Role of Visuospatial Cognition Assessment in the Diagnosis and Research of Atypical Parkinsonian Disorders

  • Paolo Nichelli
  • Anna Magherini
Chapter
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Visuospatial abilities play a pivotal role in our daily living. Indeed, our survival depends, to a great extent, on our ability to navigate sensory space. This means our ability to use spatial maps dependent on visual, tactile, and auditory information to form and guide motor programs. Visuospatial abilities are complex brain operations requiring integration of occipital, parietal, and frontal lobe function, as well as the contribution of subcortical structures. Consequently, it is not surprising that visuospatial skills are often impaired in diseases with movement disorders—an impairment that depends both on the type and on the stage of the disease in question.

Keywords

Depression Dopamine Transportation Dementia Retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. New York: Clarendon, 1978.Google Scholar
  2. 2.
    Grüsser OJ. Multimodal structure of the extrapersonal space. In: Hein A, Jeannerod M, eds. Spatially Oriented Behavior. New York: Springer-Verlag, 1987:327–352.Google Scholar
  3. 3.
    Rizzolatti G, Gentilucci M, Matelli M. Selective spatial attention: One centre, one circuit, or many centres? In: Posner MI, Marin OSM, eds. Attention and Performance IX. Hillsdale, NJ: Erlbaum, 1985:251–265.Google Scholar
  4. 4.
    Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci 1992;15:20–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Ungerleider LG, Haxby JV. “What” and “where” in the human brain. Curr Opin Neurobiol 1994;4:157–165.PubMedCrossRefGoogle Scholar
  6. 6.
    Warrington EK, Rabin P. Perceptual matching in patients with cerebral lesions. Neuropsychologia 1970;8:475–487.PubMedCrossRefGoogle Scholar
  7. 7.
    Hannay HJ, Varney NR, Benton AL. Visual localization in patients with unilateral disease. J Neurol Neurosurg Psychiatry 1976;39:307–313.PubMedGoogle Scholar
  8. 8.
    Benton AL, Varney NR, Hamsher KD. Visuospatial judgment: a clinical test. Arch Neurol 1978;35:364–367.PubMedGoogle Scholar
  9. 9.
    Boller F, Passafiume D, Keefe NC, Rogers K, Morrow L, Kim Y. Visuospatial impairment in Parkinson’s disease: Role of perceptual and motor factors. Arch Neurol 1984;41:485–490.PubMedGoogle Scholar
  10. 10.
    Goldenberg G, Wimmer A, Auff E, Schnaberth G. Impairment of motor planning in patients with Parkinson’s disease: evidence from ideomotor apraxia testing. J Neurol Neurosurg Psychiatry 1986;49:1266–1272.PubMedGoogle Scholar
  11. 11.
    Richards M, Cote LJ, Stern Y. The relationship between visuospatial ability and perceptual motor function in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1993;56:400–406.PubMedGoogle Scholar
  12. 12.
    Levin BE, Llabre MM, Weiner WJ. Cognitive impairment associated with early Parkinson’s disease. Neurology 1989;39:557–561.PubMedGoogle Scholar
  13. 13.
    Levin BE. Spatial cognition in Parkinson disease. Alzheimer Dis Assoc Disord 1990;4:161–170.PubMedCrossRefGoogle Scholar
  14. 14.
    Montse A, Pere V, Carme J, Francesc V, Eduardo T. Visuospatial deficits in Parkinson’s disease assessed by judgment of line orientation test: error analyses and practice effects. J Clin Exp Neuropsychol 2001;23.:592–598.PubMedGoogle Scholar
  15. 15.
    Girotti FS, Soliveri P, Carella F, et al. Dementia and cognitive impairment in Parkinson’s disease. Neurology 1988;51:1498–1502.Google Scholar
  16. 16.
    Livingston M, Hubel D. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 1988;240:740–749.CrossRefGoogle Scholar
  17. 17.
    Parker AJ, Cumming BG, Johnston EB, Hurlbert AC. Multiple cues for three-dimensional shape. In: Gazzaniga MS, ed. The Cognitive Neurosciences. Cambridge, MA: MIT Press, 1985:351–364.Google Scholar
  18. 18.
    Gulyas B, Roland PE. Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography. Proc Natl Acad Sci USA 1994;91:1239–1243.PubMedCrossRefGoogle Scholar
  19. 19.
    Ptito A, Zatorre RJ, Petrides M, Frey S, Alivisatos B, Evans AC. Localization and lateralization of stereoscopic processing in the human brain. Neuroreport 1993;4:1155–1158.PubMedGoogle Scholar
  20. 20.
    Fortin A, Ptito A, Faubert J, Ptito M. Cortical areas mediating stereopsis in the human brain: a PET study. Neuroreport 2002;3:895–898.CrossRefGoogle Scholar
  21. 21.
    Perenin MT, Vighetto A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 1988;111(Pt 3):643–647.PubMedCrossRefGoogle Scholar
  22. 22.
    Bonfiglioli C, De Berti G, Nichelli P, Nicoletti R, Castiello U. Kinematic analysis of the reach to grasp movement in Parkinson’s and Huntington’s disease subjects. Neuropsychologia 1998;36:1203–1208.PubMedCrossRefGoogle Scholar
  23. 23.
    Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF. The reach-to-grasp movement in Parkinson’s disease: response to a simultaneous perturbation of object position and object size. Exp Brain Res 1999;125:453–462.PubMedCrossRefGoogle Scholar
  24. 24.
    Fellows SJ, Noth J, Schwarz M. Precision grip and Parkinson’s disease. Brain 1998;121:1771–1784.PubMedCrossRefGoogle Scholar
  25. 25.
    Rearick MP, Stelmach GE, Leis B, Santello M. Coordination and control of forces during multifingered grasping in Parkinson’s disease. Exp Neurol 2002;177:428–442.PubMedCrossRefGoogle Scholar
  26. 26.
    Heilman KM. Neglect and related disorders. In: Heilman KM, ed. Clinical Neuropsychology. New York: Oxford University Press, 1979:268–307.Google Scholar
  27. 27.
    Albert ML. A simple test of visual neglect. Neurology 1973;23:322–326.Google Scholar
  28. 28.
    Gauthier L, Dehaut F, Joannette Y. The Bells Test: A quantitative and qualitative test for visual neglect. Int J Clin Neuropsychool 1989;11:49–54.Google Scholar
  29. 29.
    Mesulam M-M. Principles of Behavioral Neurology. Philadelphia: Davis, 1985.Google Scholar
  30. 30.
    Bradshaw JL, Nettleton NC, Nathan G, Wilson L. Bisecting rods and lines: effects of horizontal and vertical posture on left-side underestimation by normal subjects. Neuropsychologia 1985;23:421–425.PubMedCrossRefGoogle Scholar
  31. 31.
    Scarisbrick DJ, Tweedy JR, Kuslansky G. Hand preference and performance effects on line bisection. Neuropsychologia 1987;25:695–699.PubMedCrossRefGoogle Scholar
  32. 32.
    Milner AD, Brechmann M, Pagliarini L. To halve and to halve not: an analysis of line bisection judgements in normal subjects. Neuropsychologia 1992;30:515–526.PubMedCrossRefGoogle Scholar
  33. 33.
    Ishiai S, Sugishita M, Watabiki S, Nakayama T, Kotera M, Gono S. Improvement of left unilateral spatial neglect in a line extension task. Neurology 1994;44:294–298.PubMedGoogle Scholar
  34. 34.
    Carli M, Evenden JL, Robbins TW. Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 1985;313:679–682.PubMedCrossRefGoogle Scholar
  35. 35.
    Marshall JF, Gotthelf T. Sensory inattention in rats with 6-hydroxydopamine-induced degeneration of ascending dopaminergic neurons: apomorphine-induced reversal of deficits. Exp Neurol l 1979;65:398–411.CrossRefGoogle Scholar
  36. 36.
    Ljungberg T, Ungerstedt U. Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp Neurol 1976;53:585–600.PubMedCrossRefGoogle Scholar
  37. 37.
    Fleet WS, Valenstein E, Watson RT, Heilman KM. Dopamine agonist therapy for neglect in humans. Neurology 1987;37:1765–1770.PubMedGoogle Scholar
  38. 38.
    Geminiani G, Bottini G, Sterzi R. Dopaminergic stimulation in unilateral neglect. J Neurol Neurosurg Psychiatry 1998;65:344–347.PubMedCrossRefGoogle Scholar
  39. 39.
    Villardita C, Smirni P, Zappalà G. Visual neglect in Parkinson disease. Arch Neurol 1983;40:737–739.PubMedGoogle Scholar
  40. 40.
    Gauthier L, Gautheir SG, Joannette Y. Visual neglect in left-, right-, and bilateral parkinsonians. J Clin Exp Neuropsychol 1985;7:145 (abstract).Google Scholar
  41. 41.
    Starkstein S, R Leiguarda R, Gershanik O, Berthier M. Neuropsychological disturbances in hemiparkinson’s disease. Neurology 1987;37:1762–1764.PubMedGoogle Scholar
  42. 42.
    Ransmayr G, Schmidhuber-Eiler B, Karamath E. Visuoperception and visuospatial and visuorotational performance in Parkinson’s disease. J Neurol 1987;235:99–101.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee AC, Harris JP, Atkinson E, Fowler MS. Evidence from a line bisection task for visuospatial neglect in left hemiparkinson’s disease. Vision Res 2001;41:2677–2686.PubMedCrossRefGoogle Scholar
  44. 44.
    Ebersbach G, Trottenberg T, Hattig H, Schelosky L, Schrag A, Poewe W. Directional bias of initial visual exploration. A symptom of neglect in Parkinson’s disease. Brain 1996;119(Pt 1):79–87.PubMedCrossRefGoogle Scholar
  45. 45.
    Posner MI, Cohen Y, Rafal RD. Neural systems control of spatial orienting. Philos Trans R Soc Lond B Biol Sci 1982;298:187–198.PubMedCrossRefGoogle Scholar
  46. 46.
    Briand KA, Strallow D, Hening W, Poizner H, Sereno AB. Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res 1999;129:38–48.PubMedCrossRefGoogle Scholar
  47. 47.
    Crawford T, Henderson L, Kennard C. Abnormalities of nonvisually guided eye movements in Parkinson’s disease. Brain 1989;112:1537–1586.CrossRefGoogle Scholar
  48. 48.
    Crevits L, De Ridder K. Disturbed striatoprefrontal mediated visual behavior in moderate to severe Parkinsonian patients. J Neurol Neurosurg Psychiatry 1997;63:296–299.PubMedGoogle Scholar
  49. 49.
    O’Sullivan EP, Shaunak LH, Hawken M, Crawford TJ, Kennard C. Abnormalities of predictive saccades in Parkinson’s disase. Neuroreport 1997;8:1209–1213.PubMedCrossRefGoogle Scholar
  50. 50.
    Carl JB, Wurts RH. Asymmetry of saccadic control in patients with hemi-Parkinson’s disease. Investigative Ophthalmology and Visual Science 1985;26:258.Google Scholar
  51. 51.
    Kitagawa M, Fukushima J, Tashiro K. Relationship between antisaccades and the clinical symptoms in Parkinson’s disease. Neurology 1994;44:2285–2289.PubMedGoogle Scholar
  52. 52.
    Wright MJ, Burns RJ, Geffen GM, Geffen LB. Covert orientation of visual attention in Parkinson’s disease: an impairment in the maintenance of attention. Neuropsychologia 1990;28:151–159.PubMedCrossRefGoogle Scholar
  53. 53.
    Yamada T, Izyuuinn M, Schulzer M, Hirayama K. Covert orienting attention in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990;53:593–596.PubMedGoogle Scholar
  54. 54.
    Bennett KM, Waterman C, Scarpa M, Castiello U. Covert visuospatial attentional mechanisms in Parkinson’s disease. Brain 1995;118:153–166.PubMedCrossRefGoogle Scholar
  55. 55.
    Rafal RD, Posner MI, J.A. W, Friedrich FJ. Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson’s disease. Brain 1984;107:1083–1094.PubMedCrossRefGoogle Scholar
  56. 56.
    Sharpe MH. Patients with early Parkinson’s disease are not impaired on spatial orientating of attention. Cortex 1990;26:515–524.PubMedGoogle Scholar
  57. 57.
    Filoteo JV, Delis DC, Salmon DP, Demadura T, Roman MJ, Shults CW. An examination of the nature of attentional deficits in patients with Parkinson’s disease: evidence from a spatial orienting task. J Int Neuropsychol Soc 1997;3:337–347.PubMedGoogle Scholar
  58. 58.
    Yamaguchi S, Kobayashi S. Contribution of the dopaminergic system to voluntary and automatic orienting of visuospatial attention. J Neurosci 1998;18:1869–1878.PubMedGoogle Scholar
  59. 59.
    Briand KA, Hening W, Poizner H, Sereno AB. Automatic orienting in Parkinson’s disease. Neuropsychologia 2001;39:1240–1249.PubMedCrossRefGoogle Scholar
  60. 60.
    Desimone R, Schein SJ. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J Neurophysiol 1987;57:835–868.PubMedGoogle Scholar
  61. 61.
    Shiller PH, Lee K. The role of the primate extrastriate area V4 in vision. Science 1991;251:1251–1253.CrossRefGoogle Scholar
  62. 62.
    Frassinetti F, Nichelli P, di Pellegrino G. Selective horizontal dysmetropsia following prestriate lesion. Brain 1999;122(Pt 2):339–350.PubMedCrossRefGoogle Scholar
  63. 63.
    Milner AD, Harvey M. Distortion of size perception in visual spatial neglect. Curr Biol 1995;5:85–89.PubMedCrossRefGoogle Scholar
  64. 64.
    Harris JP, Atkinson EA, Lee AC, Nithi K, Fowler MS. Hemispace differences in the visual perception of size in left hemiParkinson’s disease. Neuropsychologia 2003;41:795–807.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee AC, Harris JP, Atkinson EA, Fowler MS. Disruption of estimation of body-scaled aperture width in Hemiparkinson’s disease. Neuropsychologia 2001;39:1097–1104.PubMedCrossRefGoogle Scholar
  66. 66.
    Baddeley A. Working Memory. London: Oxford University Press, 1986.Google Scholar
  67. 67.
    Smith EE, J. J. Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 1998;95:12061–12068.PubMedCrossRefGoogle Scholar
  68. 68.
    Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science 1998;279:1347–1351.PubMedCrossRefGoogle Scholar
  69. 69.
    Milner B. Interhemispheric differences in the localization of psychological processes in man. Br Med Bull 1971;27: 272–277.PubMedGoogle Scholar
  70. 70.
    Orsini A, Fragassi NA, Chiacchio L, Falanga AM, Cocchiaro C, Grossi D. Verbal and spatial memory span in patients with extrapyramidal diseases. Percept Mot Skills 1987;65:555–558.PubMedGoogle Scholar
  71. 71.
    Bradley VA, Welch JL, Dick DJ. Visuospatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1989;52:1228–1235.PubMedGoogle Scholar
  72. 72.
    Postle BR, Jonides J, Smith EE, Corkin S, Growdon JH. Spatial, but not object, delayed response is impaired in early Parkinson’s disease. Neuropsychology 1997;11:171–179.PubMedCrossRefGoogle Scholar
  73. 73.
    Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW. Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 1997;35:519–532.PubMedCrossRefGoogle Scholar
  74. 74.
    Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 1992;115(Pt 6):1727–1751.PubMedCrossRefGoogle Scholar
  75. 75.
    Owen AM, Beksinska M, James M, et al. Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychologia 1993;31:627–644.PubMedCrossRefGoogle Scholar
  76. 76.
    Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 2003;41:645–654.PubMedCrossRefGoogle Scholar
  77. 77.
    Brown RG, Marsden CD. Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 1991;114(Pt 1A):215–231.PubMedGoogle Scholar
  78. 78.
    Dalrymple-Alford JC, Kalders AS, Jones RD, Watson RW. A central executive deficit in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1994;57:336–367.Google Scholar
  79. 79.
    Fournet N, Moreaud O, Rouliin JL, Naegele B, Pellat J. Working memory functioning in medicated Parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology 2000;14:247–253.PubMedCrossRefGoogle Scholar
  80. 80.
    Tamura I, Kikuchi S, Otsuki M, Kitagawa M, Tashiro K. Deficits of working memory during mental calculation in patients with Parkinson’s disease. J Neurol Sci 2003;209:19–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Le Bras C, Pillon B, Damier P, Dubois B. At which steps of spatial working memory processing do striatofrontal circuits intervene in humans? Neuropsychologia 1999;37:83–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Simon SR, Meunier M, Piettre L, Berardi AM, Segebarth CM, Boussaoud D. Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI. J Neurophysiol 2002;88:2047–2057.PubMedGoogle Scholar
  83. 83.
    Petrides M, Alivisatos B, Evans AC, Meyer E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 1993;90:873–877.PubMedCrossRefGoogle Scholar
  84. 84.
    McCarthy G, Blamire AM, Puce A, et al. Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc Natl Acad Sci USA 1994;91:8690–8694.PubMedCrossRefGoogle Scholar
  85. 85.
    Belger A, Puce A, Krystal JH, Gore JC, Goldman-Rakic P, McCarthy G. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Hum Brain Mapp 1998;6:14–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Smith ML, Milner B. The role of the right hippocampus in the recall of spatial location. Neuropsychologia 1981;19: 781–793.PubMedCrossRefGoogle Scholar
  87. 87.
    Pillon B, Ertle S, Deweer B, Sarazin M, Agid Y, Dubois B. Memory for spatial location is affected in Parkinson’s disease. Neuropsychologia 1996;34:77–85.PubMedCrossRefGoogle Scholar
  88. 88.
    Pillon B, Ertle S, Deweer B, Bonnet AM, Vidailhet M, Dubois B. Memory for spatial location in “de novo” parkinsonian patients. Neuropsychologia 1997;35:221–228.PubMedCrossRefGoogle Scholar
  89. 89.
    Pillon B, Deweer B, Vidailhet M, Bonnet AM, Hahn-Barma V, Dubois B. Is impaired memory for spatial location in Parkinson’s disease domain specific or dependent on’ strategic’ processes? Neuropsychologia 1998;36:1–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Wallesch CW, Karnath HO, Papagno C, Zimmermann P, Deuschl G, Lucking CH. Parkinson’s disease patient’s behaviour in a covered maze learning task. Neuropsychologia 1990;28:839–849.PubMedCrossRefGoogle Scholar
  91. 91.
    Kosslyn SM. Image and the Brain: The Resolution of the Imagery Debate. CAmbridge, MA: MIT Press, 1996.Google Scholar
  92. 92.
    Le Bihan D, Turner R, Zeffiro TA, Cuenod CA, Jezzard P, Bonnerot V. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc Natl Acad Sci U S A 1993;90:11802–11805.PubMedCrossRefGoogle Scholar
  93. 93.
    Kosslyn SM, Thompson WL, Kim IJ, Alpert NM. Topographical representations of mental images in primary visual cortex. Nature 1995;378:496–498.PubMedCrossRefGoogle Scholar
  94. 94.
    Cohen MS, Kosslyn SM, Breiter HC, et al. Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain 1996;119(Pt 1):89–100.PubMedCrossRefGoogle Scholar
  95. 95.
    Jacobs DH, Shuren J, Bowers D, Heilman KM. Emotional facial imagery, perception, and expression in Parkinson’s disease. Neurology 1995;45:1696–1702.PubMedGoogle Scholar
  96. 96.
    Brown RG, Marsden CD. Visuospatial function in Parkinson’s disease. Brain 1986;109(Pt 5):987–1002.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee AC, Harris JP, Calvert JE. Impairments of mental rotation in Parkinson’s disease. Neuropsychologia 1998;36:109–114.PubMedCrossRefGoogle Scholar
  98. 98.
    Bowen B, Hoehn MM, Yahr MD. Parkinsonism: alteration in spatial orientation as determined by route walking task. Neuropsychologia 1972;10:355–361.PubMedCrossRefGoogle Scholar
  99. 99.
    Buytenhuijs EL, Berger HJ, Van Spaendonck KP, Horstink MW, Borm GF, Cools AR. Memory and learning strategies in patients with Parkinson’s disease. Neuropsychologia 1994;32:335–342.PubMedCrossRefGoogle Scholar
  100. 100.
    Stepankova K, Ruzicka E. Object location learning and non-spatial working memory of patients with Parkinson’s disease may be preserved in “real life” situations. Physiol Res 1998;47:377–384.PubMedGoogle Scholar
  101. 101.
    Montgomery P, Silverstein P, Wichmann R, Fleischaker K, Andberg M. Spatial updating in Parkinson’s disease. Brain Cogn 1993;23:113–126.PubMedCrossRefGoogle Scholar
  102. 102.
    Leplow B, Holl D, Zeng L, Herzog A, Behrens K, Mehdorn M. Spatial behaviour is driven by proximal cues even in mildly impaired Parkinson’s disease. Neuropsychologia 2002;40:1443–1455.PubMedCrossRefGoogle Scholar
  103. 103.
    Olton DS, Samuelson RJ. Remmebrance of place passe: spatial memory in rats. J Exp Psychol Anim Behav Proc 1976;2:97–116.CrossRefGoogle Scholar
  104. 104.
    Morris RGM. Spatial localization does not require the presence of local cues. Learning and Motivation 1981;12:239–260.CrossRefGoogle Scholar
  105. 105.
    Proctor F, Riklan M, Cooper IS, Teuber H-L. Judgement of visual and postural vertical by parkinsnonian patients. Neurology 1964;14:287–293.PubMedGoogle Scholar
  106. 106.
    Danta G, Hilton R. Judgment of the visual vertical and horizontal in patients with Parkinsonism. Neurology 1975;25: 43–47.PubMedGoogle Scholar
  107. 107.
    Della Sala S, Di Lorenzo G, Giordano A, Spinnler H. Is there a specific visuo-spatial impairment in Parkinsonians? J Neurol Neurosurg Psychiatry 1986;49:1258–1265.PubMedCrossRefGoogle Scholar
  108. 108.
    Direnfeld LK, Albert ML, Volicer L, Langlais PJ, Marquis J, Kaplan E. Parkinson’s disease. The possible relationship of laterality to dementia and neurochemical findings. Arch Neurol 1984;41:935–941.PubMedGoogle Scholar
  109. 109.
    Bentin S, Silverberg R, Gordon HW. Asymmetrical cognitive deterioration in demented and Parkinson patients. Cortex 1981;17:533–543.PubMedGoogle Scholar
  110. 110.
    Huber SJ, Freidenberg DL, Shuttleworth EC, Paulson GW, Clapp LE. Neuropsychological similarities in lateralized parkinsonism. Cortex 1989;25:461–470.PubMedGoogle Scholar
  111. 111.
    Riklan M, Stellar S, Reynolds C. The relationship of memory and cognition in Parkinson’s disease to lateralisation of motor symptoms. J Neurol Neurosurg Psychiatry 1990;53:359–360.PubMedGoogle Scholar
  112. 112.
    Pillon B, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y. Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J Neurol Neurosurg Psychiatry 1989;52:201–206.PubMedCrossRefGoogle Scholar
  113. 113.
    Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 2000;123(Pt 10):2091–108.PubMedCrossRefGoogle Scholar
  114. 114.
    Rafal RD. Visually guided behavior. In: Litvan I, Agid Y, eds. Progressive Supranuclear Palsy: Clinical and Research Approaches. New York: Oxford University Press, 1992:204–222.Google Scholar
  115. 115.
    Ghika J, Tennis M, Growdon J, Hoffman E, Johnson K. Environment-driven responses in progressive supranuclear palsy. J Neurol Sci 1995;130:104–111.PubMedCrossRefGoogle Scholar
  116. 116.
    Kimura J, Barnett HJ, Burkhart G. The psychological test pattern in progressive supranuclear palsy. Neuropsychologia 1981;19:301–306.PubMedCrossRefGoogle Scholar
  117. 117.
    Fisk JD, Goodale MA, Burkhart G, Barnett HJ. Progressive supranuclear palsy: the relationship between ocular motor dysfunction and psychological test performance. Neurology 1982;32:698–705.PubMedGoogle Scholar
  118. 118.
    Soliveri P, Monza D, Paridi D, et al. Cognitive and magnetic resonance imaging aspects of corticobasal degeneration and progressive supranuclear palsy. Neurology 1999;53:502–507.PubMedGoogle Scholar
  119. 119.
    Soliveri P, Monza D, Paridi D, et al. Neuropsychological follow up in patients with Parkinson’s disease, striatonigral degenration-type multisystem atrophy, and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2000;69:315–318.CrossRefGoogle Scholar
  120. 120.
    Esmonde T, Giles E, Gibson M, Hodges JR. Neuropsychological performance, disease severity, and depression in progressive supranuclear palsy. J Neurol 1996;243:638–643.PubMedCrossRefGoogle Scholar
  121. 121.
    Warrington EK, James M. Visual object and space perception battery. Bury St. Edmonds, UK: Thames Valley Test Co., 1991.Google Scholar
  122. 122.
    Posner MI, Rafal RD, Choate L, Vaughn J. Inhibition of return: Neural basis and function. Cogn Neuropsychol 1985;2:211–228.CrossRefGoogle Scholar
  123. 123.
    Rafal RD, Posner MI. Deficits in human visual spatial attention following thalamic lesions. Proc Natl Acad Sci USA 1987;84:7349–7353.PubMedCrossRefGoogle Scholar
  124. 124.
    Kertzman C, Robinson DL, Litvan I. Effects of physostigmine on spatial attention in patients with progressive supranuclear palsy. Arch Neurol 1990;47:1346–1350.PubMedGoogle Scholar
  125. 125.
    Schiller PH, True SD, Conway JL. Effects of frontal eye field and superior colliculus ablations on eye movements. Science 1979;206:590–592.PubMedCrossRefGoogle Scholar
  126. 126.
    D’Antona R, Baron J, Samson Y, et al. Subcortical dementia. Frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain 1985;108(Pt 3):785–799.PubMedCrossRefGoogle Scholar
  127. 127.
    Posner MI, Walker JA, Friedrich FJ, Rafal RD. Effects of parietal injury on covert orienting of attention. J Neurosci 1984;4:1863–1874.PubMedGoogle Scholar
  128. 128.
    Henik A, Rafal R, Rhodes D. Endogenously generated and vsually guided saccades after lesions of the human frontal eye fields. Soc Neurosc Abstr 1991;17:803.Google Scholar
  129. 129.
    Rafal R, Henik A, Smith J. Exrageniculate contributions toreflex visual orienting in normla humans: A temporal hemified advantage. J Cogn Neurosci 1991;3:323–329.Google Scholar
  130. 130.
    Rafal R, Smith J, Krantz J, Cohen A, Brennan C. Extrageniculate vision in hemianopic humans: saccade inhibition by signals in the blind field. Science 1990;250:118–121.PubMedCrossRefGoogle Scholar
  131. 131.
    Leiguarda R, Lees AJ, Merello M, Starkstein S, Marsden CD. The nature of apraxia in corticobasal degeneration. J Neurol Neurosurg Psychiatry 1994;57:455–459.PubMedGoogle Scholar
  132. 132.
    Blondel A, Eustache F, Schaeffer S, Marie RM, Lechevalier B, de la Sayette V. Étude clinique et cognitive de l’apraxie dans l’atrophie cortico-basale. Un trouble sélectif du système de production. Rev Neurol (Paris) 1997;153:737–747.Google Scholar
  133. 133.
    Jacobs DH, Adair JC, Macauley B, et al. Apraxia in corticobasal degeneration. Brain Cogn 1999;40:336–354.PubMedCrossRefGoogle Scholar
  134. 134.
    Merians A, Clark M, Poizner H, et al. Apraxia differs in corticobasal degeneration and left-parietal stroke: A case study. Brain Cogn 1999;40(2):314–335.PubMedCrossRefGoogle Scholar
  135. 135.
    Otsuki M, Soma Y, Yoshimura N, Tsuji S. Slowly progressive limb-kinetic apraxia. Eur Neurol 1997;37:100–103.PubMedGoogle Scholar
  136. 136.
    Moreaud O, Naegele B, Pellat J. The nature of apraxia in corticobasal degeneration: a case of melokinetic apraxia. Neuropsychiatry Neuropsychol Behav Neurol 1996;9:288–292.Google Scholar
  137. 137.
    Goldenberg G, Wimmer A, Auff E, Schnaberth G. Impairment of motor planning in patients with Parkinson’s disease: evidence from ideomotor apraxia testing. J Neurol Neurosurg Psychiatry 1986;49:1266–1272.PubMedGoogle Scholar
  138. 138.
    Watson RT, Fleet WS, Gonzalez-Rothi L, Heilman KM. Apraxia and the supplementary motor area. Arch Neurol 1986;43:787–792.PubMedGoogle Scholar
  139. 139.
    Yamadori A, Osumi Y, Imamura T, Mitani Y. Persistent left unilateral apraxia and a disconnection theory. Behav Neurol 1988;1:11–22.Google Scholar
  140. 140.
    Marchetti C, Della Sala S. On crossed apraxia. Description of a right-handed apraxic patient with right supplementary motor area damage. Cortex 1997;33:341–354.PubMedGoogle Scholar
  141. 141.
    Pause M, Freund HJ. Role of the parietal cortex for sensorimotor transformation. Evidence from clinical observations. Brain Behav Evol 1989;33:136–140.PubMedGoogle Scholar
  142. 142.
    Freund HJ. The parietal lobe as a sensorimotor interface: a perspective from clinical and neuroimaging data. NeuroImage 2001;14(1 Pt 2):S142–S146.PubMedCrossRefGoogle Scholar
  143. 143.
    De Renzi E, Lucchelli F. Ideational apraxia. Brain 1988;111(Pt 5):1173–1185.PubMedCrossRefGoogle Scholar
  144. 144.
    Barbieri C, De Renzi E. The executive and ideational components of apraxia. Cortex 1988;24(4):535–534.PubMedGoogle Scholar
  145. 145.
    Peigneux P, Salmon E, Garraux G, et al. Neural and cognitive bases of upper limb apraxia in corticobasal degeneration. Neurology 2001;57:1259–1268.PubMedGoogle Scholar
  146. 146.
    Leiguarda RC, Marsden CD. Limb apraxias: higher-order disorders of sensorimotor integration. Brain 2000;123(Pt 5): 860–879.PubMedCrossRefGoogle Scholar
  147. 147.
    Leiguarda R, Merello M, Balej J. Apraxia in corticobasal degeneration. Adv Neurol 2000;82.Google Scholar
  148. 148.
    Decety J, Perani D, Jeannerod M, et al. Mapping motor representations with positron emission tomography. Nature 1994;371:600–602.PubMedCrossRefGoogle Scholar
  149. 149.
    Bonda E, Petrides M, Frey S, Evans A. Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 1995;92:11180–11184.PubMedCrossRefGoogle Scholar
  150. 150.
    Sirigu A, Daprati E, Pradat-Diehl P, Franck N, Jeannerod M. Perception of self-generated movement following left parietal lesion. Brain 1999;122(Pt 10):1867–1874.PubMedCrossRefGoogle Scholar
  151. 151.
    Wolpert DM, Goodbody SJ, Husain M. Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1998;1:529–533.PubMedCrossRefGoogle Scholar
  152. 152.
    Andersen RA, Snyder LH, Bradley DC, Xing J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 1997;20:303–330.PubMedCrossRefGoogle Scholar
  153. 153.
    Rothi LJ, Ochipa C, Heilman KM. A cognitive neuropsychological model of limb praxis. In: Rothi LJ, Heilman KM, eds. Apraxia: The neuropsychology of action. Hove, UK: Psychology, 1997:29–50.Google Scholar
  154. 154.
    Wenning GK, Litvan I, Jankovic J, et al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998;64:184–189.PubMedGoogle Scholar
  155. 155.
    Rey GJ, Tomer R, Levin BE, Sanchez-Ramos J, Bowen BB, J.H. Psychiatric symptoms, atypical dementia, and left visual field inattention in corticobasal ganglionic degeneration. Mov Disord 1995;10:106–110.PubMedCrossRefGoogle Scholar
  156. 156.
    Kleiner-Fisman G, Black SE, Lang AE. Neurodegenerative disease and the evolution of art: the effects of presumed corticobasal degeneration in a professional artist. Mov Disord 2003;18:294–302.PubMedCrossRefGoogle Scholar
  157. 157.
    De Renzi E. Disorders of Space Exploration and Cognition. New York: Wiley, 1982.Google Scholar
  158. 158.
    Mendez MF. Corticobasal ganglionic degeneration with Balint’s syndrome. J Neuropsychiatry Clin Neurosci 2000;12:273–275.PubMedGoogle Scholar
  159. 159.
    Leone M, Budriesi C, Molinari MA, Nichelli P. Progressive biparietal atrophy: A case report and a review of clinicopathological correlations of focal (lobar) atrophy. Neurol Sci 2002;23:117.CrossRefGoogle Scholar
  160. 160.
    Mendez MF, Turner J, Gilmore GC, Remler B, Tomsak RL. Balint’s syndrome in Alzheimer’s disease: visuospatial functions. Int J Neurosci 1990;54:339–346.PubMedCrossRefGoogle Scholar
  161. 161.
    Furey-Kurkjian MI, Pietrini P, Graff-Radford N, et al. Visual variant of Alzheimer disease: Distinctive neurospychlogical features. Neuropsychology 1996;10:294–300.CrossRefGoogle Scholar
  162. 162.
    Bergeron C, Davis A, Lang AE. Corticobasal ganglionic degeneration and progressive supranuclear palsy presenting with cognitive decline. Brain Pathol 1998;8:355–365.PubMedCrossRefGoogle Scholar
  163. 163.
    Grimes DA, Lang AE, Bergeron CB. Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology 1999;53:1969–1974.PubMedGoogle Scholar
  164. 164.
    De Renzi E. Disorders of spatial orientation. In: Frederiks JAM, ed. Handbook of Clinical Neurology, Vol. 45: Clinical Neuropsychology. Amsterdam: Elsevier Science, 1985:405–422.Google Scholar
  165. 165.
    Goethals M, Santens P. Posterior cortical atrophy. Two case reports and a review of the literature. Clin Neurol Neurosurg 2001;103:115–119.PubMedCrossRefGoogle Scholar
  166. 166.
    Mendez MF. Visuospatial deficits with preserved reading ability in a patient with posterior cortical atrophy. Cortex 2001;37:535–543.PubMedGoogle Scholar
  167. 167.
    Papagno C. Progressive impairment of constructional abilities: a visuospatial sketchpad deficit? Neuropsychologia 2002;40:1858–1867.PubMedCrossRefGoogle Scholar
  168. 168.
    Suzuki K, Otsuka Y, Endo K, et al. Visuospatial deficits due to impaired visual attention: investigation of two cases of slowly progressive visuospatial impairment. Cortex 2003;39:327–341.PubMedGoogle Scholar
  169. 169.
    McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47:1113–1124.PubMedGoogle Scholar
  170. 170.
    Gnanalingham KK, Byrne EJ, Thornton A. Clock-face drawing to differentiate Lewy body and Alzheimer type dementia syndromes. Lancet 1996;347:696–697.PubMedCrossRefGoogle Scholar
  171. 171.
    Gnanalingham KK, Byrne EJ, Thornton A, Sambrook MA, Bannister P. Motor and cognitive function in Lewy body dementia: comparison with Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry 1997;62:243–252.PubMedCrossRefGoogle Scholar
  172. 172.
    Walker Z, Allen RL, Shergill S, Katona CL. Neuropsychological performance in Lewy body dementia and Alzheimer’s disease. Br J Psychiatry 1997;170:156–158.PubMedGoogle Scholar
  173. 173.
    Shimomura T, Mori E, Yamashita H, et al. Cognitive loss in dementia with Lewy bodies and Alzheimer disease. Arch Neurol 1998;55:1547–1552.PubMedCrossRefGoogle Scholar
  174. 174.
    Mori E, Shimomura T, Fujimori M, et al. Visuoperceptual impairment in dementia with Lewy bodies. Arch Neurol 2000;57:489–493.PubMedCrossRefGoogle Scholar
  175. 175.
    Simard M, van Reekum R, Myran D. Visuospatial impairment in dementia with Lewy bodies and Alzheimer’s disease: a process analysis approach. Int J Geriatr Psychiatry 2003;18:387–391.PubMedCrossRefGoogle Scholar
  176. 176.
    Manford M, Andermann F. Complex visual hallucinations. Clinical and neurobiological insights. Brain 1998;121(Pt 10):1819–1840.PubMedCrossRefGoogle Scholar
  177. 177.
    Imamura T, Ishii K, Hirono N, et al. Visual hallucinations and regional cerebral metabolism in dementia with Lewy bodies (DLB). Neuroreport 1999;10:1903–1907.PubMedCrossRefGoogle Scholar
  178. 178.
    Ala TA, Hughes LF, Kyrouac GA, Ghobrial MW, Elble RJ. Pentagon copying is more impaired in dementia with Lewy bodies than in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001;70:483–488.PubMedCrossRefGoogle Scholar
  179. 179.
    Quinn N. Multiple system atrophy—the nature of the beast. J Neurol Neurosurg Psychiatry 1989;Special Suppl:78–89.Google Scholar
  180. 180.
    Gilman S, Low PA, Quinn N, et al. Consensus statement on the diagnosis of multiple system atrophy. J Auton Nerv Syst 1998;74:189–192.PubMedGoogle Scholar
  181. 181.
    Litvan I, Bhatia KP, Burn DJ, et al. SIC Task Force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov Disord 2003;18:467–486.PubMedCrossRefGoogle Scholar
  182. 182.
    Wenning GK, Ben-Shlomo Y, Hughes A, Daniel SE, Lees A, Quinn NP. What clinical features are most useful to distinguish definite multiple system atrophy from Parkinson’s disease? J Neurol Neurosurg Psychiatry 2000;68:434–440.PubMedCrossRefGoogle Scholar
  183. 183.
    Robbins TW, James M, Lange KW, Owen A, Quinn NP, Marsden CD. Cognitive performance in multiple system atrophy. Brain 1992;115(Pt 1):271–291.PubMedCrossRefGoogle Scholar
  184. 184.
    Sahakian BJ, Morris RG, Evenden JL, et al. A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain 1988;111(Pt 3):695–718.PubMedCrossRefGoogle Scholar
  185. 185.
    Tebartz van Elst L, Greenlee MW, Foley JM, Lucking CH. Contrast detection, discrimination and adaptation in patients with Parkinson’s disease and multiple system atrophy. Brain 1997;120(Pt 12):2219–2228.PubMedCrossRefGoogle Scholar
  186. 186.
    Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci 1990;13:296–302.PubMedCrossRefGoogle Scholar
  187. 187.
    Haug BA, Kolle RU, Trenkwalder C, Oertel WH, Paulus W. Predominant affection of the blue cone pathway in Parkinson’s disease. Brain 1995;118(Pt 3):771–778.PubMedCrossRefGoogle Scholar
  188. 188.
    Djamgoz MB, Hankins MW, Hirano J, Archer SN. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 1997;37:3509–3529.PubMedCrossRefGoogle Scholar
  189. 189.
    Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 1982;298:199–209.PubMedCrossRefGoogle Scholar
  190. 190.
    Keith Berg W, D. B. The Tower of London spatial problem-solving task: enhancing clinical and research implementation. J Clin Exp Neuropsychol 2002;24:586–604.PubMedCrossRefGoogle Scholar
  191. 191.
    Goel V, Grafman J. Are the frontal lobes implicated in “planning” functions? Interpreting data from the Tower of Hanoi. Neuropsychologia 1995;33:623–642.PubMedCrossRefGoogle Scholar
  192. 192.
    Saint-Cyr JA, Taylor AE, Lang AE. Procedural learning and neostriatal dysfunction in man. Brain 1988;111(Pt 4): 941–959.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Paolo Nichelli
    • 1
  • Anna Magherini
    • 1
  1. 1.Clinica NeurologicaUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations