Skip to main content

Polymeric Adsorption and Regenerant Distillation

  • Chapter
Physicochemical Treatment Processes

Abstract

One of the most significant advances in ion exchange resin and adsorbent technology has been the development of the macroreticular pore structure (124). Various synthetic routes have been developed for preparing both ion exchange resins and polymeric adsorbents of high surface area and pore volume. Furthermore, the synthesis has been developed to the degree that the surface area and pore parameters can be varied over a wide range. Several of these macroreticular polymers based on the crosslinked styrene and acrylate systems are now available commercially. A polymeric adsorbent is defined as a macroporous or macroreticular polymeric material that has similar properties to ion-exchange resin, but has no functional ionic group (11,21). These polymeric adsorbents are hard, durable, insoluble spheres of high surface area and porosity. They are also available in a variety of polarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Greenbank, H. Nowicki, H. Yuto, and B. Sherman, Water Conditioning and Purification 45, 98–103 (2003).

    Google Scholar 

  2. D. Vidic, T. Suidan, and C. Brenner, Wat. Res. 28, 263–268 (1994).

    Article  CAS  Google Scholar 

  3. J. S. Fritz, Anal. Chem. 44, 139 (1972).

    Article  Google Scholar 

  4. K. A. Kun, R. Kunin, and J. Polym, Science Part C, No. 16,1457 (1967).

    Google Scholar 

  5. J. Rosenbaum, Artificial Organs Trans. Amer. Soc. 16, 134 (1970).

    CAS  Google Scholar 

  6. J. Rosenbaum, Clinical Toxicology 5, 331 (1972).

    Article  CAS  Google Scholar 

  7. US EPA, Technical Review of the Best Available Technology, Best Demonstrated Technology, and Pretreatment Technology for the Gum and Wood Chemicals Point Source Category. US Environmental Protection Agency, Washington DC, 1979.

    Google Scholar 

  8. US EPA, Development Document for Effluent Limitations, Guidelines, and Standards for the Pulp, Paper, and Paperboard and the Builders Paper and Board Mills Point Source Categories. EPA-440/1-80/025-b. U. S. Environmental Protection Agency, Washington DC, 1980.

    Google Scholar 

  9. US EPA, Physical, Chemical, and Biological Treatment Techniques for Industrial Wastes. Volume II. NTIS-PB 275 287; U. S. Environmental Protection Agency, Washington DC, 1977.

    Google Scholar 

  10. US EPA, Development Document for Effluent Limitations, Guidelines, and Standards for the Leather Tanning and Finishing Point Source Category. EPA-440/1-79/016. US Environmental Protection Agency, Washington DC, 1979.

    Google Scholar 

  11. L. K. Wang, Environmental Engineering Glossary, Calspan Corporation, Buffalo, NY, 1974.

    Google Scholar 

  12. L. K. Wang, J. V. Krouzek, and U. Kounitson, Case Studies of Cleaner Production and Site Remediation. UNIDO Manual DTT-5-4-95. United Nations Industrial Development Organization, Vienna, Austria, 1995.

    Google Scholar 

  13. Editor, Pollution Engineering 32, 22–23 (2000).

    Google Scholar 

  14. Editor, Water Environment Federation 14, 72–73 (2002).

    Google Scholar 

  15. Editor, Chemical Engineering 107, 470–478 (2000).

    Google Scholar 

  16. Editor, Environmental Protection 14, 127 (2000).

    Google Scholar 

  17. Editor, Chemical Engineering 107, p. 406 (2000).

    Google Scholar 

  18. L. K. Wang, J Appl. Chem. Biotech. 25, 475–490 (1975).

    Article  CAS  Google Scholar 

  19. Y.S. Lipatov, Polymer Reinforcement, Chem Tec Publishing, Toronto, Ontario, Canada, 1995.

    Google Scholar 

  20. J. Toth, Adsorption: Theory, Modeling and Analysis. Marcel Dekker, New York, 2002.

    Google Scholar 

  21. Rohm Hass, Polymeric Adsorbent with an Acrylic Ester Matrix. http://www.rohmhaas.com, 2003

  22. L. K. Wang, Y. T. Hung and N. K. Shammas (eds.) Advanced Physicochemical Treatment Process. Humana Press, Totowa, NJ, 2005.

    Google Scholar 

  23. R. Kunin, Polymeric Adsorption. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. LIR/02-87-223B, 1987.

    Google Scholar 

  24. L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis (eds.), Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker, NYC, NY, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, L.K., Chang, CC., Shammas, N.K. (2005). Polymeric Adsorption and Regenerant Distillation. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 3. Humana Press. https://doi.org/10.1385/1-59259-820-x:545

Download citation

Publish with us

Policies and ethics