Skip to main content

Design of Clinical Trials Relating to Medical Emergencies

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The purpose of any clinical trial is to evaluate treatment(s) in an at-risk population. Clinical trial design principles are the same regardless of the setting. Three very readable books that cover fundamentals and specifics of clinical trial design are those by Friedman, Furberg, and DeMets (1); Meinert (2); and Pocock (3). Clinical trial design is much more than inclusion/exclusion criteria, sample size, randomization to treatment arm, and counting endpoints. Defining and monitoring data collection, monitoring and maintaining compliance, and monitoring and reporting potential adverse events are often the most demanding design aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman L, Furberg C, DeMets D. Fundamentals of Clinical Trials, 3rd ed. Springer Verlag, 1998.

    Google Scholar 

  2. Meinert CL. Clinical Trials: Design, Conduct and Analysis. Oxford University Press, 1986.

    Google Scholar 

  3. Pocock SJ. Clinical Trials: A Practical Approach. John Wiley & Sons, 1984.

    Google Scholar 

  4. Cairns JA, Hallstrom A, Held P. Should all trials have a data safety and monitoring committee? Am Heart J 2001; 141:156–163.

    Article  PubMed  CAS  Google Scholar 

  5. Packer M, Wittes J, Stump D. Terms of reference for Data and Safety Monitoring Committees. Am Heart J 2001; 141:542–547.

    Article  PubMed  CAS  Google Scholar 

  6. Pocock S, Furberg CD. Procedures of data and safety monitoring committees. Am Heart J 2001; 141: 289–294.

    Article  PubMed  CAS  Google Scholar 

  7. Califf RM, Ellenberg SS. Statistical approaches and policies for the operations of Data and Safety Monitoring Committees. Am Heart J. 2001; 141:301–305.

    Article  PubMed  CAS  Google Scholar 

  8. Fisher L, Klibaner M. Regulatory issues for Data and Safety Monitoring Committees. Am Heart J 2001; 141:536–541

    Article  PubMed  CAS  Google Scholar 

  9. Weaver WD, Greenberg S. Making changes in clinical trials. Am Heart J. 2001; 141:295–300.

    Article  PubMed  CAS  Google Scholar 

  10. Whitehead J. The Design and Analysis of Sequential Clinical Trials. Chichester: Ellis Horwood, 1983.

    Google Scholar 

  11. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics 1979; 35:549–556.

    Article  PubMed  CAS  Google Scholar 

  12. Pocock SJ. Group sequential methods in the design and analysis of sequential clinical trials. Biometrika 1977; 64:191–199.

    Article  Google Scholar 

  13. Lin DY. A General Theory on Stochastic Curtailment for Censored Survival Data. Journal of the American Statistical Association 1999; 94:510–521.

    Article  Google Scholar 

  14. Fisher LD. Self-designing clinical trials. Stat Med 1998; 17:1551–1562.

    Article  PubMed  CAS  Google Scholar 

  15. Gould AL, Pecore VJ. Group sequential methods for clinical trials allowing early acceptance of H0 and incorporating costs. Biometrika 1982; 69:75–80.

    Google Scholar 

  16. Begg CB. Ruminations on the intent-to-treat principle. Control Clin Trials 2000; 21:241–243.

    Article  PubMed  CAS  Google Scholar 

  17. Gibaldi M, Sullivan S. Intention-to-treat analysis in randomized trials: who gets counted? J Clin Pharmacol 1997; 37:667–672.

    PubMed  CAS  Google Scholar 

  18. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med 1989; 8:431–440.

    Article  PubMed  CAS  Google Scholar 

  19. Hughes MD, DeGruttola V, Welles SL. Evaluating surrogate markers. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10(Suppl 2):S1–S8.

    PubMed  Google Scholar 

  20. Hallstrom AP, Greene HL, Wilkoff BL, et al. Relationship between rehospitalization and future death in patients treated for potentially lethal arrhythmia. J Cardiovasc Electrophysiol 2001; 12:990–995.

    Article  PubMed  CAS  Google Scholar 

  21. Koepsell TD, Wagner EH, Cheadle AC, et al. Selected methodological issues in evaluating community-based health promotion and disease prevention programs. Annu Rev Public Health 1992; 13:31–57.

    Article  PubMed  CAS  Google Scholar 

  22. Koepsell TD, Martin DC, Diehr PH, et al. Data analysis and sample size issues in evaluations of community-based health promotion and disease prevention programs: a mixed-model analysis of variance approach. J Clin Epidemiol 1991; 44:701–713.

    Article  PubMed  CAS  Google Scholar 

  23. Hallstrom AP. Should time from cardiac arrest until call to emergency medical services (EMS) be collected in EMS research? Crit Care Med 2002; 30:S127–S130.

    Article  PubMed  Google Scholar 

  24. Weaver WD, Cerqueira M, Hallstrom AP, et al. Prehospital-initiated vs hospital-initiated thrombolytic therapy. The Myocardial Infarction Triage and Intervention Trial. JAMA 1993; 270:1211–1216.

    Article  PubMed  CAS  Google Scholar 

  25. Hallstrom A, Cobb L, Johnson E, et al. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 2000; 342:1546–1553.

    Article  PubMed  CAS  Google Scholar 

  26. Kudenchuk PJ, Cobb LA, Copass MK, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 1999; 341:871–878.

    Article  PubMed  CAS  Google Scholar 

  27. PAD Trial Investigators. The Public Access Defibrillation (PAD) Trial study design and rationale. Resuscitation 2003; 56:135–147.

    Article  Google Scholar 

  28. Enkin MW. One and two sided tests of significance. One sided tests should be used more often. BMJ 1994; 309:874.

    PubMed  CAS  Google Scholar 

  29. Dunnett CW, Gent M. An alternative to the use of two-sided tests in clinical trials. Stat Med 1996; 15: 1729–1738.

    Article  PubMed  CAS  Google Scholar 

  30. Bland JM, Altman DG. One and two sided tests of significance. BMJ 1994; 309:248.

    PubMed  CAS  Google Scholar 

  31. Knottnerus JA, Bouter LM. The ethics of sample size: two-sided testing and one-sided thinking. J Clin Epidemiol 2001; 54:109,110.

    Article  PubMed  CAS  Google Scholar 

  32. Fisher LD. The use of one-sided tests in drug trials: an FDA advisory committee member’s perspective. J Biopharm Stat 1991; 1:151–156.

    Article  PubMed  CAS  Google Scholar 

  33. Moye LA, Tita AT. Defending the rationale for the two-tailed test in clinical research. Circulation 2002; 105:3062–3065.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hallstrom, A. (2005). Design of Clinical Trials Relating to Medical Emergencies. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:695

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:695

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics