  CAS  Google Scholar 

  25. Papadimitriou A, Veletza V, Hadjigeorgiou GM, Patrikiou A, Hirano M, Anastasopoulos I. Mutated alpha-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology 1999;52(3): 651–654.

    PubMed  CAS  Google Scholar 

  26. Muenter MD, Forno LS, Hornykiewicz O, Kish SJ, Maraganore DM, Caselli RJ et al. Hereditary form of parkinsonism —dementia. Ann Neurol 1998;43(6):768–781.

    Article  PubMed  CAS  Google Scholar 

  27. Waters CH, Miller CA. Autosomal dominant Lewy body parkinsonism in a four-generation family. Ann Neurol 1994;35(1):59–64.

    Article  PubMed  CAS  Google Scholar 

  28. Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH, et al. Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol (Berl) 2000;99(6):663–672.

    Article  CAS  Google Scholar 

  29. Farrer M, Gwinn-Hardy K, Muenter M, Wavrant DF, Crook R, Perez-Tur J, et al. A chromosome 4p haplotype segregating with Parkinson’s disease and postural tremor. Hum Mol Genet 1999;8(1):81–85.

    Article  PubMed  CAS  Google Scholar 

  30. Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003;302(5456):841.

    Article  PubMed  CAS  Google Scholar 

  31. McKeith IG. Dementia with Lewy bodies. Br J Psychiatry 2002;180(2):144–147.

    Article  PubMed  Google Scholar 

  32. Dickson DW, Davies P, Mayeux R, Crystal H, Horoupian DS, Thompson A, et al. Diffuse Lewy body disease. Neuropathological and biochemical studies of six patients. Acta Neuropathol (Berl) 1987;75(1):8–15.

    Article  CAS  Google Scholar 

  33. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 1993;50(2):140–148.

    PubMed  CAS  Google Scholar 

  34. Colosimo C, Hughes AJ, Kilford L, Lees AJ. Lewy body cortical involvement may not always predict dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003;74(7):852–856.

    Article  PubMed  CAS  Google Scholar 

  35. Tsuang DW, Dalan AM, Eugenio CJ, Poorkaj P, Limprasert P, La Spada AR, et al. Familial dementia with lewy bodies: a clinical and neuropathological study of 2 families. Arch Neurol 2002;59(10):1622–1630.

    Article  PubMed  Google Scholar 

  36. Wakabayashi K, Hayashi S, Ishikawa A, Hayashi T, Okuizumi K, Tanaka H, et al. Autosomal dominant diffuse Lewy body disease. Acta Neuropathol (Berl) 1998;96(2):207–210.

    Article  CAS  Google Scholar 

  37. Arai Y, Yamazaki M, Mori O, Muramatsu H, Asano G, Katayama Y. Alpha-synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation. Brain Res 2001; 888(2):287–296.

    Article  PubMed  CAS  Google Scholar 

  38. Wszolek K, Gwinn-Hardy K, Wszolek K, Muenter D, Pfeiffer F, Rodnitzky L, et al. Neuropathology of two members of a German-American kindred (Family C) with late onset parkinsonism. Acta Neuropathol (Berl) 2002;103(4): 344–350.

    Article  CAS  Google Scholar 

  39. Gasser T, Müller-Myhsok B, Wszolek ZK, Oehlmann R, Calne DB, Bonifati V, et al. A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nat Genet 1998;18:262–265.

    Article  PubMed  CAS  Google Scholar 

  40. Wszolek ZK, Cordes M, Calne DB, Munter MD, Cordes I, Pfeifer RF. Hereditary Parkinson disease: report of 3 families with dominant autosomal inheritance. Nervenarzt 1993;64(5):331–335.

    PubMed  CAS  Google Scholar 

  41. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123):921–923.

    Article  PubMed  CAS  Google Scholar 

  42. Apolipoprotein E genotype in familial Parkinson’s disease. The French Parkinson’s Disease Genetics Study Group. J Neurol Neurosurg Psychiatry 1997;63(3):394–395.

    Google Scholar 

  43. Benjamin R, Leake A, Edwardson JA, McKeith IG, Ince PG, Perry RH, et al. Apolipoprotein E genes in Lewy body and Parkinson’s disease [letter]. Lancet 1994;343(8912):1565–1565.

    Article  PubMed  CAS  Google Scholar 

  44. Arai H, Higuchi S, Muramatsu T, Iwatsubo T, Sasaki H, Trojanowski JQ. Apolipoprotein E gene in diffuse Lewy body disease with or without co-existing Alzheimer’s disease [letter]. Lancet 1994;344(8932): 1307–1307.

    Article  PubMed  CAS  Google Scholar 

  45. Hardy J, Crook R, Prihar G, Roberts G, Raghavan R, Perry R. Senile dementia of the Lewy body type has an apolipoprotein E epsilon 4 allele frequency intermediate between controls and Alzheimer’s disease. Neurosci Lett 1994;182(1):1–2.

    Article  PubMed  CAS  Google Scholar 

  46. Koller WC, Glatt SL, Hubble JP, Paolo A, Troster AI, Handler MS, et al. Apolipoprotein E genotypes in Parkinson’s disease with and without dementia. Ann Neurol 1995;37(2):242–245.

    Article  PubMed  CAS  Google Scholar 

  47. Lippa CF, Smith TW, Saunders AM, Crook R, Pulaski Salo D, Davies P, et al. Apolipoprotein E genotype and Lewy body disease. Neurology 1995;45(1):97–103.

    PubMed  CAS  Google Scholar 

  48. St Clair D, Norrman J, Perry R, Yates C, Wilcock G, Brookes A. Apolipoprotein E epsilon 4 allele frequency in patients with Lewy body dementia, Alzheimer’s disease and age-matched controls. Neurosci Lett 1994; 176(1):45–46.

    Article  PubMed  CAS  Google Scholar 

  49. Egensperger R, Bancher C, Kosel S, Jellinger K, Mehraein P, Graeber MB. The apolipoprotein E epsilon 4 allele in Parkinson’s disease with Alzheimer lesions. Biochem Biophys Res Commun 1996;224(2):484–486.

    Article  PubMed  CAS  Google Scholar 

  50. Mattila PM, Koskela T, Roytta M, Lehtimaki T, Pirttila TA, Ilveskoski E, et al. Apolipoprotein E epsilon4 allele frequency is increased in Parkinson’s disease only with co-existing Alzheimer pathology. Acta Neuropathol (Berl) 1998;96(4):417–420.

    Article  CAS  Google Scholar 

  51. Olichney JM, Hansen LA, Galasko D, Saitoh T, Hofstetter CR, Katzman R, et al. The apolipoprotein E epsilon 4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer’s disease and Lewy body variant. Neurology 1996;47(1):190–196.

    PubMed  CAS  Google Scholar 

  52. Wakabayashi K, Kakita A, Hayashi S, Okuizumi K, Onodera O, Tanaka H, et al. Apolipoprotein E epsilon4 allele and progression of cortical Lewy body pathology in Parkinson’s disease. Acta Neuropathol (Berl) 1998; 95(5):450–454.

    Article  CAS  Google Scholar 

  53. Bang OY, Kwak YT, Joo IS, Huh K. Important link between dementia subtype and apolipoprotein E: a meta-analysis. Yonsei Med J 2003;44(3):401–413.

    PubMed  CAS  Google Scholar 

  54. Pericak-Vance MA, Bass MP, Yamaoka LH, Gaskell PC, Scott WK, Terwedow HA, et al. Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA 1997;278(15): 1237–1241.

    Article  PubMed  CAS  Google Scholar 

  55. Scott WK, Grubber JM, Conneally PM, Small GW, Hulette CM, Rosenberg CK, et al. Fine mapping of the chromosome 12 late-onset Alzheimer disease locus: potential genetic and phenotypic heterogeneity. Am J Hum Genet 2000; 66(3):922–932.

    Article  PubMed  CAS  Google Scholar 

  56. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 2002;51(3):296–301.

    Article  PubMed  CAS  Google Scholar 

  57. Zimprich A, Muller-Myhsok B, Farrer M, et al. The PARK8 locus in autosomal dominant Parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet 2004;74(1):11–19.

    Article  PubMed  CAS  Google Scholar 

  58. Cho S, Kim CH, Cubells JF, Zabetian CP, Hwang DY, Kim JW, et al. Variations in the dopamine beta-hydroxylase gene are not associated with the autonomic disorders, pure autonomic failure, or multiple system atrophy. Am J Med Genet 2003;120A(2):234–236.

    Article  PubMed  Google Scholar 

  59. Morris HR, Schrag A, Nath U, Burn D, Quinn NP, Daniel S et al. Effect of ApoE and tau on age of onset of progressive supranuclear palsy and multiple system atrophy. Neurosci Lett 2001;312(2):118–120.

    Article  PubMed  CAS  Google Scholar 

  60. Plante-Bordeneuve V, Bandmann O, Wenning G, Quinn NP, Daniel SE, Harding AE. CYP2D6-debrisoquine hydroxylase gene polymorphism in multiple system atrophy. Mov Disord 1995;10(3):277–278.

    Article  PubMed  CAS  Google Scholar 

  61. Reed LA, Wszolek ZK, Hutton M. Phenotypic correlations in FTDP-17. Neurobiol Aging 2001;22(1): 89–107.

    Article  PubMed  CAS  Google Scholar 

  62. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001;24: 1121–59.:1121–1159.

    Article  PubMed  CAS  Google Scholar 

  63. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 1997; 41(6): 706–715.

    Article  PubMed  CAS  Google Scholar 

  64. Wilhelmsen KC, Lynch T, Pavlou E, Higgins M, Nygaard TG. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet 1994;55(6): 1159–1165.

    PubMed  CAS  Google Scholar 

  65. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998;393(6686): 702–705.

    Article  PubMed  CAS  Google Scholar 

  66. Hutton M. Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanisms. Neurology 2001;56(11 Suppl 4):S21–S25.

    PubMed  CAS  Google Scholar 

  67. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998;282(5395):1914–1917.

    Article  PubMed  CAS  Google Scholar 

  68. Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 1998;8(2):387–402.

    Article  PubMed  CAS  Google Scholar 

  69. Yasuda M, Takamatsu J, D’Souza I, Crowther RA, Kawamata T, Hasegawa M, et al. A novel mutation at position +12 in the intron following exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto). Ann Neurol 2000;47(4):422–429.

    Article  PubMed  CAS  Google Scholar 

  70. Delisle MB, Murrell JR, Richardson R, Trofatter JA, Rascol O, Soulages X, et al. A mutation at codon 279 (N279K) in exon 10 of the Tau gene causes a tauopathy with dementia and supranuclear palsy. Acta Neuropathol (Berl) 1999;98(1):62–77.

    Article  CAS  Google Scholar 

  71. Tsuboi Y, Uitti RJ, Delisle MB, Ferreira JJ, Brefel-Courbon C, Rascol O, et al. Clinical features and disease haplotypes of individuals with the N279K tau gene mutation: a comparison of the pallidopontonigral degeneration kindred and a French family. Arch Neurol 2002;59(6):943–950.

    Article  PubMed  Google Scholar 

  72. Wszolek ZK, Pfeiffer RF, Bhatt MH, Schelper RL, Cordes M, Snow BJ, et al. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol 1992;32(3): 312–320.

    Article  PubMed  CAS  Google Scholar 

  73. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 1998;95(22):13103–13107.

    Article  PubMed  CAS  Google Scholar 

  74. Reed LA, Schmidt ML, Wszolek ZK, Balin BJ, Soontornniyomkij V, Lee VM, et al. The neuropathology of a chromosome 17-linked autosomal dominant parkinsonism and dementia (“pallido-ponto-nigral degeneration”). J Neuropathol Exp Neurol 1998;57(6):588–601.

    PubMed  CAS  Google Scholar 

  75. Sperfeld AD, Collatz MB, Baier H, Palmbach M, Storch A, Schwarz J, et al. FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann Neurol 1999;46(5):708–715.

    Article  PubMed  CAS  Google Scholar 

  76. Goedert M, Spillantini MG, Crowther RA, Chen SG, Parchi P, Tabaton M, et al. Tau gene mutation in familial progressive subcortical gliosis. Nat Med 1999;5(4):454–457.

    Article  PubMed  CAS  Google Scholar 

  77. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 1998;95(13):7737–7741.

    Article  PubMed  CAS  Google Scholar 

  78. Rizzini C, Goedert M, Hodges JR, Smith MJ, Jakes R, Hills R, et al. Tau gene mutation K257T causes a tauopathy similar to Pick’s disease. J Neuropathol Exp Neurol 2000;59(11):990–1001.

    PubMed  CAS  Google Scholar 

  79. Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M, et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 1999;58(6): 667–677.

    PubMed  CAS  Google Scholar 

  80. Mirra SS, Murrell JR, Gearing M, Spillantini MG, Goedert M, Crowther RA, et al. Tau pathology in a family with dementia and a P301L mutation in tau. J Neuropathol Exp Neurol 1999;58(4):335–345.

    Article  PubMed  CAS  Google Scholar 

  81. Nasreddine ZS, Loginov M, Clark LN, Lamarche J, Miller BL, Lamontagne A, et al. From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol 1999;45(6):704–715.

    Article  PubMed  CAS  Google Scholar 

  82. Houlden H, Baker M, Adamson J, Grover A, Waring S, Dickson D, et al. Frequency of tau mutations in three series of non-Alzheimer’s degenerative dementia. Ann Neurol 1999;46(2):243–248.

    Article  PubMed  CAS  Google Scholar 

  83. Pastor P, Pastor E, Carnero C, Vela R, Garcia T, Amer G, et al. Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol 2001;49(2): 263–267.

    Article  PubMed  CAS  Google Scholar 

  84. Stanford PM, Halliday GM, Brooks WS, Kwok JB, Storey CE, Creasey H, et al. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: Expansion of the disease phenotype caused by tau gene mutations. Brain 2000;123(Pt 5):880–893.

    Article  PubMed  Google Scholar 

  85. Wszolek ZK, Tsuboi Y, Uitti RJ, Reed L, Hutton ML, Dickson DW. Progressive supranuclear palsy as a disease phenotype caused by the S305S tau gene mutation. Brain 2001;124(Pt 8):1666–1670.

    Article  PubMed  CAS  Google Scholar 

  86. Morris HR, Osaki Y, Holton J, Lees AJ, Wood NW, Revesz T, et al. Tau exon 10 +16 mutation FTDP-17 presenting clinically as sporadic young onset PSP. Neurology 2003;61(1):102–104.

    PubMed  CAS  Google Scholar 

  87. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47(1):1–9.

    PubMed  CAS  Google Scholar 

  88. Conrad C, Andreadis A, Trojanowski JQ, Dickson DW, Kang D, Chen X, et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 1997;41(2):277–281.

    Article  PubMed  CAS  Google Scholar 

  89. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999;8(4):711–715.

    Article  PubMed  CAS  Google Scholar 

  90. Pastor P, Ezquerra M, Tolosa E, Munoz E, Marti MJ, Valldeoriola F, et al. Further extension of the H1 haplotype associated with progressive supranuclear palsy. Mov Disord 2002;17(3):550–556.

    Article  PubMed  Google Scholar 

  91. Di Maria E, Tabaton M, Vigo T, Abbruzzese G, Bellone E, Donati C, et al. Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 2000;47(3):374–377.

    Article  PubMed  Google Scholar 

  92. Houlden H, Baker M, Morris HR, MacDonald N, Pickering-Brown S, Adamson J, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001;56(12):1702–1706.

    PubMed  CAS  Google Scholar 

  93. Pastor P, Ezquerra M, Munoz E, Marti MJ, Blesa R, Tolosa E, et al. Significant association between the tau gene A0/A0 genotype and Parkinson’s disease. Ann Neurol 2000;47(2):242–245.

    Article  PubMed  CAS  Google Scholar 

  94. de Silva R, Hardy J, Crook J, Khan N, Graham E, Morris C, et al. The tau locus is not significantly associated with pathologically confirmed sporadic Parkinson’s disease. Neurosci Lett 2002;330(2):201.

    Article  PubMed  Google Scholar 

  95. Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 2001;286(18):2239–2244.

    Article  PubMed  CAS  Google Scholar 

  96. Wszolek ZK, Pfeiffer B, Fulgham JR, Parisi JE, Thompson BM, Uitti RJ, et al. Western Nebraska family (family D) with autosomal dominant parkinsonism. Neurology 1995;45(3 Pt 1):502–505.

    PubMed  CAS  Google Scholar 

  97. Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72(6):971–983.

    Article  Google Scholar 

  98. van Dijk JG, van der Velde EA, Roos RA, Bruyn GW. Juvenile Huntington disease. Hum Genet 1986;73(3):235–239.

    Article  PubMed  Google Scholar 

  99. Racette BA, Perlmutter JS. Levodopa responsive parkinsonism in an adult with Huntington’s disease. J Neurol Neurosurg Psychiatry 1998;65(4):577–579.

    Article  PubMed  CAS  Google Scholar 

  100. Reuter I, Hu MT, Andrews TC, Brooks DJ, Clough C, Chaudhuri KR. Late onset levodopa responsive Huntington’s disease with minimal chorea masquerading as Parkinson plus syndrome. J Neurol Neurosurg Psychiatry 2000;68(2):238–241.

    Article  PubMed  CAS  Google Scholar 

  101. Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol 1997;42(6):924–932.

    Article  PubMed  CAS  Google Scholar 

  102. Tuite PJ, Rogaeva EA, St George Hyslop PH, Lang AE. Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann Neurol 1995;38(4):684–687.

    Article  PubMed  CAS  Google Scholar 

  103. Gwinn-Hardy K, Singleton A, O’Suilleabhain P, Boss M, Nicholl D, Adam A, et al. Spinocerebellar ataxia type 3 phenotypically resembling Parkinson disease in a black family. Arch Neurol 2001;58(2): 296–299.

    Article  PubMed  CAS  Google Scholar 

  104. Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 2000;55(6):800–805.

    PubMed  CAS  Google Scholar 

  105. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 2001;28(4):345–349.

    Article  PubMed  CAS  Google Scholar 

  106. Wszolek ZK, Pfeiffer RF, Tsuboi Y, et al. Autosomal dominant Parkinsonism associated with variable synuclein and tau pathology. Neurology 2004, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gasser, T. (2005). Genetics of Atypical Parkinsonism. In: Litvan, I. (eds) Atypical Parkinsonian Disorders. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-834-X:139

Download citation

  • DOI: https://doi.org/10.1385/1-59259-834-X:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-331-2

  • Online ISBN: 978-1-59259-834-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics