Advertisement

Gravity Filtration

  • J. Paul Chen
  • Shoou-Yuh Chang
  • Jerry Y. C. Huang
  • E. Robert Bauman
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 3)

Abstract

The purpose of filtration is to remove the particulates suspended in water by passing the water through a layer of porous material. Larger particulates are retained by straining and sedimentation, while colloidal matter is retained by adsorption, or coagulation and sedimentation. Biological interactions occur only when the water passes very slowly through the porous mass.

Keywords

Filter Medium Granular Activate Carbon Filter Design Head Loss Water Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Letterman, (ed.), Water Qunality and Treatment, A Handbook of Community Water Supplies, 5th Ed., McGraw-Hill, New York, 1999.Google Scholar
  2. 2.
    A. Rushton, (ed.), Solid-liquid filtration and Separation Technology, 2nd ed., Wiley-VCH, New York, 2000.Google Scholar
  3. 3.
    C. Tien, Granular Filtration of Aerosols and Hydrosols, Butterworths Publishers, Boston, 1989.Google Scholar
  4. 4.
    K. J. Ives, Capture Mechanisms in Filtration. Scientific Basis of Filtration, NATO Advanced Study Institute, Series E, Vol. 2, Noordhoff International Publishing Co., Netherlands, 1975.Google Scholar
  5. 5.
    T. F. Craft, Radiotracer Study of Rapid Sand Filters, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, Georgia, 1969.Google Scholar
  6. 6.
    J. P. Herzig, D. M. Leclerc, and P. LeGoff, Flow of suspensions through porous media—application to deep bed filtration. Industrial & Engineering Chem. 62, 8–35 (1970).CrossRefGoogle Scholar
  7. 7.
    K. M. Yao, M. T. Habiban, and C. R. O’Melia, Water and waste water filtration:concepts and application. Environmental Sci. & Technol. 5, 1105–1112 (1971).CrossRefGoogle Scholar
  8. 8.
    M. M. Ghosh, T. A. Jordan, and R. L. Porter, Physicochemical approach to water and wastewater filtration. Environ. Eng. Div., ASCE 101, 71–86 (1975).Google Scholar
  9. 9.
    G. Kiely, Environmental Engineering, McGraw-Hill, UK, 1997Google Scholar
  10. 10.
    B. T. Ray, Environmental Engineering, PWS Series in Engineering, Boston, MA, 1995.Google Scholar
  11. 11.
    J. L. Tuepker and C. A. Buescher Jr., Operation and maintenance of rapid sand and mixed media filters in a lime softening plant. J. Amer. Water Works Assn., 60, 1377–1388 (1968).Google Scholar
  12. 12.
    J. L. Cleasby, M. M. Williamson, and E. R. Baumann, Effect of filtration rate changes on quality. J. Amer. Water Works Assn. 55, 869–878 (1968).Google Scholar
  13. 13.
    D. M. Mintz, Kinetics of filtration. Dokl. Ak. Nauk, 78, 12 (1951).Google Scholar
  14. 14.
    D. M. Mintz, Modern Theory of Filtration, Special Subject No. 10, International Water Supply Congress and Exhibition, London, 1966.Google Scholar
  15. 15.
    C. F. Lerk, Some Aspects of the Deferrisation of Groundwater, Thesis, Technical University, the Netherlands 1965.Google Scholar
  16. 16.
    V. Mackrle and S. Mackrle, Adhesion in filters. J. Sanit. Eng. Div., ASCE. 87, 17–32 (1961).Google Scholar
  17. 17.
    D. R. Stanley, Sand filtration studied with radiotracers. Amer. Soc. Civil Eng. Proceedings, 81, 1–23 (1955).Google Scholar
  18. 18.
    K. J. Ives and R. M. W. Horner, Radial filtration. Proceedings of the Institution of Civil Engineers, London, 55, 229–245 (1973).Google Scholar
  19. 19.
    T. Iwasaki, Some notes on sand filtration. J. Amer. Water Works Assn. 29, 1591–1597 (1937).Google Scholar
  20. 20.
    P. C. Stein, A Study of the Theory of Rapid Filtration of Water Through Sand, Sc. D. Thesis, MIT, Boston, MA, (1940).Google Scholar
  21. 21.
    R. Eliassen, An Experimental and Theoretical Investigation of the Clogging of a Rapid Sand Filter, Sc. D. Thesis, MIT, Boston, MA, 1935.Google Scholar
  22. 22.
    N. V. Ornatskii, E. M. Sergeev, and Y. M. Shekhtman, Investigation of the Process of Clogging of Sands, University of Moscow, 1955.Google Scholar
  23. 23.
    K. J. Ives, Deep filters. 61st National Meeting, Amer. Inst. of Chemical Eng., Houston, TX, 1967.Google Scholar
  24. 24.
    K. J. Ives, Optimization of deep bed filtration, Paper presented at the 1st Pacific Chemical Engineering Congress, Kyoto, Japan, October, 1972.Google Scholar
  25. 25.
    K. J. Ives and I. Sholji, Research on variables affecting filtration. J. Sani. Engr. Div., ASCE 91, 1–18 (1965).Google Scholar
  26. 26.
    D. M. Fox and J. L. Cleasby, Experimental evaluation of sand filtration theory. J. Sani. Engr. Div., ASCE 92, 61–82 (1966).Google Scholar
  27. 27.
    K. J. Ives, Mathematical models of deep bed filtration, In: Scientific Basis of Filtration, Nato Advanced Study Institute, Series E, Volume 2, Noordhoff International Publishing Co., Netherlands, 1975.Google Scholar
  28. 28.
    T. R. Camp, Theory of water filtration. J. Sani Engr. Div., ASCE 90, 1–30 (1964).Google Scholar
  29. 29.
    A. K. Deb, Theory of sand filtration. J. Sani. Engr. Div., ASCE 95, 399–422 (1969).Google Scholar
  30. 30.
    K. J. Ives, Filtration using radioactive algae. J. Sani. Engr. Div., ASCE 87, 23–37 (1961).Google Scholar
  31. 31.
    F. Garcia-Maura, Filtration of Polydispersed Particles through Multimedia Filters, M. S. Thesis, University of Wisconsin, Milwaukee, WI, 1984.Google Scholar
  32. 32.
    J. D. Logan, Transport Modeling in Hydrogeochemical Systems. Springer, New York, 2001.Google Scholar
  33. 33.
    R. Rajagopalan and C. Tien, Trajectory analysis of deep bed filtration using the sphere-incell porous media model. AIChE. 22, 523–533, (1976).CrossRefGoogle Scholar
  34. 34.
    C. Tien and A. C. Payatakes, Advances in deep bed filtration. AIChE. 25, 737–759 (1979).CrossRefGoogle Scholar
  35. 35.
    J. Kozeny, On capillary conduction of water in the soil, Sitzungsber Akad. Wiss., Vienna, Abt. IIIa, 136, 276 (1927).Google Scholar
  36. 36.
    G. M. Fair and L. P. Hatch, Fundamental factors governing the streamline flow of water through sand. J. Amer. Water Works Assn. 25, 551–1565 (1933).Google Scholar
  37. 37.
    H. E. Rose, On the resistance coefficient-reynolds number relationship for fluid flow through a bed of granular materials, Inst. Mechanical Engr. Proceedings, 153, 141–148 (1945).Google Scholar
  38. 38.
    R. Sakthivadivel, V. Thanikachalam, and S. Seetharaman, Head-loss theories in filtration. J. Amer. Water Works Assn. 64, 233–238 (1972).Google Scholar
  39. 39.
    P. M. Heertjes and C. F. Lerk, The function of deep-bed filters Part I: the filtration of colloidal solutions. Trans. Instn. Chem. Engrs. 45, T129–T145 (1967).Google Scholar
  40. 40.
    A. Maroudas, and P. Eisenklam, Clarification of suspensions: a study of particle deposition in granular media. Chemical Engineering Science. 20, 867–888 (1965).CrossRefGoogle Scholar
  41. 41.
    E. R. Baumann and J. Y. C. Huang, Granular filters for tertiary wastewater treatment. J. Water Pollution Control Fed. 46, 1958–1973, 1974.Google Scholar
  42. 42.
    J. Y. C. Huang, Granular Filters for Tertiary Wastewater Treatment. PhD dissertation, Iowa State University of Science and Technology, Ames, IA, (1972).Google Scholar
  43. 43.
    H. E. Hudson Jr., A theory of the functioning of filters. J. Amer. Water Works Assn. 40, 868–872 (1948).Google Scholar
  44. 44.
    H. E. Hudson Jr., Factors affecting filtration rates. J. Amer. Water Works Assn. 48, 1138–1154 (1956).Google Scholar
  45. 45.
    M. B. Gamet and J. M. Rademacher, Measuring filter performance. Water Works Engineering 112, 117–118 (1959).Google Scholar
  46. 46.
    K. Y. Hsiung and J. L. Cleasby, Prediction of Filter Performance. J. Sanit. Eng. Div., ASCE 94, 1043–1069 (1968).Google Scholar
  47. 47.
    J. L. Cleasby, Approaches to a filtrability index for granular filters. J. Amer. Water Works Assn. 61, 372–381 (1969).Google Scholar
  48. 48.
    K. Y. Hsiung, Filtrability study on secondary effluent filtration. J. Sanit. Eng. Div., ASCE 98, 505–513 (1972).Google Scholar
  49. 49.
    W. R. Conley and K. Y. Hsiung, Design and application of multimedia Filter. J. Amer. Water Works Assn. 61, 97–101 (1969).Google Scholar
  50. 50.
    K. A. Dostal and G. G. Robeck, Studies of modifications in treatment of Lake Erie water. J. Amer. Water Works Assn. 58, 1489–1504 (1966).Google Scholar
  51. 51.
    S. R. Qasim, E. M. Motley, and G. Zhu, Water Works Engineering: Planning, Design and Operation, Prentice-Hall, New Jersey, 2000.Google Scholar
  52. 52.
    J. L. Cleasby and E. R. Baumann, Wastewater Filtration—Design Considerations. EPA Technology Transfer Seminar Publication, July, (1974).Google Scholar
  53. 53.
    T. R. Camp, Discussion—Experience with anthracite-sand filters, J. Amer. Water Works Assn. 53, 1478–1483 (1961).Google Scholar
  54. 54.
    J. L. Cleasby, A. M. Malik, and E. W. Stangl, Optimum backwash of granular filters. 46th Annual Conference, Water Pollution Control Federation, Cleveland, OH, 1973.Google Scholar
  55. 55.
    J. L. Cleasby and E. R. Baumann, (1962) Selection of sand filtration rates. J. Amer. Water Works Assn. 54, 579–602 (1962).Google Scholar
  56. 56.
    J. J. Cleasby, Filter rate control without rate controllers, J. Amer. Water Works Assn. 61, 181–185 (1968).Google Scholar
  57. 57.
    A. Amirtharajah, Optimum backwashing of sand filters. J. Environ. Engr. Div., ASCE, 104, 917–932 (1978).Google Scholar
  58. 58.
    S. R. Hewitt and A. Amirtharajah, Air dynamics through filter media during air scour. J. Environ. Engr. Div., ASCE 110, 591–606 (1984).CrossRefGoogle Scholar
  59. 59.
    J. L. Cleasby and J. C. Lorence, Effectiveness of backwashing for wastewater filters. J. Environ. Engr. Div., ASCE 104, 749–765 (1978).Google Scholar
  60. 60.
    J. C. Young, Operating problems with wastewater filters. J. Water Pollution Control Fed. 57, 22–29 (1985).Google Scholar
  61. 61.
    G. G. Robeck, K. A. Dostal, and R. L. Woodward, Studies of modifications in water filtration. J. Amer. Water Works Assn. 56, 198–213 (1964).Google Scholar
  62. 62.
    T. V. Garel, Depth filters do double duty. Wat. Works & Wastes Engr, 2, 34–36 (1965).Google Scholar
  63. 63.
    W. R. Conley and R. H. Evers, Coagulation control. J. Amer. Water Works Assn. 60, 165–174 (1968).Google Scholar
  64. 64.
    A. Adin and M. Rebhum, High-rate contact flocculation-filtration with cationic polyelectrolyte, J. Amer. Water Works Assn. 66, 109–117 (1974).Google Scholar
  65. 65.
    Metcalf and Eddy, Inc. (ed.) Wastewater Engineering: Treatment Disposal and Reuse, 4th ed., McGraw-Hill, New York, 2002.Google Scholar
  66. 66.
    S. L. Kim, J. P. Chen, and Y. P. Ting, Study on feed pretreatment for membrane filtration of secondary effluent. Separation & Purification Technol. 29, 171–179 (2002).CrossRefGoogle Scholar
  67. 67.
    M. J. Hammer and M. J. Hammer, Jr., (eds.), Water and Wastewater Technology, 3rd ed., Prentice-Hall, Inc., New Jersey, 1996.Google Scholar
  68. 68.
    J. P. Chen, S. L. Kim, and Y. P. Ting, Optimization of feed pretreatment for membrane filtration of secondary effluent. J. Membrane Sci. 219, 27–45 (2003).CrossRefGoogle Scholar
  69. 69.
    Singapore Public Utilities Board Singapore Water Reclamation Study, Expert Panel Review and Findings. Singapore, 2002.Google Scholar
  70. 70.
    W. R. Mills, Jr., S. M. Bradford, M. Rigby, and M. P. Wehner, Wastewater Reclamation and Reuse. Technomic Publishing, Lancaster, PA, (1998).Google Scholar
  71. 71.
    H. Cikurel, M. Rebhun, A. Amirtharajah and A. Adin, Wastewater effluent reuse by in-line flocculation filtration process. Wat. Sci. & Technol. 33, 203–211 (1996).CrossRefGoogle Scholar
  72. 72.
    D. Jolis, R. Campana, R. A. Hirano, P. Pitt, and B. Mariñas, Desalination of municipal wastewater for horticultural reuse: process description and evaluation. Desalination. 103, 1–10 (1995).CrossRefGoogle Scholar
  73. 73.
    J. J. Qin, M. H. Oo, H. Lee, and R. Kolkman, Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. J. Membrane Sci. 243, 107–113 (2004).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • J. Paul Chen
    • 1
  • Shoou-Yuh Chang
    • 2
  • Jerry Y. C. Huang
    • 3
  • E. Robert Bauman
    • 4
  • Yung-Tse Hung
    • 5
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore
  2. 2.Department of Civil and Environmental EngineeringNorth Carolina A&T State UniversityGreensboro
  3. 3.Department of Civil EngineeringUniversity of Wisconsin-MilwaukeeMilwaukee
  4. 4.Department of Civil EngineeringIowa State University of Science and TechnologyAmes
  5. 5.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland

Personalised recommendations