Skip to main content

Amyloid Beta and the Cerebral Vasculature

  • Chapter
Vascular Dementia

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1594 Accesses

Abstract

The vascular pattern of amyloid beta (Aβ) deposition in the brain is commonly referred to as cerebral amyloid angiopathy (CAA) (1). CAA is an important cause of cerebral hemorrhages and may lead to ischemic infarction and dementia (2). A pure form of CAA, without parenchymal lesions, has been documented in hereditary cerebral hemorrhage, Dutch type, sporadic idiopathic CAA and in cerebrovascular malformations (35). Cerebrovascular amyloid deposition is associated with aging, and CAA is an important feature of several disorders associated with mutations in the amyloid precursor protein (APP) gene, as well as in Down’s syndrome and Alzheimer’s disease (AD) (68). Indeed, CAA is a key pathologic finding in 80–90% of AD cases (9,10). A recent study of 201 autopsy cases of elderly Japanese shows that the incidence and severity of CAA are significantly higher in AD cases compared to non-AD cases (11). Also, some genetic risk factors associated with the AD are involved in the pathogenesis of CAA, including apolipoprotein E (apoE) genotype, presenilin 1, and apantichymotrypsin (1214).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matsubara E, Shoji M, Abe K, Frangione B, Ghiso J. Vascular amyloidosis in neurodegenerative conditions. Drug News Perspect 2002;15:439–44.

    Article  PubMed  CAS  Google Scholar 

  2. Ghiso J, Frangione B. Cerebral amyloidosis, amyloid angiopathy, and their relationship to stroke and dementia. J Alzheimer Dis 2001;3:65–73.

    CAS  Google Scholar 

  3. Levy E, Carman MD, Fernandez-Madrid IJ, et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1990;248:1124–1126.

    Article  PubMed  CAS  Google Scholar 

  4. Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18:311–324.

    PubMed  CAS  Google Scholar 

  5. Ghiso J, Wisniewski T, Frangione B. Unifying features of systemic and cerebral amyloidosis. Mol Neurobiol 1994;8:49–64.

    PubMed  CAS  Google Scholar 

  6. Donahue JE, Khurana JS, Adelman LS. Intracerebral hemorrhage in two patients with Down’s syndrome and cerebral amyloid angiopathy. Acta Neuropathol 1998;95:213–216.

    Article  PubMed  CAS  Google Scholar 

  7. Jellinger KA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 2002;109:813–836.

    Article  PubMed  CAS  Google Scholar 

  8. Revesz T, Holton JL, Lashley T, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 2002;12:343–357.

    Article  PubMed  Google Scholar 

  9. Mandybur TI. The incidence of cerebral amyloid angiopathy in Alzheimer’s disease. Neurology 1975;25:120–126.

    PubMed  CAS  Google Scholar 

  10. Ellis RJ, Olichney JM, Thai LJ, et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: The CERAD experience, part XV. Neurology 1996;46:1592–1596.

    PubMed  CAS  Google Scholar 

  11. Yamada M. Risk factors for cerebral amyloid angiopathy in the elderly. Ann N Y Acad Sci 2002;977:37–44.

    PubMed  Google Scholar 

  12. Premkumar DRD, Cohen DL, Hedera P, Friedland RP, Kalaria RN. Apolipoprotein E ɛ4 in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J Pathol 1996;148:2083–2095.

    PubMed  CAS  Google Scholar 

  13. Yamada M, Sodeyama N, Itoh Y, et al. Association of presenilin-1 polymorphism with cerebral amyloid angiopathy in elderly. Stroke 1997;28:2219–2221.

    PubMed  CAS  Google Scholar 

  14. Yamada M, Sodeyama N, Itoh Y, et al. Association of alpha 1-antichymotrypsin polymorphism with cerebral amyloid angiopathy. Ann Neurol 1998;44:129–131.

    Article  PubMed  CAS  Google Scholar 

  15. Chalmers K, Wilcock GK, Love S. APOE var epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of Abeta protein. Neuropathol Appl Neurobiol 2003;29:231–238.

    Article  PubMed  CAS  Google Scholar 

  16. Tsubuki S, Takaki Y, Saido TC. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of A (3 to physiologically relevant proteolytic degradation. Lancet 2003;361:1957–1958.

    Article  PubMed  CAS  Google Scholar 

  17. Yamada M, Sodeyama N, Itoh Y, et al. Association of neprilysin polymorphism with cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 2003;74:749–751.

    Article  PubMed  CAS  Google Scholar 

  18. Natte R, de Boer WI, Maat-Schieman ML, et al. Amyloid beta precursor protein-mRNA is expressed throughout cerebral vessel walls. Brain Res 1999;828:179–183.

    Article  PubMed  CAS  Google Scholar 

  19. Akiyama H, Ikeda K, Kondo H, McGeer PL. Thrombin accumulation in brains of patients with Alzheimer’s disease. NeurosciLett 1992;146:152–154.

    CAS  Google Scholar 

  20. McGeer PL, Klegeris A, Walker DG, Yasuhara O, McGeer EG. Pathological proteins in senile plaques. Tohoku J Exp Med 1994;174:269–277.

    PubMed  CAS  Google Scholar 

  21. Ciallella JR, Figueiredo H, Smith-Swintosky V, McGillis JP. Thrombin induces surface and intracellular secretion of amyloid precursor protein from human endothelial cells. Thromb Haemost 1999;81:630–637.

    PubMed  CAS  Google Scholar 

  22. Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res 1992;16:128–134.

    Article  PubMed  CAS  Google Scholar 

  23. Grammas P, Ovase R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 2001;22:837–842.

    Article  PubMed  CAS  Google Scholar 

  24. Zlokovic BV, Martel CL, Matsubara E, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci 1996;93:4229–234.

    Article  PubMed  CAS  Google Scholar 

  25. Mackic JB, Stins M, McComb JG, et al. Human blood-brain barrier receptors for Alzheimer’ amyloid-β. J Clin Invest 1998;102:734–743.

    PubMed  CAS  Google Scholar 

  26. Grammas P, Yamada M, Zlokovic B. The cerebromicrovascular: a key player in the pathogenesis of Alzheimer’s disease. J Alzheimer Dis 2002;4:217–223.

    CAS  Google Scholar 

  27. Zlokovic BV, Ghiso J, Mackic JB, McComb JG, Weiss MH, Frangione B. Blood-brain barrier transport of circulating Alzheimer’s amyloid beta. Biochem Biophys Res Commun 1993;197:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  28. Martel CL, Mackic JB, Matsubara E, et al. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating Alzheimer’s amyloid beta. J Neurochem 1997;69:1995–2004.

    Article  PubMed  CAS  Google Scholar 

  29. Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003;9:907–913.

    Article  PubMed  CAS  Google Scholar 

  30. Yan SD, Stern D, Kane MD, Kuo YM, Lampert HC, Roher AE. RAGE-Ab interactions in the pathophysiology of Alzheimer’s disease. RestorNeurol Neurosci 1998;12:167–173.

    CAS  Google Scholar 

  31. Mackic JB, Weiss MH, Miao W, et al. Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 1998;70:210–215.

    Article  PubMed  CAS  Google Scholar 

  32. Mackic JB, Bading J, Ghiso J, et al. Circulating amyloid-beta peptide crosses the blood-brain barrier in aged monkeys and contributes to Alzheimer’s disease lesions. Vascul Pharmacol 2002;38:303–313.

    Article  PubMed  CAS  Google Scholar 

  33. Maness LM, Banks WA, Podlisny MB, Selkoe DJ, Kastin AJ. Passage of human amyloid beta-protein 1–40 across the murine blood-brain barrier. Life Sci 1994;55:1643–1650.

    Article  PubMed  CAS  Google Scholar 

  34. Poduslo JF, Curran GL, Haggard JJ, Biere AL, Selkoe DJ. Permeability and residual plasma volume of human, Dutch variant, and rat amyloid beta-protein 1–40 at the blood-brain barrier. Neurobiol Res 1997;4:27–34.

    CAS  Google Scholar 

  35. Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 2003;29:106–117.

    Article  PubMed  CAS  Google Scholar 

  36. Weller RO, Yow HY, Preston SD, Mazanti I, Nicoll JA. Cerebrovascular disease is a major factor in the failure of elimination of Abeta from the aging human brain: implications for therapy of Alzheimer’s disease. Ann NY Acad Sci 2002;977:162–168.

    PubMed  CAS  Google Scholar 

  37. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-ss(l–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000;106:1489–1499.

    PubMed  CAS  Google Scholar 

  38. Bading JR, Yamada S, Mackic JB, et al. Brain clearance of Alzheimer’s amyloid-beta40 in the squirrel monkey: a SPECT study in a primate model of cerebral amyloid angiopathy. J Drug Target 2002;10:359–368.

    Article  PubMed  CAS  Google Scholar 

  39. Grammas P, Roher A, Ball MJ. Increased accumulation of cAMP in cerebral microvessels in Alzheimer’s disease. Neurobiol Aging 1994;15:113–116.

    Article  PubMed  CAS  Google Scholar 

  40. Cashman RE, Grammas P. cAMP-dependent protein kinase in cerebral microvessels in aging and Alzheimer’s disease. Mol Chem Neuropathol 1995;26:247–258.

    PubMed  CAS  Google Scholar 

  41. Grammas P, Moore P, Botchlet T, et al. Cerebral microvessels in Alzheimer’s have reduced protein kinase C activity. Neurobiol Aging 1995;16:563–569.

    Article  PubMed  CAS  Google Scholar 

  42. Moore P, White J, Christiansen V, Grammas P. Protein kinase C-ζ activity but not level is decreased in Alzheimer’s disease microvessels. Neurosci Lett 1998;254:29–32.

    Article  PubMed  CAS  Google Scholar 

  43. Pakaski M, Balaspiri L, Checler F, Kasa P. Human amyloid-beta causes changes in the level of endothelial protein kinase C and to alpha isoform in vitro. Neurochem Int 2003;41:409–414.

    Article  Google Scholar 

  44. Suhara T, Magrane J, Rosen K, et al. Abeta42 generation is toxic to endothelial cells and inhibits eNOS function through an Akt/GSK-3beta signaling-dependent mechanism. Neurobiol Aging 2003;24:437–51.

    Article  PubMed  CAS  Google Scholar 

  45. Dorheim MA, Tracey WR, Pollock JS, Grammas P. Nitric oxide is elevated in Alzheimer’s brain microvessels. Biochem Biophy Res Commun 1994;205:659–665.

    Article  CAS  Google Scholar 

  46. Venturini G, Colasanti Persichini T, Fioravanti E, Ascenzi P, Palomba L, Cantoni O. Musci G. Beta amyloid inhibits NOS activity by subtracting NADPH availability. FASEB J 2002;16:1970–1972.

    PubMed  CAS  Google Scholar 

  47. Grammas P, Botchlet T, Fugate R, Ball MJ, Roher AE. Alzheimer disease amyloid proteins inhibit brain endothelial cell proliferation in vitro. Dementia 1995;6:126–130.

    Article  PubMed  CAS  Google Scholar 

  48. Giri R, Shen Y, Stins M, et al. Beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol 2000;279:1772–1781.

    Google Scholar 

  49. Giri R, Selvaraj S, Miller CA, et al. Effect of endothelial cell polarity on beta-amyloid-reduced migration of monocytes across normal and AD endothelium. Am J Physiol 2002;283:C895–C904.

    CAS  Google Scholar 

  50. Blanc EM, Toborek M, Mark RJ, Hennig B, Mattson MP. Amyloid beta-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. J Neurochem 1997;68:1870–1881.

    Article  PubMed  CAS  Google Scholar 

  51. Hase M, Araki S, Hayashi H. Fragments of amyloid beta induce apoptosis in vascular endothelial cells. Endothelium 1997;5:221–229.

    Article  PubMed  CAS  Google Scholar 

  52. Xu J, Chen S, Ka G, et al. Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J Cereb Blood Flow Metab 2001;21:702–710.

    Article  PubMed  CAS  Google Scholar 

  53. Munoz FJ, Opazo C, Gil-Gomez G, et al. Vitamin E but not 17beta-estradiol protects against vascular toxicity induced by beta-amyloid wild type and the Dutch amyloid variant. J Neurosci 2002;22:3081–3089.

    PubMed  CAS  Google Scholar 

  54. Yin KJ, Lee JM, Chen SD, Xu J, Hsu CY. Amyloid-beta induces Smac release via AP—1/Bim activation in cerebral endothelial cells. J Neurosci 2002;22:9764–9770.

    PubMed  CAS  Google Scholar 

  55. Christie R, Yamada M, Moskowitz M, Hyman B. Structural and functional disruption of vascular smooth muscle cells in a transgenic mouse model of amyloid angiopathy. Am J Pathol 2001;158:1065–1071.

    PubMed  CAS  Google Scholar 

  56. Davis J, Wagner MR, Zhang W, Xu F, Van Nostrand WE. Amyloid beta-protein stimulates the expression of urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in human cerebrovascular smooth muscle cells. J Biol Chem 2003;278:19,054–19,061.

    Article  PubMed  CAS  Google Scholar 

  57. Jung SS, Zhang W, Van Nostrand WE. Pathogenic Abeta induces the expression and activation of matrix metalloproteinase-2 in human cerebrovascular smooth muscle cells. J Neurochem 2003;85:1208–1215.

    Article  PubMed  CAS  Google Scholar 

  58. Neuroinflammation Working Group. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21:383–l21.

    Article  Google Scholar 

  59. McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 1996;47:425–432.

    PubMed  CAS  Google Scholar 

  60. Hull M, Fiebich BL, Schumann G, Lieb K, Bauer J. Anti-inflammatory substances-a new therapeutic option in Alzheimer’s disease. Drug Discovery Today 1999;4:275–282.

    Article  PubMed  CAS  Google Scholar 

  61. Halliday GM, Shepard CE, McCann H, et al. Effect of anti-inflammatory medications on neuropathological findings in Alzheimer’s disease. Arch Neurol 2000;57:831–836.

    Article  PubMed  CAS  Google Scholar 

  62. Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000;20:5709–5714.

    PubMed  CAS  Google Scholar 

  63. Gupta A, Pansari K. Inflammation and Alzheimer’s disease. Int J Clin Pract 2003;57:36–39.

    PubMed  CAS  Google Scholar 

  64. Launer L. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer’s disease: dissecting the epidemiological evidence. Drugs 2003;63:731–739.

    Article  PubMed  Google Scholar 

  65. Frohman EM, Frohman TC, Gupta S, de Fourgerolles A, Van Den Noort S. Expression of intercellular adhesion molecule (ICAM-1) in Alzheimer’s disease. J Neurol Sci 1991;106:105–111.

    Article  PubMed  CAS  Google Scholar 

  66. Pereira HA, Kumar P, Grammas P. Expression of CAP37, a novel inflammatory mediator in Alzheimer’s disease. Neurobiol Aging 1996;17:753–759.

    Article  PubMed  CAS  Google Scholar 

  67. Grammas P, Ovase R. Cerebrovascular transforming growth factor-p contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol 2002;160:1583–1587.

    PubMed  CAS  Google Scholar 

  68. Suo Z, Tan J, Placzek A, Crawford F, Fang C, Mullan M. Alzheimer: β-amyloid peptides induce inflammatory cascade in human vascular cells: the roles of cytokines, and CD40. Brain Res 1998;807:110–117.

    Article  PubMed  CAS  Google Scholar 

  69. Townsend KP, Obregon D, Quadros A, et al. Proinflammatory and vasoactive effects of Abeta in the cerebrovasculature. Ann NY Acad Sci 2002;977:65–76.

    Article  PubMed  CAS  Google Scholar 

  70. Paris D, Townsend KP, Humphrey J, Obregon DF, Yokota K, Mullan M. Statins inhibit A beta-neurotoxicity in vitro and A beta-induced vasoconstriction and inflammation in rat aorta. Atherosclerosis 2002;161:293–299.

    Article  PubMed  CAS  Google Scholar 

  71. Quinn J, Montine T, Morrow J, Woodward WR, Kulhanek D, Eckenstein F. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer’s disease. J Neuroimmunol 2003;173:32–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Grammas, P. (2005). Amyloid Beta and the Cerebral Vasculature. In: Paul, R.H., Cohen, R., Ott, B.R., Salloway, S. (eds) Vascular Dementia. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-824-2:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-824-2:267

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-366-4

  • Online ISBN: 978-1-59259-824-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics