Advertisement

Cytogenetics of Solid Tumors

  • Jonathan A. Fletcher

Abstract

The field of cytogenetics has had a great impact on clinical and basic sciences in hematology and oncology, and both karyotyping and fluorescence in situ hybridization (FISH) assays are of growing relevance in solid tumor oncology. Although most of the cancer cytogenetic work in clinical laboratories is directed to hematological disorders, it is increasingly evident that cytogenetic assays are essential in providing diagnostic or prognostic information for various solid tumors (see Tables 1 and 2).

Keywords

Synovial Sarcoma Malignant Peripheral Nerve Sheath Tumor Inflammatory Myofibroblastic Tumor Papillary Renal Cell Carcinoma Clear Cell Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sreekantaiah, C., Appaji, L., and Hazarika, D. (1992) Cytogenetic characterisation of small round cell tumours using fine needle aspiration. J. Clin. Pathol. 45, 728–730.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Akerman, M., Dreinhofer, K., Rydholm, A., et al. (1996) Cytogenetic studies on fine-needle aspiration samples from osteosarcoma and Ewing’s sarcoma. Diagn. Cytopathol. 15, 17–22.PubMedGoogle Scholar
  3. 3.
    Hoffer, F.A., Gianturco, L.E., Fletcher, J.A., and Grier, H.E. (1994) Percutaneous biopsy of peripheral primitive neuroectodermal tumors and Ewing’s sarcomas for cytogenetic analysis. Am. J. Roentgenol. 162, 1141–1142.Google Scholar
  4. 4.
    Saboorian, M.H., Ashfaq, R., Vandersteenhoven, J.J., and Schneider, N.R. (1997) Cytogenetics as an adjunct in establishing a definitive diagnosis of synovial sarcoma by fine-needle aspiration. Cancer 81, 187–192.PubMedGoogle Scholar
  5. 5.
    Cajulis, R.S. and Frias-Hidvegi, D. (1993) Detection of numerical chromosomal abnormalities in malignant cells in fine needle aspirates by fluorescence in situ hybridization of interphase cell nuclei with chromosome-specific probes. Acta Cytol. 37, 391–396.PubMedGoogle Scholar
  6. 6.
    Cajulis, R.S., Kotliar, S., Haines, G.K., Frias-Hidvegi, D., and O’Gorman, M. (1994) Comparative study of interphase cytogenetics, flow cytometric analysis, and nuclear grade of fine-needle aspirates of breast carcinoma. Diagn. Cytopathol. 11, 151–158.PubMedGoogle Scholar
  7. 7.
    Limon, J., Dal Cin, P., and Sandberg, A.A. (1986) Application of long-term collagenase disaggregation for the cytogenetic analysis of human solid tumors. Cancer Genet. Cytogenet. 23, 305–313.PubMedGoogle Scholar
  8. 8.
    Ried, T. (1998) Interphase cytogenetics and its role in molecular diagnostics of solid tumors. Am. J. Pathol. 152, 325–327.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Hsi, B.L., Xiao, S., and Fletcher, J.A. (2002) Chromogenic in situ hybridization and FISH in pathology. Methods Mol. Biol. 204, 343–351.PubMedGoogle Scholar
  10. 10.
    Hopman, A.H., Claessen, S., and Speel, E.J. (1997) Multi-colour brightfield in situ hybridisation on tissue sections. Histochem. Cell Biol. 108, 291–298.PubMedGoogle Scholar
  11. 11.
    Speel, E.J., Ramaekers, F.C., and Hopman, A.H. (1995) Cytochemical detection systems for in situ hybridization, and the combination with immunocytochemistry, “who is still afraid of red, green and blue?” J. Histochem. 27, 833–858.Google Scholar
  12. 12.
    Liu, E., Thor, A., He, M., Barcos, M., Ljung, B.M., and Benz, C. (1992) The HER2 (c-erbB-2) oncogene is frequently amplified in in situ carcinomas of the breast. Oncogene 7, 1027–1032.PubMedGoogle Scholar
  13. 13.
    Ross, J.S., Fletcher, J.A., Linette, G.P., et al. (2003) The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 8, 307–325.PubMedGoogle Scholar
  14. 14.
    Kim, S.Y., Lee, J.S., Ro, J.Y., Gay, M.L., Hong, W.K., and Hittelman, W.N. (1993) Interphase cytogenetics in paraffin sections of lung tumors by non-isotopic in situ hybridization. Mapping genotype/phenotype heterogeneity. Am. J. Pathol. 142, 307–317.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Schofield, D.E. and Fletcher, J.A. (1992) Trisomy 12 in pediatric granulosa-stromal cell tumors. Demonstration by a modified method of fluorescence in situ hybridization on paraffin-embedded material. Am. J. Pathol. 141, 1265–1269.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Paternoster, S.F., Brockman, S.R., McClure, R.F., Remstein, E.D., Kurtin, P.J., and Dewald, G.W. (2002) A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase fluorescence in situ hybridization. Am. J. Pathol. 160, 1967–1972.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Kallioniemi, A., Kallioniemi, O.P., Sudar, D., et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821.PubMedGoogle Scholar
  18. 18.
    Albertson, D.G., Ylstra, B., Segraves, R., et al. (2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nature Genet. 25, 144–146.PubMedGoogle Scholar
  19. 19.
    Schrock, E., du Manoir, S., Veldman, T., Nat. Genet. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497.PubMedGoogle Scholar
  20. 20.
    Veldman, T., Vignon, C., Schrock, E., Rowley, J.D., and Ried, T. (1997) Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Nature Genet. 15, 406–410.PubMedGoogle Scholar
  21. 21.
    Macville, M., Schrock, E., Padilla-Nash, H., Nat. Genet. (1999) Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 59, 141–150.PubMedGoogle Scholar
  22. 22.
    Mackall, C.L., Meltzer, P.S., and Helman, L.J. (2002) Focus on sarcomas. Cancer Cell 2, 175–178.PubMedGoogle Scholar
  23. 23.
    Oliveira, A.M. and Fletcher, J.A. (2002) Translocation breakpoints in cancer. In Encyclopedia of the Human Genome Nature. Publishing, London, U.K.Google Scholar
  24. 24.
    Look, A.T., Hayes, F.A., Shuster, J.J., et al. (1991) Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J. Clin. Oncol. 9, 581–591.PubMedGoogle Scholar
  25. 25.
    Delattre, O., Zucman, J., Plougastel, B., et al. (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165.PubMedGoogle Scholar
  26. 26.
    Turc-Carel, C., Philip, I., Berger, M. P., Philip, T., and Lenoir, G. M. (1984) Chromosome study of Ewing’s sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet. Cytogenet. 12, 1–19.PubMedGoogle Scholar
  27. 27.
    Turc-Carel, C., Aurias, A., Mugneret, F., et al. (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet. Cytogenet. 32, 229–238.PubMedGoogle Scholar
  28. 28.
    Ewen, M.E., Ludlow, J.W., Marsilio, E., et al. (1989) An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell 58, 257–267.PubMedGoogle Scholar
  29. 29.
    Buckler, A.J., Chang, D.D., Graw, S.L., et al. (1991) Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Jeon, I.S., Davis, J.N., Braun, B.S., et al. (1995) A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10, 1229–1234.PubMedGoogle Scholar
  31. 31.
    Peter, M., Couturier, J., Pacquement, H., et al. (1997) A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14, 1159–1164.PubMedGoogle Scholar
  32. 32.
    Kaneko, Y., Yoshida, K., Handa, M., et al. (1996) Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 15, 115–121.PubMedGoogle Scholar
  33. 33.
    Ishida, S., Yoshida, K., Kaneko, Y., et al. (1998).The genomic breakpoint and chimeric transcripts in the EWSR1-ETV4/E1AF gene fusion in Ewing sarcoma. Cytogenet. Cell Genet. 82, 278–283.PubMedGoogle Scholar
  34. 34.
    Desmaze, C., Zucman, J., Delattre, O., Melot, T., Thomas, G., and Aurias, A. (1994) Interphase molecular cytogenetics of Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet. Cytogenet. 74, 13–18.PubMedGoogle Scholar
  35. 35.
    Barr, F.G., Chatten, J., D’Cruz, C.M., et al. (1995) Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA 273, 553–557.PubMedGoogle Scholar
  36. 36.
    Zoubek, A., Dockhorn-Dworniczak, B., Delattre, O., et al. (1996) Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J. Clin. Oncol. 14, 1245–1251.PubMedGoogle Scholar
  37. 37.
    de Alava, E., Kawai, A., Healey, J.H., et al. (1998) EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J. Clin. Oncol. 16, 1248–1255.PubMedGoogle Scholar
  38. 38.
    Fletcher, J. A. (1998) Ewing’s sarcoma oncogene structure: a novel prognostic marker? J. Clin. Oncol. 16, 1241–1243.PubMedGoogle Scholar
  39. 39.
    Davison, J.M., Morgan, T.W., Hsi, B.L., Xiao, S., and Fletcher, J. A. (1998) Subtracted, unique-sequence, in situ hybridization: experimental and diagnostic applications. Am. J. Pathol. 153, 1401–1409.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Galili, N., Davis, R.J., Fredericks, W.J., et al. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235.PubMedGoogle Scholar
  41. 41.
    Barr, F.G., Galili, N., Holick, J., Biegel, J.A., Rovera, G., and Emanuel, B. S. (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet. 3, 113–117.PubMedGoogle Scholar
  42. 42.
    Shapiro, D.N., Sublett, J.E., Li, B., Downing, J.R., and Naeve, C.W. (1993) Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53, 5108–5112.PubMedGoogle Scholar
  43. 43.
    Davis, R.J., D’Cruz, C.M., Lovell, M.A., Biegel, J.A., and Barr, F.G. (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872.PubMedGoogle Scholar
  44. 44.
    Davis, R.J., and Barr, F.G. (1997) Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc. Natl. Acad. Sci. USA 94, 8047–8051.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Fredericks, W.J., Galili, N., Mukhopadhyay, S., et al. (1995) The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol. Cell Biol. 15, 1522–1535.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Bennicelli, J.L., Fredericks, W.J., Wilson, R.B., Rauscher, F.J. 3rd, and Barr, F.G. (1995) Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene 11, 119–130.PubMedGoogle Scholar
  47. 47.
    Turc-Carel, C., Dal Cin, P., Limon, J., et al. (1987) Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc. Natl. Acad. Sci. USA 84, 1981–1985.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Limon, J., Mrozek, K., Mandahl, N., et al. (1991) Cytogenetics of synovial sarcoma: presentation of ten new cases and review of the literature. Genes Chromosomes Cancer 3, 338–345.PubMedGoogle Scholar
  49. 49.
    Clark, J., Rocques, P.J., Crew, A.J., et al. (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nature Genet. 7, 502–508.PubMedGoogle Scholar
  50. 50.
    Janz, M., de Leeuw, B., Weghuis, D.O., et al. (1995) Interphase cytogenetic analysis of distinct X-chromosomal translocation breakpoints in synovial sarcoma. J. Pathol. 175, 391–396.PubMedGoogle Scholar
  51. 51.
    Shipley, J.M., Clark, J., Crew, A.J., et al. (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9, 1447–1453.PubMedGoogle Scholar
  52. 52.
    Kawai, A., Woodruff, J., Healey, J.H., Brennan, M.F., Antonescu, C.R., and Ladanyi, M. (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N. Engl. J. Med. 338, 153–160.PubMedGoogle Scholar
  53. 53.
    Sreekantaiah, C., Leong, S.P., Karakousis, C.P., et al. (1991) Cytogenetic profile of 109 lipomas. Cancer Res. 51, 422–433.PubMedGoogle Scholar
  54. 54.
    Mandahl, N., Hoglund, M., Mertens, F., et al. (1994) Cytogenetic aberrations in 188 benign and borderline adipose tissue tumors. Genes Chromosomes Cancer 9, 207–215.PubMedGoogle Scholar
  55. 55.
    Fletcher, C.D., Akerman, M., Dal Cin, P., et al. (1996) Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am. J. Pathol. 148, 623–630.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Ashar, H.R., Fejzo, M.S., Tkachenko, A., et al. (1995) Disruption of the architectural factor HMGI-C: DNA-binding A-T hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82, 57–65.PubMedGoogle Scholar
  57. 57.
    Mandahl, N., Mertens, F., Willen, H., Rydholm, A., Brosjo, O., and Mitelman, F. (1994) A new cytogenetic subgroup in lipomas: loss of chromosome 16 material in spindle cell and pleomorphic lipomas. J. Cancer Res. Clin. Oncol. 120, 707–711.PubMedGoogle Scholar
  58. 58.
    Hibbard, M.K., Kozakewich, H.P., Dal Cin, P., et al. (2000) PLAG1 fusion oncogenes in lipoblastoma. Cancer Res. 60, 4869–4872.PubMedGoogle Scholar
  59. 59.
    Mrozek, K., Karakousis, C.P., and Bloomfield, C.D. Band 11q13 is nonrandomly rearranged in hibernomas. (1994) Genes Chromosomes Cancer 9, 145–147.PubMedGoogle Scholar
  60. 60.
    Turc-Carel, C., Limon, J., Dal Cin, P., Rao, U., Karakousis, C., and Sandberg, A.A. (1986) Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet. Cytogenet. 23, 291–299.PubMedGoogle Scholar
  61. 61.
    Sreekantaiah, C., Karakousis, C.P., Leong, S.P., and Sandberg, A.A. (1992) Cytogenetic findings in liposarcoma correlate with histopathologic subtypes. Cancer 69, 2484–2495.PubMedGoogle Scholar
  62. 62.
    Hisaoka, M., Tsuji, S., Morimitsu, Y., et al. (1998) Detection of TLS/FUS-CHOP fusion transcripts in myxoid and round cell liposarcomas by nested reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Diagn. Mol. Pathol. 7, 96–101.PubMedGoogle Scholar
  63. 63.
    Kuroda, M., Ishida, T., Horiuchi, H., et al. (1995) Chimeric TLS/FUS-CHOP gene expression and the heterogeneity of its junction in human myxoid and round cell liposarcoma. Am. J. Pathol. 147, 1221–1227.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Aman, P., Ron, D., Mandahl, N., et al. (1992) Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 5, 278–285.PubMedGoogle Scholar
  65. 65.
    Crozat, A., Aman, P., Mandahl, N., and Ron, D. (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363, 640–644.PubMedGoogle Scholar
  66. 66.
    Mandahl, N., Heim, S., Arheden, K., Rydholm, A., Willen, H., and Mitelman, F. (1988) Rings, dicentrics, and telomeric association in histiocytomas. Cancer Genet. Cytogenet. 30, 23–33.PubMedGoogle Scholar
  67. 67.
    Turc-Carel, C., Dal Cin, P., Rao, U., Karakousis, C., and Sandberg, A.A. (1988) Recurrent breakpoints at 9q31 and 22q12.2 in extraskeletal myxoid chondrosarcoma. Cancer Genet. Cytogenet. 30, 145–150.PubMedGoogle Scholar
  68. 68.
    Pedeutour, F., Forus, A., Coindre, J.M., et al. (1999) Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24, 30–41.PubMedGoogle Scholar
  69. 69.
    Zucman, J., Delattre, O., Desmaze, C., et al. (1993) EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nature Genet. 4, 341–345.PubMedGoogle Scholar
  70. 70.
    Brown, A.D., Lopez-Terrada, D., Denny, C., and Lee, K. A. (1995) Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 10, 1749–1756.PubMedGoogle Scholar
  71. 71.
    Gerald, W.L., Miller, H.K., Battifora, H., Miettinen, M., Silva, E.G., and Rosai, J. (1991) Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am. J. Surg. Pathol. 15, 499–513.PubMedGoogle Scholar
  72. 72.
    Ladanyi, M. and Gerald, W. (1994) Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 54, 2837–2840.PubMedGoogle Scholar
  73. 73.
    Gerald, W.L., Ladanyi, M., de Alava, E., et al. (1998) Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J. Clin. Oncol. 16, 3028–3036.PubMedGoogle Scholar
  74. 74.
    Rodriguez, E., Sreekantaiah, C., Gerald, W., Reuter, V.E., Motzer, R.J., and Chaganti, R.S. (1993) recurring translocation, t(11;22)(p13;q11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet. Cytogenet. 69, 17–21.PubMedGoogle Scholar
  75. 75.
    Biegel, J.A., Conard, K., and Brooks, J.J. (1993) Translocation (11;22)(p13;q12): primary change in intra-abdominal desmoplastic small round cell tumor. Genes Chromosomes Cancer 7, 119–121.PubMedGoogle Scholar
  76. 76.
    Lee, S.B., Kolquist, K.A., Nichols, K., et al. (1997) The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nature Genet. 17, 309–313.PubMedGoogle Scholar
  77. 77.
    Kelly, J.D., Haldeman, B.A., Grant, F.J., et al. (1991) Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. J. Biol. Chem. 266, 8987–8992.PubMedGoogle Scholar
  78. 78.
    Pedeutour, F., Simon, M.P., Minoletti, F., et al. (1995) Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res. 55, 2400–2403.PubMedGoogle Scholar
  79. 79.
    Naeem, R., Lux, M.L., Huang, S.F., Naber, S.P., Corson, J.M., and Fletcher, J.A. (1995) Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am. J. Pathol. 147, 1553–1558.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Simon, M.P., Pedeutour, F., Sirvent, N., et al. (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nature Genet. 15, 95–98.PubMedGoogle Scholar
  81. 81.
    O’Brien, K.P., Seroussi, E., Dal Cin, P., et al. (1998) Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer 23, 187–193.PubMedGoogle Scholar
  82. 82.
    Maki, R.G., Awan, R.A., Dixon, R.H., Jhanwar, S., and Antonescu, C.R. (2002) Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int. J. Cancer 100, 623–626.PubMedGoogle Scholar
  83. 83.
    Rubin, B.P., Schuetze, S.M., Eary, J.F., et al. (2002) Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J. Clin. Oncol. 20, 3586–3591.PubMedGoogle Scholar
  84. 84.
    Alman, B.A., Li, C., Pajerski, M.E., Diaz-Cano, S., and Wolfe, H.J. (1997) Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am. J. Pathol. 151, 329–334.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Tejpar, S., Nollet, F., Li, C., et al. (1999) Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18, 6615–6620.PubMedGoogle Scholar
  86. 86.
    Fletcher, J.A., Naeem, R., Xiao, S., and Corson, J.M. (1995) Chromosome aberrations in desmoid tumors. Trisomy 8 might be a predictor of recurrence. Cancer Genet. Cytogenet. 79, 139–143.PubMedGoogle Scholar
  87. 87.
    Miyaki, M., Konishi, M., Kikuchi-Yanoshita, R., et al. (1993) Coexistence of somatic and germ-line mutations of APC gene in desmoid tumors from patients with familial adenomatous polyposis. Cancer Res. 53, 5079–5082.PubMedGoogle Scholar
  88. 88.
    Sen-Gupta, S., Van der Luijt, R.B., Bowles, L.V., Meera Khan, P., and Delhanty, J.D. (1993) Somatic mutation of APC gene in desmoid tumour in familial adenomatous polyposis. Lancet 342, 552–553.PubMedGoogle Scholar
  89. 89.
    Schofield, D.E., Fletcher, J.A., Grier, H.E., and Yunis, E.J. (1994) Fibrosarcoma in infants and children. Application of new techniques. Am. J. Surg. Pathol. 18, 14–24.PubMedGoogle Scholar
  90. 90.
    Schofield, D.E., Yunis, E.J., and Fletcher, J.A. (1993) Chromosome aberrations in mesoblastic nephroma. Am. J. Pathol. 143,714–724.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Knezevich, S.R., McFadden, D.E., Tao, W., Lim, J.F. and Sorensen, P.H. (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nature Genet. 18, 184–187.PubMedGoogle Scholar
  92. 92.
    Rubin, B.P., Chen, C.J., Morgan, T.W., et al. (1998) Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am. J. Pathol. 153, 1451–1458.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Knezevich, S.R., Garnett, M.J., Pysher, T.J., Beckwith, J.B., Grundy, P.E., and Sorensen, P.H. (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58, 5046–5048.PubMedGoogle Scholar
  94. 94.
    Treissman, S.P., Gillis, D.A., Lee, C.L., Giacomantonio, M., and Resch, L. (1994) Omental-mesenteric inflammatory pseudotumor. Cytogenetic demonstration of genetic changes and monoclonality in one tumor. Cancer 73, 1433–1437.PubMedGoogle Scholar
  95. 95.
    Snyder, C.S., Dell’Aquila, M., Haghighi, P., Baergen, R.N., Suh, Y.K., and Yi, E.S. (1995) Clonal changes in inflammatory pseudotumor of the lung: a case report. Cancer 76, 1545–1549.PubMedGoogle Scholar
  96. 96.
    Su, L.D., Atayde-Perez, A., Sheldon, S., Fletcher, J.A., and Weiss, S.W. (1998) Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod. Pathol. 11, 364–368.PubMedGoogle Scholar
  97. 97.
    Lawrence, B., Perez-Atayde, A., Hibbard, M.K., et al. (2000) TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am. J. Pathol. 157, 377–384.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Hirota, S., Isozaki, K., Moriyama, Y., et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580.PubMedGoogle Scholar
  99. 99.
    Rubin, B.P., Singer, S., Tsao, C., et al. (2001) KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 61, 8118–8121.PubMedGoogle Scholar
  100. 100.
    Heinrich, M.C., Corless, C.L., Duensing, A., et al. (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299, 708–710.PubMedGoogle Scholar
  101. 101.
    Demetri, G.D., von Mehren, M., Blanke, C.D., et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480.PubMedGoogle Scholar
  102. 102.
    van Oosterom, A.T., Judson, I., Verweij, J., et al. (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358, 1421–1423.PubMedGoogle Scholar
  103. 103.
    Nishida, T., Hirota, S., Taniguchi, M., et al. (1998) Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nature Genet. 19, 323–324.PubMedGoogle Scholar
  104. 104.
    Sarlomo-Rikala, M., el-Rifai, W., Lahtinen, T., Andersson, L.C., Miettinen, M., and Knuutila, S. (1998) Different patterns of DNA copy number changes in gastrointestinal stromal tumors, leiomyomas, and schwannomas. Hum. Pathol. 29, 476–481.PubMedGoogle Scholar
  105. 105.
    el Rifai, W., Sarlomo-Rikala, M., Andersson, L.C., Knuutila, S., and Miettinen, M. (2000) DNA sequence copy number changes in gastrointestinal stromal tumors: tumor progression and prognostic significance. Cancer Res. 60, 3899–3903.PubMedGoogle Scholar
  106. 106.
    Schneider-Stock, R., Boltze, C., Lasota, J., et al. (2003) High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J. Clin. Oncol. 21, 1688–1697.PubMedGoogle Scholar
  107. 107.
    Legius, E., Marchuk, D.A., Collins, F.S., and Glover, T.W. (1993) Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nature Genet. 3, 122–126.PubMedGoogle Scholar
  108. 108.
    Basu, T.N., Gutmann, D.H., Fletcher, J.A., Glover, T.W., Collins, F.S., and Downward, J. (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713–715.PubMedGoogle Scholar
  109. 109.
    DeClue, J.E., Papageorge, A.G., Fletcher, J.A., et al. (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69, 265–273.PubMedGoogle Scholar
  110. 110.
    Rouleau, G.A., Merel, P., Lutchman, M., et al. (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521.PubMedGoogle Scholar
  111. 111.
    Twist, E.C., Ruttledge, M.H., Rousseau, M., et al. (1994) The neurofibromatosis type 2 gene is inactivated in schwannomas. Hum. Mol. Genet. 3, 147–151.PubMedGoogle Scholar
  112. 112.
    Lutchman, M. and Rouleau, G.A. (1995) The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res. 55, 2270–2274.PubMedGoogle Scholar
  113. 113.
    Kluwe, L., Friedrich, R., and Mautner, V.-F. (1999) Loss of NF1 allele in Schwann cells but not in fibroblasts dervied from an NF1-associated neurofibroma. Genes Chromosomes Cancer 24, 283–285.PubMedGoogle Scholar
  114. 114.
    Murthy, S.S. and Testa, J.R. (1999) Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J. Cell Physiol. 180, 150–157.PubMedGoogle Scholar
  115. 115.
    Lechner, J.F., Tokiwa, T., LaVeck, M., et al. (1985) Asbestos-associated chromosomal changes in human mesothelial cells. Proc. Natl. Acad. Sci. USA 82, 3884–3888.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Ault, J.G., Cole, R.W., Jensen, C.G., Jensen, L.C.W., Bachert, L.A., and Rieder, C.L. (1995) Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res. 55, 792–798.PubMedGoogle Scholar
  117. 117.
    Hayashi, Y., Inaba, T., Hanada, R., and Yamamoto, K. (1988) Chromosome findings and prognosis in 15 patients with neuroblastoma found by VMA mass screening. J. Pediatr. 112, 567–571.PubMedGoogle Scholar
  118. 118.
    Brodeur, G.M., Azar, C., Brother, M., et al. (1992) Neuroblastoma. Effect of genetic factors on prognosis and treatment. Cancer 70, 1685–1694.PubMedGoogle Scholar
  119. 119.
    Shapiro, D.N., Valentine, M.B., Rowe, S.T., et al. (1993) Detection of N-myc gene amplification by fluorescence in situ hybridization. Diagnostic utility for neuroblastoma. Am. J. Pathol. 142, 1339–1346.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Komuro, H., Valentine, M.B., Rowe, S.T., et al. (1998) Fluorescence in situ hybridization analysis of chromosome 1p36 deletions in human MYCN amplified neuroblastoma. J. Pediatr. Surg. 33, 1695–1698.PubMedGoogle Scholar
  121. 121.
    Versteege, I., Sevenet, N., Lange, J., et al. (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206.PubMedGoogle Scholar
  122. 122.
    Biegel, J.A., Zhou, J.Y., Rorke, L.B., Stenstrom, C., Wainwright, L.M., and Fogelgren, B. (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79.PubMedGoogle Scholar
  123. 123.
    Sevenet, N., Sheridan, E., Amram, D., Schneider, P., Handgretinger, R., and Delattre, O. (1999) Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet. 65, 1342–1348.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Roberts, C.W., Galusha, S.A., McMenamin, M.E., Fletcher, C.D., and Orkin, S.H. (2000) Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl. Acad. Sci. USA 97, 13,796–13,800.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Sreekantaiah, C., Davis, J.R., and Sandberg, A.A. (1993) Chromosomal abnormalities in leiomyosarcomas. Am. J. Pathol. 142, 293–305.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Mitelman, F. (1998) Catalog of Chromosome Aberrations in Cancer 1998, 6th ed. Wiley-Liss, New YorkGoogle Scholar
  127. 127.
    Fletcher, J.A., Morton, C.C., Pavelka, K., and Lage, J.M. (1990) Chromosome aberrations in uterine smooth muscle tumors: potential diagnostic relevance of cytogenetic instability. Cancer Res. 50, 4092–4097.PubMedGoogle Scholar
  128. 128.
    Nibert, M. and Heim, S. (1990) Uterine leiomyoma cytogenetics. Genes Chromosomes Cancer 2, 3–13.PubMedGoogle Scholar
  129. 129.
    Nilbert, M., Heim, S., Mandahl, N., Floderus, U.M., Willen, H., and Mitelman, F. (1990) Trisomy 12 in uterine leiomyomas. A new cytogenetic subgroup. Cancer Genet. Cytogenet. 45, 63–66.PubMedGoogle Scholar
  130. 130.
    Xing, Y.P., Powell, W.L., and Morton, C.C. (1997) The del(7q) subgroup in uterine leiomyomata: genetic and biologic characteristics. Further evidence for the secondary nature of cytogenetic abnormalities in the pathobiology of uterine leiomyomata. Cancer Genet. Cytogenet. 98, 69–74.PubMedGoogle Scholar
  131. 131.
    Schoenmakers, E.F., Huysmans, C., and van de Ven, W. J. (1999) Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res. 59, 19–23.PubMedGoogle Scholar
  132. 132.
    Kovacs, G. and Frisch, S. (1989) Clonal chromosome abnormalities in tumor cells from patients with sporadic renal cell carcinomas. Cancer Res. 49, 651–659.PubMedGoogle Scholar
  133. 133.
    Yamakawa, K., Morita, R., Takahashi, E., Hori, T., Ishikawa, J., and Nakamura, Y. (1991) A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res. 51, 4707–4711.PubMedGoogle Scholar
  134. 134.
    Presti, J.C., Jr., Rao, P.H., Chen, Q., et al. (1991) Histopathological, cytogenetic, and molecular characterization of renal cortical tumors. Cancer Res. 51, 1544–1552.PubMedGoogle Scholar
  135. 135.
    Kovacs, G. (1989) Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am. J. Pathol. 134, 27–34.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Kaneko, Y., Homma, C., Maseki, N., Sakurai, M., and Hata, J. (1991) Correlation of chromosome abnormalities with histological and clinical features in Wilms’ and other childhood renal tumors. Cancer Res. 51, 5937–5942.PubMedGoogle Scholar
  137. 137.
    Grundy, P.E., Telzerow, P.E., Breslow, N., Moksness, J., Huff, V., and Paterson, M.C. (1994) Loss of heterozygosity for chromosomes 16q and 1p in Wilms’ tumors predicts an adverse outcome. Cancer Res. 54, 2331–2333.PubMedGoogle Scholar
  138. 138.
    Fromowitz, F.B. and Bard, R. H. (1980) Clinical implications of pathologic subtypes in renal cell carcinoma. Semin. Urol. 8, 31–50.Google Scholar
  139. 139.
    Presti, J.C., Jr., Reuter, V.E., Cordon-Cardo, C., Mazumdar, M., Fair, W.R., and Jhanwar, S. C. (1993) Allelic deletions in renal tumors: histopathological correlations. Cancer Res. 53, 5780–5783.PubMedGoogle Scholar
  140. 140.
    Latif, F., Tory, K., Gnarra, J., et al. (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320.PubMedGoogle Scholar
  141. 141.
    Whaley, J.M., Naglich, J., Gelbert, L., et al. (1994) Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. Am. J. Hum. Genet. 55, 1092–1102.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Shuin, T., Kondo, K., Torigoe, S., et al. (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res. 54, 2852–2855.PubMedGoogle Scholar
  143. 143.
    Ohta, M., Inoue, H., Cotticelli, M.G., et al. (1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84, 587–597.PubMedGoogle Scholar
  144. 144.
    LaForgia, S., Lasota, J., Latif, F., et al. (1993) Detailed genetic and physical map of the 3p chromosome region surrounding the familial renal cell carcinoma chromosome translocation, t(3;8)(p14.2;q24.1). Cancer Res. 53, 3118–3124.PubMedGoogle Scholar
  145. 145.
    Limon, J., Mrozek, K., Heim, S., et al. (1990) On the significance of trisomy 7 and sex chromosome loss in renal cell carcinoma. Cancer Genet. Cytogenet. 49, 259–263.PubMedGoogle Scholar
  146. 146.
    Emanuel, A., Szucs, S., Weier, H.U., and Kovacs, G. (1992) Clonal aberrations of chromosomes X, Y, 7 and 10 in normal kidney tissue of patients with renal cell tumors. Genes Chromosomes Cancer 4, 75–77.PubMedGoogle Scholar
  147. 147.
    Dal Cin, P., Aly, M.S., Delabie, J., et al. (1992) Trisomy 7 and trisomy 10 characterize subpopulations of tumor-infiltrating lymphocytes in kidney tumors and in the surrounding kidney tissue. Proc. Natl. Acad. Sci. USA 89, 9744–9748.Google Scholar
  148. 148.
    Crotty, T.B., Farrow, G.M., and Lieber, M.M. (1995) Chromophobe cell renal carcinoma: clinicopathological features of 50 cases. J. Urol. 154, 964–967.PubMedGoogle Scholar
  149. 149.
    Speicher, M.R., Schoell, B., du Manoir, S., et al. (1994) Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am. J. Pathol. 145, 356–364.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Kovacs, G., Fuzesi, L., Emanual, A., and Kung, H. F. (1991) Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer 3, 249–255.PubMedGoogle Scholar
  151. 151.
    Renshaw, A.A., Zhang, H., Corless, C.L., Fletcher, J.A., and Pins, M.R. (1997) Solid variants of papillary (chromophil) renal cell carcinoma: clinicopathologic and genetic features. Am. J. Surg. Pathol. 21, 1203–1209.PubMedGoogle Scholar
  152. 152.
    Brown, J.A., Anderl, K.L., Borell, T.J., Qian, J., Bostwick, D.G., and Jenkins, R.B. (1997) Simultaneous chromosome 7 and 17 gain and sex chromosome loss provide evidence that renal metanephric adenoma is related to papillary renal cell carcinoma. J. Urol. 158, 370–374.PubMedGoogle Scholar
  153. 153.
    Kovacs, G. (1993) Molecular differential pathology of renal cell tumours. Histopathology 22, 1–8.PubMedGoogle Scholar
  154. 154.
    Mancilla-Jimenez, R., Stanley, R.J., and Blath, R.A. (1976) Papillary renal cell carcinoma: a clinical, radiologic, and pathologic study of 34 cases. Cancer 38, 2469–2480.PubMedGoogle Scholar
  155. 155.
    Corless, C.L., Aburatani, H., Fletcher, J.A., Housman, D.E., Amin, M.B., and Weinberg, D.S. (1996) Papillary renal cell carcinoma: Quantitation of chromosomes 7 and 17 by FISH, analysis of chromosome 3p for LOH, and DNA ploidy. Diagn. Mol. Pathol. 5(1), 53–64.PubMedGoogle Scholar
  156. 156.
    Corless, C.L., Aburatani, H., Fletcher, J.A., Housman, D.E., Amin, M.B., and Weinberg, D.S. (1996) Papillary renal cell carcinoma: quantitation of chromosomes 7 and 17 by FISH, analysis of chromosome 3p for LOH, and DNA ploidy. Diagn. Mol. Pathol. 5, 53–64.PubMedGoogle Scholar
  157. 157.
    Meloni, A.M., Dobbs, R.M., Pontes, J.E., and Sandberg, A.A. (1993) Translocation (X;1) in papillary renal cell carcinoma. A new cytogenetic subtype. Cancer Genet. Cytogenet. 65, 1–6.PubMedGoogle Scholar
  158. 158.
    Argani, P., Antonescu, C.R., Illei, P.B., et al. (2001) Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am. J. Pathol. 159, 179–192.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Davis, I.J., Hsi, B.L., Arroyo, J.D., et al. (2003) Cloning of an alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc. Natl. Acad. Sci. USA 100, 6051–6056.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Brown, J.A., Takahashi, S., Alcaraz, A., et al. (1996) Fluorescence in situ hybridization analysis of renal oncocytoma reveals frequent loss of chromosomes Y and 1. J. Urol. 156, 31–35.PubMedGoogle Scholar
  161. 161.
    van den Berg, E., Dijkhuizen, T., Storkel, S., et al. (1995) Chromosomal changes in renal oncocytomas. Evidence that t(5;11)(q35;q13) might characterize a second subgroup of oncocytomas. Cancer Genet. Cytogenet. 79, 164–168.PubMedGoogle Scholar
  162. 162.
    Fuzesi, L., Gunawan, B., Braun, S., and Boeckmann, W. (1994) Renal oncocytoma with a translocation t(9;11)(p23;q13). J. Urol. 152, 471–472.PubMedGoogle Scholar
  163. 163.
    Crotty, T.B., Lawrence, K.M., Moertel, C.A., et al. (1992) Cytogenetic analysis of six renal oncocytomas and a chromophobe cell renal carcinoma. Evidence that −Y,−1 might be a characteristic anomaly in renal oncocytomas. Cancer Genet. Cytogenet. 61, 61–66.PubMedGoogle Scholar
  164. 164.
    Meloni, A.M., Sandberg, A.A., and White, R.D. (1992) −Y,−1 as recurrent anomaly in oncocytoma. Cancer Genet. Cytogenet. 61, 108–109.PubMedGoogle Scholar
  165. 165.
    Weremowicz, S., Kozakewich, H.P., Haber, D., Park, S., Morton, C.C., and Fletcher, J.A. (1994) Identification of genetically aberrant cell lineages in Wilms’ tumors. Genes Chromosomes Cancer 10, 40–48.PubMedGoogle Scholar
  166. 166.
    Solis, V., Pritchard, J., and Cowell, J.K. (1988) Cytogenetic changes in Wilms’ tumors. Cancer Genet. Cytogenet. 34, 223–234.PubMedGoogle Scholar
  167. 167.
    Slater, R.M. and Mannens, M.M. (1992) Cytogenetics and molecular genetics of Wilms’ tumor of childhood. Cancer Genet. Cytogenet. 61, 111–121.PubMedGoogle Scholar
  168. 168.
    Haber, D.A., Buckler, A.J., Glaser, T., et al. (1990) An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 61, 1257–1269.PubMedGoogle Scholar
  169. 169.
    Bruening, W., Bardeesy, N., Silverman, B.L., et al. (1992) Germline intronic and exonic mutations in the Wilms’ tumour gene (WT1) affecting urogenital development. Nature Genet. 1, 144–148.PubMedGoogle Scholar
  170. 170.
    Ton, C.C., Hirvonen, H., Miwa, H., et al. (1991) Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074.PubMedGoogle Scholar
  171. 171.
    Douglass, E.C., Look, A.T., Webber, B., Parham, D., Wilimas, J.A., Green, A.A., and Roberson, P.K. (1986) Hyperdiploidy and chromosomal rearrangements define the anaplastic variant of Wilms’ tumor. J. Clin. Oncol. 4, 975–981.PubMedGoogle Scholar
  172. 172.
    Bardeesy, N., Falkoff, D., Petruzzi, M.J., et al. (1994) Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nature Genet. 7, 91–97.PubMedGoogle Scholar
  173. 173.
    Bolande, R.P., Brough, A.J., and Izant, R.J. Jr. (1967) Congenital mesoblastic nephroma of infancy. A report of eight cases and the relationship to Wilms’ tumor. Pediatrics 40, 272–278.PubMedGoogle Scholar
  174. 174.
    Pettinato, G., Manivel, J.C., Wick, M.R., and Dehner, L P.(1989) Classical and cellular (atypical) congenital mesoblastic nephroma: a clinicopathologic, ultrastructural, immunohistochemical, and flow cytometric study. Hum. Pathol. 20, 682–690.PubMedGoogle Scholar
  175. 175.
    Mascarello, J.T., Cajulis, T.R., Krous, H.F., and Carpenter, P.M. (1994) Presence or absence of trisomy 11 is correlated with histologic subtype in congenital mesoblastic nephroma. Cancer Genet. Cytogenet. 77, 50–54.PubMedGoogle Scholar
  176. 176.
    Wang, S., Saboorian, M.H., Frenkel, E., Hynan, L., Gokaslan, S.T., and Ashfaq, R. (2000) Laboratory assessment of the status of Her-2/neu protein and oncogene in breast cancer specimens: comparison of immunohistochemistry assay with fluorescence in situ hybridisation assays. J. Clin. Pathol. 53, 374–381.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Tanner, M., Gancberg, D., Di Leo, A., et al. (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am. J. Pathol. 157, 1467–1472.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Zhao, J., Wu, R., Au, A., Marquez, A., Yu, Y., and Shi, Z. (2002) Determination of HER2 gene amplification by chromogenic in situ hybridization (CISH) in archival breast carcinoma. Mod. Pathol. 15, 657–665.PubMedGoogle Scholar
  179. 179.
    Vocke, C.D., Pozzatti, R.O., Bostwick, D.G., et al. (1996) Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12-21. Cancer Res. 56, 2411–2416.PubMedGoogle Scholar
  180. 180.
    Huang, S.F., Xiao, S., Renshaw, A.A., Loughlin, K.R., Hudson, T.J., and Fletcher, J.A. (1996) Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer. Am. J. Pathol. 149, 1565–1573.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Cher, M.L., Ito, T., Weidner, N., Carroll, P.R., and Jensen, R.H. (1995) Mapping of regions of physical deletion on chromosome 16q in prostate cancer cells by fluorescence in situ hybridization (FISH). J. Urol. 153, 249–254.PubMedGoogle Scholar
  182. 182.
    Gray, I.C., Phillips, S.M., Lee, S.J., Neoptolemos, J.P., Weissenbach, J., and Spurr, N.K. (1995) Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res. 55, 4800–4803.PubMedGoogle Scholar
  183. 183.
    Matsuyama, H., Pan, Y., Oba, K., et al. (2003) The role of chromosome 8p22 deletion for predicting disease progression and pathological staging in prostate cancer. Aktuelle Urol. 34, 247–249.PubMedGoogle Scholar
  184. 184.
    Matsuyama, H., Pan, Y., Yoshihiro, S., et al. (2003) Clinical significance of chromosome 8p, 10q, and 16q deletions in prostate cancer. Prostate 54, 103–111.PubMedGoogle Scholar
  185. 185.
    Nemoto, R., Nakamura, I., Uchida, K., and Harada, M. (1995) Numerical chromosome aberrations in bladder cancer detected by in situ hybridization. Br. J. Urol. 75, 470–476.PubMedGoogle Scholar
  186. 186.
    Stadler, W.M., Sherman, J., Bohlander, S.K., et al. (1994) Homozygous deletions within chromosomal bands 9p21-22 in bladder cancer. Cancer Res. 54, 2060–2063.PubMedGoogle Scholar
  187. 187.
    Sandberg, A.A. and Berger, C.S. (1994) Review of chromosome studies in urological tumors. II. Cytogenetics and molecular genetics of bladder cancer. J. Urol. 151, 545–560.PubMedGoogle Scholar
  188. 188.
    Skacel, M., Fahmy, M., Brainard, J.A., et al. (2003) Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J. Urol. 169, 2101–2105.PubMedGoogle Scholar
  189. 189.
    Stadler, W.M., Steinberg, G., Yang, X., Hagos, F., Turner, C., and Olopade, O.I. (2001) Alterations of the 9p21 and 9q33 chromosomal bands in clinical bladder cancer specimens by fluorescence in situ hybridization. Clin. Cancer Res. 7, 1676–1682.PubMedGoogle Scholar
  190. 190.
    Anonymous (1988) Occupational bladder cancer: a guide for clinicians. The BAUS Subcommittee on Industrial Bladder Cancer. Br. J. Urol. 61, 183–191.Google Scholar
  191. 191.
    Schulte, P.A., Ringen, K., Hemstreet, G.P., Aet al. (1986) Risk factors for bladder cancer in a cohort exposed to aromatic amines. Cancer 58, 2156–2162.PubMedGoogle Scholar
  192. 192.
    Hartge, P., Hoover, R., and Kantor, A. (1985) Bladder cancer risk and pipes, cigars, and smokeless tobacco. Cancer 55, 901–906.PubMedGoogle Scholar
  193. 193.
    El-Bolkainy, M.N., Mokhtar, N.M., Ghoneim, M.A., and Hussein, M.H. (1981) The impact of schistosomiasis on the pathology of bladder carcinoma. Cancer 48, 2643–2648.PubMedGoogle Scholar
  194. 194.
    Reifenberger, G. and Louis, D.N. (2003) Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J. Neuropathol. Exp. Neurol. 62, 111–126.PubMedGoogle Scholar
  195. 195.
    Ino, Y., Betensky, R.A., Zlatescu, M.C., et al. (2001) Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin. Cancer Res. 7, 839–845.PubMedGoogle Scholar
  196. 196.
    Eller, J.L., Longo, S.L., Hicklin, D.J., and Canute, G.W. (2002) Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme. Neurosurgery 51, 1005–1013.PubMedGoogle Scholar
  197. 197.
    Bosl, G.J., Ilson, D.H., Rodriguez, E., Motzer, R.J., Reuter, V.E., and Chaganti, R.S. (1994) Clinical relevance of the i(12p) marker chromosome in germ cell tumors. J. Natl. Cancer Inst. 86, 349–355.PubMedGoogle Scholar
  198. 198.
    Mertens, F., Johansson, B., and Mitelman, F. (1994) Isochromosomes in neoplasia. Genes Chromosomes Cancer 10, 221–230.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Jonathan A. Fletcher
    • 1
  1. 1.Department of PathologyBrigham and Women’s HospitalBoston

Personalised recommendations