Neuropathology of Atypical Parkinsonian Disorders

  • Ian R. A. Mackenzie
Chapter
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Although the clinical syndrome of parkinsonism (rigidity, bradykinesia, and tremor) is most often owing to idiopathic Parkinson’s disease (PD), it may also be associated with a variety of other underlying pathologies (Table 1) (1, 2, 3). Each of these other pathological conditions tends to have a characteristic clinical phenotype, however atypical cases are increasingly recognized (4, 5, 6, 7, 8). Moreover, some patients with PD have additional clinical features such as dementia, autonomic dysfunction, or gastrointestinal dysmotility (9, 10, 11, 12, 13). As a result, the accurate diagnosis of a patient with parkinsonism, and especially those with atypical or additional clinical features, ultimately depends on neuropathological examination. This chapter will review the pathological changes that characterize those conditions that may present with or have parkinsonism as a major feature, either in isolation or combined with other clinical manifestations. Although the focus of this text and chapter are the atypical causes of parkinsonism, a description of the pathological features of typical PD is included for comparison.

Keywords

Influenza Fibril Hydrocephalus Parkin Dystonia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hughes AJ, Daniel SE, Ben-Shlomo Y, et al. The accuracy of diagnosis of parkinsonism syndromes in a specialist movement disorder service. Brain 2002;125:861–870.PubMedGoogle Scholar
  2. 2.
    Hughes AJ, Daniel SE, Kilford L, Lees AG. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psych 1992;55:181–184.Google Scholar
  3. 3.
    Rajput AH, Rozdilsky B, Rajput A. Accuracy of clinical diagnosis of parkinsonism—a prospective study. Can J Neurol Sci 1991;18:275–278.PubMedGoogle Scholar
  4. 4.
    Daniel SE, Bruin VMS, Lees AJ. The clinical and pathological spectrum of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy): a reappraisal. Brain 1995;118:759–770.PubMedGoogle Scholar
  5. 5.
    Gearing M, Olson DA, Watts RL, Mirra SS. Progressive supranuclear palsy: neuropathologic and clinical heterogeneity. Neurology 1994;44:1015–1024.PubMedGoogle Scholar
  6. 6.
    Litvan I, Agid Y, Goetz C, et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology 1997;48:119–125.PubMedGoogle Scholar
  7. 7.
    Litvan I, Goetz CG, Jankovic J, et al. What is the accuracy of the clinical diagnosis of multiple system atrophy? A clinicopathological study. Arch Neurol 1997;54:937–944.PubMedGoogle Scholar
  8. 8.
    Schneider JA, Watts RL, Gearing M, Brewer RP, Mirra SS. Corticobasal degeneration: neuropathological and clinical heterogeneity. Neurology 1997;48:959–969.PubMedGoogle Scholar
  9. 9.
    Aarsland D, Landberg E, Larsen JP, Cummings J. Frequency of dementia in Parkinson’s disease. Arch Neurol 1996;53:538–542.PubMedGoogle Scholar
  10. 10.
    Edwards LL, Quigley EM, Harned RD, Hofman R, Pfeiffer RF. Characterization of swallowing and defecation in Parkinson’s disease. Am J Gastroenterol 1994;89:15–25.PubMedGoogle Scholar
  11. 11.
    Edwards LL, Quigley EM, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease: frequency and pathophysiology. Neurology 1992;32:726–732.Google Scholar
  12. 12.
    Mayeux R, Stern Y, Rosenstein, et al. An estimate of the prevalence of dementia in idiopathic Parkinson’s disease. Arch Neurol 1988;45:260–262.PubMedGoogle Scholar
  13. 13.
    Olanow CW. Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Ann Rev Neurosci 1999; 22:123–144.PubMedGoogle Scholar
  14. 14.
    Calne DB. Parkinson’s disease is not one disease. Parkinsonism Rel Dis 2000;17:3–7.Google Scholar
  15. 15.
    Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114:2283–2301.PubMedGoogle Scholar
  16. 16.
    Lewy FH. Paralysis agitans. Pathologische anatomie. In: Lewandowsky M, eds. Handbuch der Neurologie. New York: Springer, 1912: 920–933.Google Scholar
  17. 17.
    Tretiakoff MC. Contribution a l’etude de l’anatomie pathologique de Locus Niger de Soemmerling. Paris: Universite de Paris, 1919.Google Scholar
  18. 18.
    Dale GE, Probst A, Luthert P, Martin J, Anderton BH, Leigh PN. Relationship between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 1992;83:525–529PubMedGoogle Scholar
  19. 19.
    Irizarry MC, Growdon W, Gomez-Isla T, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 1998;57:334–337.PubMedGoogle Scholar
  20. 20.
    Bancher C, Lassmann H, Budka H, et al. An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination. J Neuropathol Exp Neurol 1989;48:81–93.PubMedGoogle Scholar
  21. 21.
    Goldman J, Yen SH, Chui F, et al. Lewy bodies in Parkinson’s disease contain neurofilament antigens. Science 1983;221:4.Google Scholar
  22. 22.
    Kuzuhara S, Mori H, Izumiyama N, Yoshirmura M, Ihara Y. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol 1988;75:345–353.PubMedGoogle Scholar
  23. 23.
    Polymeropoulos MHC, Leroy E, Ide SE, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276:2045–2047.PubMedGoogle Scholar
  24. 24.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997;388:839–840.PubMedGoogle Scholar
  25. 25.
    Arai T, Ueda K, Ikeda K, et al. Argyrophilic glial inclusions in the midbrain of patients with Parkinson’s disease and diffuse Lewy body disease are immunopositive for NACP/alpha-synuclein. Neurosci Lett 1999;259:83–86.PubMedGoogle Scholar
  26. 26.
    Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 2000; 99: 14–20.PubMedGoogle Scholar
  27. 27.
    Okazaki H, Lipkin LS, Aronson SM. Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadraparesis in flexion. J Neuropathol Exp Neurol 1961;20:237–244.PubMedGoogle Scholar
  28. 28.
    Hansen L, Salmon D, Galasko D, et al. The Lewy body variant of Alzheimer’s disease: a clinical and pathological entity. Neurology 1990;40:1–8.PubMedGoogle Scholar
  29. 29.
    Perry RH, Irving D, Blessed G, Fairbairn A, Perry EK. Senile dementia of Lewy body type: a clinically and pathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 1990;95:119–139.PubMedGoogle Scholar
  30. 30.
    McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB International Workshop. Neurology 1996;47:1113–1124.PubMedGoogle Scholar
  31. 31.
    Hughes AJ, Daniel SE, Blankson S, et al. A clinicopathological study of 100 cases of Parkinson’s disease. Arch Neurol 1993;50:140–148.PubMedGoogle Scholar
  32. 32.
    Dickson DW, Ruan D, Crystal H, et al. Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease. Neurology 1991;41:1402–1409.PubMedGoogle Scholar
  33. 33.
    De Vos RA, Jansen EN, Stam FC, et al. Lewy body disease: clinicopathological correlations in 18 consecutive cases of Parkinson’s disease with and without dementia. Clin Neurol Neurosurg 1995;97:13–22.PubMedGoogle Scholar
  34. 34.
    Piao YS, Wakabayashi K, Hayashi S, yoshimoto M, Takahashi H. Aggregation of α-synuclein/NACP in the neuronal and glial cells in diffuse Lewy body disease: a survey of six patients. Clin Neuropathol 2000;19:163–169.PubMedGoogle Scholar
  35. 35.
    Hansen LA, Masliah E, Galasko D, Terry RD. Plaque-only Alzheimer disease is usually the Lewy body variant and vice versa. J Neuropathol Exp Neurol 1993;52:648–654.PubMedGoogle Scholar
  36. 36.
    Mirra SS, Heyman A, McKeel D, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardisation of the neuropathologic assessment for Alzheimer’s disease. Neurology 1991; 41:479–486.PubMedGoogle Scholar
  37. 37.
    Braak H, Braak E. Neuropathological staging of Alzheimer related changes. Acta Neuropathol 1991;82: 239–259.PubMedGoogle Scholar
  38. 38.
    Gomez-Tortosa E, Newell K, Irizarry MC, Albert M, Growdon JH, Hyman BT. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 1999;53:1284–1291.PubMedGoogle Scholar
  39. 39.
    Lennox G, Lowe J, Landon M, Bryne EJ, Mayer RJ, Godwin-Austen RB. Diffuse Lewy body disease: correlative neuropathology using anti-ubiquitin immunohistochemistry. J Neurol Neurosurg Psychiatry 1989;52: 1236–1247.PubMedGoogle Scholar
  40. 40.
    Mattila PM, Roytta M, Torikka H, Dickson DW, Rinne JO. Cortical Lewy bodies and Alzheimer-type changes in patients with Parkinson’s disease. Acta Neuropathol 1998;95:576–582.PubMedGoogle Scholar
  41. 41.
    Samuel W, Galasko D, Masliah E, Hansen LA. Neocortical Lewy body counts correlate with dementia in Lewy body variant of Alzheimer’s disease. J Neuropathol Exp Neurol 1996;55:44–52.PubMedGoogle Scholar
  42. 42.
    Jellinger KA. Morphological substrates of dementia in parkinsonism. A critical update. J Nerual Trans (Suppl) 1997;51:57–82.Google Scholar
  43. 43.
    Samuel W, Alford M, Hofstetter R, Hansen L. Dementia with Lewy bodies versus pure Alzheimer disease: differences in cognition, neuropathology, cholinergic dysfunction, and synapse density. J Neuropathol Exp Neurol 1997;56:499–508.PubMedGoogle Scholar
  44. 44.
    Ince PG, Perry EK, Morris CM. Dementia with Lewy bodies. A distinct non-Alzheimer dementia syndrome. Brain Pathol 1998;8:299–324.PubMedGoogle Scholar
  45. 45.
    Kosaka K, Iseki E. Diffuse Lewy body disease within the spectrum of Lewy body disease. In: Perry R, McKeith I, Perry E, eds. Dementia with Lewy Bodies. New York: Cambridge University Press, 1996: 238–247.Google Scholar
  46. 46.
    Kosaka K, Tsuchiya K, Yoshimura M. Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin Neuropathol 1989;7;299–305.Google Scholar
  47. 47.
    Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256–259.PubMedGoogle Scholar
  48. 48.
    Mouradian MM. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 2002; 58:179–185.PubMedGoogle Scholar
  49. 49.
    Farrer M, Chan P, Chen R, et al. Lewy bodies and parkinsonism in families with parkin mutation. Ann Neurol 2001;50:293–300.PubMedGoogle Scholar
  50. 50.
    Wintermeyer P, Kruger R, Kuhn W, et al. Mutation analysis and association studies of the UCHL1 gene in German Parkinson’s disease patients. Neuroreport 2000;11:2079–2082.PubMedGoogle Scholar
  51. 51.
    Saigoh K, Wang YL, Suh JG, et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 1999;23:47–51.PubMedGoogle Scholar
  52. 52.
    Gilman S, Low PA, Quinn N, et al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 1999;163:94–98.PubMedGoogle Scholar
  53. 53.
    Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SF, Quinn NP. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 1994;117:835–845.PubMedGoogle Scholar
  54. 54.
    Lantos PL. The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol 1998;57:1099–1111.PubMedGoogle Scholar
  55. 55.
    Dickson DW, Lin WL, Liw WK, yen SH. Multiple system atrophy: a sporadic synucleinopathy. Brain Pathol 1999.9:721–732.PubMedGoogle Scholar
  56. 56.
    Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 1997;12:133–147.PubMedGoogle Scholar
  57. 57.
    Kanada T, Tsukagoshi H, Oda M, et al. Changes of unmyelinated nerve fibres in sural nerve in amyotrophic lateral sclerosis, Parkinson’s disease, and multiple system atrophy. Acta Neuropathol 1996;91:145–154.Google Scholar
  58. 58.
    Lantos PL. Neuropathological diagnostic criteria of multiple system atrophy: a review. In Cruz-Sanchez FF, Ravid R, Cuzner ML, eds. Neuropathological Diagnostic Criteria for Brain Banking, Amsterdam: IOS Press, 1995:116–121.Google Scholar
  59. 59.
    Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 1989;94: 79–100.PubMedGoogle Scholar
  60. 60.
    Papp MI, Lantos PL. Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J Neurol Sci 1992;107:172–182.PubMedGoogle Scholar
  61. 61.
    Papp MI, Lantos PL. The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 1994;117:235–243.PubMedGoogle Scholar
  62. 62.
    Abe H, Yagishita S, Amano N, et al. Argyrophilic glial intracytoplasmic inclusions in multiple system atrophy: immunocytochemical and ultrastructural study. Acta Neuropathol 1992 84:273–277.PubMedGoogle Scholar
  63. 63.
    Arima K, Murayama S, Mukoyama M, Inose T. Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. 1. Neuronal cytoplasmic inclusions. Acta Neuropathol 1992;83:453–460.PubMedGoogle Scholar
  64. 64.
    Murayama S, Arima K, Nakazato Y, Satoh J, Oda M, Inose T. Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. 2. Oligodendroglial cytoplasmic inclusions. Acta Neuropathol 1992;84:32–38.PubMedGoogle Scholar
  65. 65.
    Spillantini MG, Crowther RA, Jakes R, Cairus NJ, Lantos PL, Goedert M. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy Bodies. Neurosci Lett 1998;251:205–208.PubMedGoogle Scholar
  66. 66.
    Wakabayashi K, Yoshimoto M, Tsuji S, takahashi H. α-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neruosci Lett 1998;249:180–182.Google Scholar
  67. 67.
    Kato S, Nakamura H. Cytoplasmic argyrophilic inclusions in neurons of pontine nuclei in patients with olivopontocerebellar atrophy: immunohistochemical and ultrastructural studies. Acta Neuropathol 1990;79: 584–594.PubMedGoogle Scholar
  68. 68.
    Rebeiz JJ, Kolodny EH, Richardson EP. Corticodentonigral degeneration with neuronal achromasia. Arch Neurol 1968;18:20–33.PubMedGoogle Scholar
  69. 69.
    Rinne JO, Lee MS, Thompson PD, Marsden CD. Corticobasal degeneration. A clinical study of 36 cases. Brain 1994;117:1183–1196.PubMedGoogle Scholar
  70. 70.
    Arima K, Uesugi H, Fujita I, et al. Corticonigral degeneration with neuronal achromasia presenting with primary progressive aphasia: ultrastructural and immunocytochemical studies. J Neurol Sci 1994;127:186–197.PubMedGoogle Scholar
  71. 71.
    Bergeron C, Davis A, Lang AE. Corticobasal ganglionic degeneration and progressive supranuclear palsy presenting with cognitive decline. Brain Pathol 1998;8:355–365.PubMedGoogle Scholar
  72. 72.
    Feany MB, Dickson DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 1995;146:1388–1396.PubMedGoogle Scholar
  73. 73.
    Kertesz A, Hudson L, Mackezie IRA, et al. The pathology and nosology of primary progressive aphasia. Neurology 1994;44:2065–2072.PubMedGoogle Scholar
  74. 74.
    Kertesz A, Martinez-Lage P, Davidson W, Munoz DG. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology 2000;55:1368–1375.PubMedGoogle Scholar
  75. 75.
    Dickson DW, Yen SH, Suzuki KI, Davies P, Garcia JH, Hiraqno A. Ballooned neurons in select neurodegenerative diseases contain phosphorylated neurofilament epitopes. Acta Neuropathol 1986;71:216–223.PubMedGoogle Scholar
  76. 76.
    Mackenzie IRA, Hudson LP. Achromatic neurons in the cortex of progressive supranuclear palsy. Acta Neuropathol 1995;90:615–619.PubMedGoogle Scholar
  77. 77.
    Lowe J, Errington DR, Lennox G, et al. Ballooned neurons in several neurodegenerative diseases and stroke contain alpha B crystallin. Neruopathol Appl Neurobiol 1992;18:515–516.Google Scholar
  78. 78.
    Smith TW, Lippa CF, de Girolami U. Immunocytochemical study of ballooned neurons in cortical degeneration with neuronal achromasia. Clin Neuropathol 1992;11:28–35.PubMedGoogle Scholar
  79. 79.
    Gibb WR, Luthert PJ, Marsden CD. Corticobasal degeneration. Brain 1989;112:1171–1192.PubMedGoogle Scholar
  80. 80.
    Mori H, Nishimura M, Namba Y, Oda M. Corticobasal degeneration: a disease with widespread appearance of abnormal tau and neurofibrillary tangles and its relation to progressive supranuclear palsy. Acta Neuropathol 1994;88:113–121.PubMedGoogle Scholar
  81. 81.
    Paulus W, Selim M. Corticonigral degeneration with neuronal achromasia and basal neurofibrillary tangles. Acta Neuropathol 1990;81:89–94.PubMedGoogle Scholar
  82. 82.
    Feany MB, Dickson DW. Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 1996;40:139–148.PubMedGoogle Scholar
  83. 83.
    Feany MB, Mattiace LA, Dickson DW. Neuropathologic overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration. J Neuropathol Exp Neurol 1996;55:53–67.PubMedGoogle Scholar
  84. 84.
    Wakabayashi K, Oyamagi K, Makifuchi T, et al. Corticobasal degeneration: etiopathological significance of the cytoskeletal alterations. Acta Neuropathol 1994;87:545–553.PubMedGoogle Scholar
  85. 85.
    Dickson DW, Bergeron C, Chin WW, et al. Office of rare diseases. Neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002; 61:935–946.PubMedGoogle Scholar
  86. 86.
    Komori T, Arai N, Oda M, et al. Astrocytic plaques and tufts of abnormal fibres do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 1998;96:401–408.PubMedGoogle Scholar
  87. 87.
    Mattice LA, Wu E, Aronson M, Dickson D. A new type of neuritic plaque without amyloid in corticonigral degeneration with neuronal achromasia. J Neuropathol Exp Neurol 1991;50:310.Google Scholar
  88. 88.
    Chin SSM, Goldman JE. Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 1996; 55:499–508.PubMedGoogle Scholar
  89. 89.
    Ikeda K, Akiyama H, Kondo H, et al. Thorn-shaped astrocytes: possibly secondarily induced tau-positive glial fibrillary tangles. Acta Neuropathol 1995;90:620–625.PubMedGoogle Scholar
  90. 90.
    Ikeda K, Akiyama H, Haga C, Kondo H, Arima K, Oda T. Argyrophilic thread-like structure in corticobasal degeneration and supranuclear palsy. Neurosci Lett 1994;174:157–159.PubMedGoogle Scholar
  91. 91.
    Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. Arch Neurol 1964;10:333–359.PubMedGoogle Scholar
  92. 92.
    Dickson DW. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 1999;246(Suppl 2):II6–I15.PubMedGoogle Scholar
  93. 93.
    Hauw JJ, Daniel SE, Dickson D, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 1994;44:2015–2019.PubMedGoogle Scholar
  94. 94.
    Litvan I, Hauw JJ, Bartko JJ, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 1996;55:97–105.PubMedGoogle Scholar
  95. 95.
    Braak H, Jellinger K, Braak E, et al. Allocortical neurofibrillary changes in progressive supranuclear palsy. Acta Neuropathol 1992;84:478–483.PubMedGoogle Scholar
  96. 96.
    Hauw JJ, Verny M, Delaere P, Cervera P, He Y, Duyckaerts C. Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy. Basic differences with Alzheimer’s disease and aging. Neurosci Lett 1990;119:182–186.PubMedGoogle Scholar
  97. 97.
    Hof PR, Delacourte A, Bouras C. Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy: a quantitative analysis of six cases. Acta Neruoapathol 1992;84:45–51.Google Scholar
  98. 98.
    Bigio EH, Brown DF, White CL. Progressive supranuclear palsy with dementia: cortical pathology. J Neuroapthol Exp Neurol 1999;58:359–364.Google Scholar
  99. 99.
    Arai N. “Grumose degeneration” of the dentate nucleus. A light and electron microscopic study in progressive supranuclear palsy and dentatorubropallidoluysial atrophy. J Neurol Sci 1989;90:131–145.PubMedGoogle Scholar
  100. 100.
    Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 1997;41: 706–715.PubMedGoogle Scholar
  101. 101.
    Clark LN, Poorkaj P, Wszolek Z, et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 1998;95:13103–13107.PubMedGoogle Scholar
  102. 102.
    Dumanchin C, Camuzat A, Campion D, et al. Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum Mol Genet 1998;7:1825–1829.PubMedGoogle Scholar
  103. 103.
    Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5’ splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998;393:702–705.PubMedGoogle Scholar
  104. 104.
    Spillantini MG, Murrell JR, Goedert M, et al. Mutation in the tau gene in a familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 1998;95:7737–7741.PubMedGoogle Scholar
  105. 105.
    Kertesz A, Kawarai T, Rogaeva E, et al. Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 2000;54:818–827PubMedGoogle Scholar
  106. 106.
    Rosso SM, Kamphorst W, de Graaf B, et al. Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21-22. Brain 124;1948–1957.Google Scholar
  107. 107.
    Ghetti B, Hutton ML, Wszolek ZK. Frontotemporal dementia and parkinsonism linked to chromosome 17 associated with tau gene mutations (FTDP-17T). In: Dickson D, ed. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Los Angeles: ISN Neuropath Press, 2003:86–102.Google Scholar
  108. 108.
    Reed LA, Wszolek ZK, Hutton M. Phenotypic correlations in FTDP-17. Neurbiol Aging 2001;22: 89–107.Google Scholar
  109. 109.
    van Swieten JC, Stevens M, Rosso SM, et al. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 1999;46:617–626.PubMedGoogle Scholar
  110. 110.
    Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and parkinsonism linked to chromosome 17; a new group of tauopathies. Brain Pathol 1998;8:386–402.Google Scholar
  111. 111.
    Sumi SM, Bird TD, Nochlin D, raskind MA. Familial presenile dementia with psychosis associated with corticoal neurofibrillary tangles and degeneration of the amygdala. Neurology 1992;42:120–127.PubMedGoogle Scholar
  112. 112.
    Mirra SS, Murrell JR, Gearing M, et al. Tau pathology in a family with dementia and P301L mutation in tau. J Neuropathol Exp Neurol 1999;58:335–345.PubMedGoogle Scholar
  113. 113.
    Spillantini MG, Yoshida H, Rizzini C, et al. A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol 2000;48:939–943.PubMedGoogle Scholar
  114. 114.
    Stanford PM, Halliday GM, Brooks WS, et al. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations. Brain 2000; 123:880–893.PubMedGoogle Scholar
  115. 115.
    Murrell Jr, Spillantini MG, Zolo P, et al. Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J Neuropathol Expo Neurol 1999;58:1207–1226.Google Scholar
  116. 116.
    Rizzini C, Goedert M, Hodges JR, et al. Tau gene mutation K257T causes a tauopathy similar to Pick’s disease. J Neuropathol Exp Neurol 2000;59:990–1001.PubMedGoogle Scholar
  117. 117.
    Spillantini MG, Goedert M, Crowther RA, Smith MJ, Jakes R, Hills R. Familial multiple system tauopathy: a new neurodegenerative disease of the brain with tau neurofibrillary pathology. Proc Natl Acad Sci USA 1997; 95: 4113–4118.Google Scholar
  118. 118.
    Reed LA, Schmidt ML, Wszolek ZK, et al. The neuropathology of a chromosome 17-linked autosomal dominant parkinsonism and dementia (“pallido-ponto-nigral degeneration”). J Neuropathol Exp Neurol 1998; 57:588–601.PubMedGoogle Scholar
  119. 119.
    Wilhelmsen KC, Lynch T, Pavlou E, et al. Localization of disinhibition-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet 1994;55:1159–1165.PubMedGoogle Scholar
  120. 120.
    Sima AA, Defendini R, Keohane C, et al. The neuropathology of chromosome 17-linked dementia. Annals of Neurology 1996;39:734–743.PubMedGoogle Scholar
  121. 121.
    Hirano A, Kurland LT, Krooth RS, lessell S. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain 1961;84:642–661.PubMedGoogle Scholar
  122. 122.
    Gibbs CJ, Gajdusek DC. An update on long-term in vivo and in vitro studies designed to identify a virus as the cause of amyotrophic lateral sclerosis, parkinsonism dementia and Parkinson’s disease. Adv Neurol 1982; 36:343–353.PubMedGoogle Scholar
  123. 123.
    Hudson AJ, Rice GP. Similarities of guamanian ALS/PD to post-encephalitic parkinsonism/ALS: possible viral cause. Can J Neurol Sci 1990;17:427–433.PubMedGoogle Scholar
  124. 124.
    Spencer PS, Nunn PB, Hugon J, et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987;237:517–522.PubMedGoogle Scholar
  125. 125.
    Hirano A, Malamjud N, Kurland LT. Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain 1961;84:662–679.PubMedGoogle Scholar
  126. 126.
    Malamud N, Hirano A, Kurland LT. Pathoanatomic changes in amyotrophic lateral sclerosis on Guam. Neurology 1961;5:401–414.Google Scholar
  127. 127.
    Buee-Scherrer V, Buee L, Hof PR, et al. Neurofibrillary degeneration in amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. Immunochemical characterization of tau proteins. Am J Pathol 1995;146:924–932PubMedGoogle Scholar
  128. 128.
    Shankar SK, Yanagihara R, Garruto RM, Grundke-Iqbal I, Kosik KS, Gajdusek DC. Immunocytochemical characterization of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism-complex of Guam. Ann Neurol 1989;25:146–151.PubMedGoogle Scholar
  129. 129.
    Hof PR, Nimchinsky EA, Buee-Scherrer V, et al. Amyotrophic lateral sclerosis/parkinsonism dementia-complex from Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability and comparison with related neurodegenerative disorders. Acta Neuropathol 1994;88:397–404.PubMedGoogle Scholar
  130. 130.
    Geddes JF, Hughes AJ, Lees AJ, Daniel SE. Pathological overlap in cases of parkinsonism associated with neurofibrillary tangles. A study of recent cases of postencephalitic parkinsonism and comparison with progressive supranuclear palsy and Guamanian parkinsonism-dementia complex. Brain 1993;116:281–302.PubMedGoogle Scholar
  131. 131.
    Hudson AJ. Amyotrophic lateral sclerosis/parkinsonism/dementia: clinico-pathological correlations relevant to Guamanian ALS/PD. Can J Neurol Sci 1991;19:458–461.Google Scholar
  132. 132.
    Oyanagi K, Makifuchi T, Ohtoh T, Chen KM, Gajdusek DC, Chase TN. Distinct pathological features of the Gallyas-and tau-positive glia in the Parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. J Neuropathol Exp Neurol 1997;56:308–316.PubMedGoogle Scholar
  133. 133.
    Hirano A, Dembitzer HM, Kurland. LT. The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies and “rod-like” structures as seen in Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. J Neuropathol Exp Neurol 1968;27:167–182.PubMedGoogle Scholar
  134. 134.
    Oyanagi K, Makifuchi T, Ohtoh T, et al. Amyotrophic lateral sclerosis of Guam: the nature of the neuropathological findings. Acta Neuropathol 1994;88:405–412.PubMedGoogle Scholar
  135. 135.
    Merello M, Sabe L, Teson A, et al. Extrapyramidalism in Alzheimer’s disease: prevalence, psychiatric and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1994;57:1503–1509.PubMedGoogle Scholar
  136. 136.
    Morris JC, Drazner M, Fulling K, Grant EA, Goldring J. Clinical and pathological aspects of parkinsonism in Alzheimer’s disease. A role for extranigral factors? Arch Neurol 1989;46:651–657.PubMedGoogle Scholar
  137. 137.
    Tsolaki M, Kokarida K, Iakovidou V, et al. Extrapyramidal symptoms and signs in Alzheimer’s disease: prevalence and correlation with the first symptom. Am J Alz Dis 2001;16:268–278.Google Scholar
  138. 138.
    Hulette C, Mirra S, Wilkinson W, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part IX. A prospective cliniconeuropathologic study of Parkinson’s features in Alzheimer’s disease. Neurology 1995;45:1991–1995.PubMedGoogle Scholar
  139. 139.
    Stern Y, Jacobs D, Goldman J, et al. An investigation of clinical correlates of Lewy bodies in autopsy-proven Alzheimer’s disease. Arch Neurol 2001;58:460–465.PubMedGoogle Scholar
  140. 140.
    Lui Y, Stern Y, Chun MR, Jacobs DM, Yan P, Goldman JR. Pathological correlates of extrapyramidal signs in Alzheimer’s disease. Ann Neurol 1997;41:368–374.Google Scholar
  141. 141.
    Love S, Wilcock GK, Matthews SM. No correlation between nigral degeneration and striatal plaques in Alzheimer’s disease. Acta Neuropathol 1996;91:432–436.PubMedGoogle Scholar
  142. 142.
    Uchihara T, Kondo H, Ikeda K, et al. Alzheimer-type pathology in melanin-bleached sections of substantia nigra. J Neurol 1995;242:485–489.PubMedGoogle Scholar
  143. 143.
    Uchihara T, Kondo H, Kosaka K, Tsukagoshi H. Selective loss of nigral neurons in Alzheimer’s disease: a morphometric study. Acta Neuropathol 1992;83:271–276.PubMedGoogle Scholar
  144. 144.
    Kazee AM, Cox C, Richfield EK. Substantia nigra lesions in Alzheimer’s disease and normal aging. Alz Dis Assoc Disord 1995;9:61–67.Google Scholar
  145. 145.
    Hudson AJ. Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain 1981;104:217–247.PubMedGoogle Scholar
  146. 146.
    Okamoto K, Murakami N, Kusaka H, et al. Ubiquitin-positive intraneuronal inclusions in the extramotor cortices of presenile dementia patients with motor neuron disease. J Neurol 1992;239:426–430.PubMedGoogle Scholar
  147. 147.
    Kawashima T, Kikuchi H, Takita M, et al. Skein-like inclusions in the neostriatum from a case of amyotrophic lateral sclerosis with dementia. Acta Neuropathol 1998;96:541–545.PubMedGoogle Scholar
  148. 148.
    Su M, Yoshida Y, Ishiguro H, et al. Nigral degeneration in a case of amyotrophic lateral sclerosis: evidence of Lewy-like and skein-like inclusions in the pigmented neurons. Clin Neuropathol 1999;18:293–300.PubMedGoogle Scholar
  149. 149.
    Wakabayashi K, Piao YS, Hayashi S, et al. Ubiquitinated neuronal inclusions in the neostriatum in patients with amyotrophic lateral sclerosis with and without dementia—a study of 60 patients 31 to 87 years of age. Clin Neuropathol 2001;20:47–52.PubMedGoogle Scholar
  150. 150.
    Mackenzie IR, Feldman H. Extrapyramidal features in patients with motor neuron disease and dementia; a clinico-pathological correlative study. Acta Neuropathol 2004;107:336–340.PubMedGoogle Scholar
  151. 151.
    Oyanagi K, Takeda S, Takahashi H, Ohama E, Ikuta F. A quantitative investigation of the substantia nigra in Huntington’s disease. Ann Neurol 1989;26:13–19.PubMedGoogle Scholar
  152. 152.
    DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;227:1990–1993.Google Scholar
  153. 153.
    Maat-Schieman MLC, Dorsman JC, Smoor MA, et al. Distribution of inclusions in neuronal nuclei and dystrophic neurites in Huntington Disease brain. J Neuropathol Exp Neurol 1999;58:129–137.PubMedGoogle Scholar
  154. 154.
    Harding A. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias: a study of eleven families including descendants of the “Drew family of Walworth.” Brain 1982; 105: 1–28.PubMedGoogle Scholar
  155. 155.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 1999;97:306–310.PubMedGoogle Scholar
  156. 156.
    Martin JJ, van Regemorter N, Krols L, et al. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol 1994;88:277–286.PubMedGoogle Scholar
  157. 157.
    Fujigasaki H, Uchihara T, Koyano S, et al. Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Macado-Joseph disease brains. Exp Neurol 2000;165:248–256.PubMedGoogle Scholar
  158. 158.
    Koyano S, Uchihara T, Fujigasaki H, Nakamura A, Yagishita S, Iwabuchi K. Neuronal intanuclear inclusions in spinocerebellar ataxia type 2: triple-labelling immunofluorescent study. Neuro Sci Lett 1999;273: 117–120.Google Scholar
  159. 159.
    Jankovic J, Kirkpatrick JB, Blomquist KA, et al. Late-onset Hallervorden-Spatz disease presenting as familial parkinsonism. Neurology 1985;35:227–234.PubMedGoogle Scholar
  160. 160.
    Antoine JC, Tommasi M, Chalumeau A. Hallervorden-Spatz disease with Lewy bodies. Rev Neurol Paris 1985;141:806–809.PubMedGoogle Scholar
  161. 161.
    Arawaka S, Saito Y, Murayama S, Mori H. Lewy body in neurodegeneration with brain iron accumulation type I is immunoreactive for alpha-synuclein. Neurology 1998;51:887–889.PubMedGoogle Scholar
  162. 162.
    Galvin JE, Giasson B, Hurtig HI, lee V, Trojanowski JQ. Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 2000;157:361–368.PubMedGoogle Scholar
  163. 163.
    Wakabayashi K, Yoshimoto M, Fikushima T, et al. Widespread occurrence of alpha-synuclein/NACP-immunoreactive neuronal inclusions in juvenile and adult-onset Hallervorden-Spatz disease with Lewy bodies. Neuropathol Exp Neurol 1999;25:363–368.Google Scholar
  164. 164.
    McCall S, Henry JM, Reid AH, Taubenberger JK. Influenza RNA not detected in archival brain tissues from acute encephalitis lethargica cases or in postencephalitic Parkinson cases. J Neuropathol Exp Neurol 2001;60: 696–704.PubMedGoogle Scholar
  165. 165.
    Reid AH, McCall S, Henry JM, Taubenberger JK. Experimenting on the past: the enigma of von Economo’s encephalitis lethargica. J Neuropathol Exp Neurol 2001;663–670.Google Scholar
  166. 166.
    Hallervorden J. Anatomische untersuchungen zur pathologenese des postencephaliticshen Parkinsonismus. Dtsch Z Nervenheilkunde 1935;136:68–77.Google Scholar
  167. 167.
    Torvik A, Meen D. Distribution of the brainstem lesions in postencephalitic parkinsonism. Acta Neurol Scand 1966;42:415–425.PubMedGoogle Scholar
  168. 168.
    Buee-Scherrer V, Buee L, Leveugle B, et al. Pathological tau proteins in postencephalitic parkinsonism: comparison with Alzheimer’s disease and other neurodegenerative disorders. Ann Neurol 1997;42: 924–932.Google Scholar
  169. 169.
    Ishii T, Nakamura Y. Distribution and ultrastructure of Alzheimer’s neurofibrillary tangles in postencephalitic parkinsonism of Economo type. Acta Neuropathol 1981;55:59–62.PubMedGoogle Scholar
  170. 170.
    Hof PR, Charpiot A, Delacourte A, Purohit D, Perl DP, Bouras C. Distribution of neurofibrillary tangles and senile plaques in the cerebral cortex in postencephalitic parkinsonism. Neurosci Lett 1992;139:10–14.PubMedGoogle Scholar
  171. 171.
    Haraguchi T, Ishizu H, Terada S, et al. An autopsy case of postencephalitic parkinsonism of von Economo type: some new observations concerning neurofibrillary tangles and astrocytic tangles. Neuropathology 2000;20: 143–148.PubMedGoogle Scholar
  172. 172.
    Ikeda K, Akiyama H, Kondo H, Ikeda K. Anti-tau-positive glial fibrillary tangles in the brain of postencephalitic parkinsonism of Economo type. Neurosci Lett 1993;162:176–178.PubMedGoogle Scholar
  173. 173.
    Reider-Groswasser I, Bornstein NM, Korczyn AD. Parkinsonism in patients with lacunar infarcts of the basal ganglia. Eur Neurol 1996;36:248–249.Google Scholar
  174. 174.
    Tomonaga M, Yamanouchi H, Tohgi H, Kameyama M. Clinicopathologic study of progressive subcortical vascular encephalopathy (Binswanger type) in the elderly. J Am Geriatr Soc 1982;30:524–529.PubMedGoogle Scholar
  175. 175.
    Van Zagten M, Lodder J, Kessels F. Gait disorder and parkinsonian signs in patients with stroke related to small deep infarcts and white matter lesions. Mov Disord 1998;13:89–95.PubMedGoogle Scholar
  176. 176.
    Chang CM, Yu YL, Ng HK, et al. Vascular pseudoparkinsonism. Acta Neurol Sci 1992;86;588-592.Google Scholar
  177. 177.
    Murrow RW. Schweiger GD, Kepes et al. Parkinsonism due to basal ganglia lacunar state: clinicopathologic correlation. Neurology 1990:40:897–900.PubMedGoogle Scholar
  178. 178.
    De Reuck J, Sieben G, de Coster W, et al. Parkinsonism in patients with cerebral infarcts. Clin Neurol Neurosurg 1980;82:177–218.PubMedGoogle Scholar
  179. 179.
    Hunter R, Smith J, Thomson T, et al. Hemiparkinsonism with infarction of the ipsilateral substantia nigra. Neuropathol Appl Neurobiol 1978;4:297–301.PubMedGoogle Scholar
  180. 180.
    Krauss JK, Jankovic J. Head injury and posttraumatic movement disorders. Neurosurgery 2002;50: 927–940.PubMedGoogle Scholar
  181. 181.
    Rondot P, Bathien N, De Recondo J, et al. Dystonia-parkinsonism syndrome from a bullet injury in the midbrain. J Neurol Neurosurg Psychiatry 1994;57:658.PubMedGoogle Scholar
  182. 182.
    Wiest RG, Burgunder JM, Krauss JK. Chronic subdural haematomas and Parkinsonian syndromes. Acta Neurochir 1999;141:753–758.Google Scholar
  183. 183.
    Taylor CA, Saint-Hilaire MH, Cupples LA, et al. Environmental, medical and family history risk factors for Parkinson’s disease: a New England-based case control study. Am J Med Genet 1999;88:742–749.PubMedGoogle Scholar
  184. 184.
    Tsai CH, Lo SK, See LC, et al. Environmental risk factors of young onset Parkinson’s disease: a case-control study. Clin Neurol Neurosurg 2002;104:328–333.PubMedGoogle Scholar
  185. 185.
    Clinton J, Ambler MW, Roberts GW. Post-traumatic Alzheimer’s disease: preponderance of a single plaque type. Neuropathol Appl Neurobiol 1991;17:69–74.PubMedGoogle Scholar
  186. 186.
    Tokuda T, Ikeda S, Yanagisawa N, Ihara Y, Glenner GG. Re-examination of ex-boxers’ brains using immunohistochemistry with antibodies to amyloid beta-protein and tau protein. Acta Neuropathol 1991;82: 280–285.PubMedGoogle Scholar
  187. 187.
    Roberts GW, Gentleman SM, Lynch A, Graham DI. βA4-amyloid protein deposition in the brain after head injury. Lancet 1991;338:1422–1423.PubMedGoogle Scholar
  188. 188.
    Hoshino S, Tamaoka A, Takahashi M, et al. Emergence of immunoreactivities for phosphorylated tau and amyloid-beta protein in chronic stage of fluid percussion in rat brain. Neuroreport 1998;9:1879–1893.PubMedGoogle Scholar
  189. 189.
    Smith DH, Chen XH, Nonaka M, et al. Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 1999;58:982–992.PubMedGoogle Scholar
  190. 190.
    Bhatt M, Desai J, Mankodi A, Elias M, Wadia N. Posttraumatic akinetic-rigid syndrome resembling Parkinson’s disease: a report on three patients. Mov Disord 2000;15:313–317.PubMedGoogle Scholar
  191. 191.
    Nayernouri T. Posttraumatic parkinsonism. Surg Neurol 1985;24:263–264.PubMedGoogle Scholar
  192. 192.
    Turjanski N, Lees AJ, Brooks DJ. Dopaminergic function in patients with posttraumatic parkinsonism: an 18F-dopa PET study. Neurology 1997;49:183–189.PubMedGoogle Scholar
  193. 193.
    Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analogue synthesis. Science 1983;219:979–980.PubMedGoogle Scholar
  194. 194.
    Langston JW, Irwin I, Langston EB, et al. 1-methyl-4-phenylpyridinium (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 1984;48:87–92.PubMedGoogle Scholar
  195. 195.
    Singer TP, Ramsay RR. Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett 1990;274: 1–8.PubMedGoogle Scholar
  196. 196.
    Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999;46:598–605.PubMedGoogle Scholar
  197. 197.
    Tetrud JW, Langston JW. MPTP-induced parkinsonism as a model for Parkinson’s disease. Acta Neurol Scand 1989;126:35–40.Google Scholar
  198. 198.
    Forno LS, DeLanney LE, Irwin I, Langston JW. Similarities and differences between MPTP-induced parkinsonism and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 1993; 60:600–608.PubMedGoogle Scholar
  199. 199.
    Lapham LW. Cytologic and cytochemical studies of neuroglia. I. A study of the problem of amitosis in reactive astrocytes. Am J Pathol 1962;41:1–21.PubMedGoogle Scholar
  200. 200.
    Opalski A. Uber eine besondere Art von Gliazellen bei der Wilson-Pseudosklerosegruppe. Z Ges Neurol Psychiat 1930;124:420–425.Google Scholar
  201. 201.
    Huang CC, Chu NS, Lu CS, et al. Chronic manganese intoxication. Arch Neurol 1989;46:1104–1106.PubMedGoogle Scholar
  202. 202.
    Klawans HL, Stein RW, Tanner CM, Goetz CG. A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol 1983;39:302–304.Google Scholar
  203. 203.
    McLean DR, Jacobs H, Mielke BW. Methanol poisoning: a clinical and pathological study. Ann Neurol 1980;8:161–167.PubMedGoogle Scholar
  204. 204.
    Okuda B, Iwamoto Y, Tachibana H, et al. Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 1997;99:263–265.PubMedGoogle Scholar
  205. 205.
    Peters HA, Levine RL, Matthew CG, Chapman LJ. Extrapyramidal and other neurologic manifestations associated with carbon disulfide fumigant exposure. Arch Neurol 1998;45:537–540.Google Scholar
  206. 206.
    Uitti RJ, Rajput AH, Ashenhurst EM, Rozdilsky B. Cyanide-induced parkinsonism: a clinicopathologic report. Neurology 1985;35:921–925.PubMedGoogle Scholar
  207. 207.
    Kim JS, Choi IS, Lee MC. Reversible parkinsonism and dystonia following probable mycoplasma pneumoniae infection. Mov Disord 1995;10:510–512.PubMedGoogle Scholar
  208. 208.
    Mirsattari SM, Power C, Nath A. Parkinsonism with HIV infection. Mov Disord 2000;15:1032–1033.Google Scholar
  209. 209.
    Murakami T, Nakajima M, Nakamura T, et al. Parkinsonian symptoms as an initial manifestation in a Japanese patient with acquired immunodeficiency syndrome and Toxoplasma infection. Intern Med 2000;39:1006–1007.Google Scholar
  210. 210.
    Viader F, Poncelet AM, Chapon F, et al. Neurologic forms of Lyme disease. Rev Neurol 1989;145: 362–368.PubMedGoogle Scholar
  211. 211.
    Wszolek Z, Monsour H, Smith P, et al. Cryptococcal meningoencephalitis with parkinsonian features. Mov Disord 1988;3:271–273.PubMedGoogle Scholar
  212. 212.
    Yazaki M, Yamazaki M, Urasawa N, et al. Successful treatment with alpha-interferon of a patient with chronic measles infection of the brain and parkinsonism. Eur Neurol 2000;44:184–186.PubMedGoogle Scholar
  213. 213.
    Lhermitte F, Agid Y, Serdaru M, Guimaraes J. Parkinson syndrome, frontal tumor and L-dopa. Rev Neurol 1984;140:138–139.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Ian R. A. Mackenzie
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada

Personalised recommendations