Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1318 Accesses

Abstract

The buffer therapy of acid-base changes during CPR is less controversial than in previous years. Overwhelming experimental and some clinical data failed to demonstrate an improvement in survival after buffer therapy. However, the scant data from randomized controlled trials still impede a clear-cut recommendation on how really to treat cardiopulmonary resuscitation (CPR)-associated acid-base changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ditchey RV, Winkler JV, Rhodes CA. Relative lack of coronary blood flow during closed-chest resuscitation in dogs. Circulation 1982; 66:297–302.

    PubMed  CAS  Google Scholar 

  2. Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985; 13:907–909.

    PubMed  CAS  Google Scholar 

  3. Weil MH, Rackow EC, Trevino R, Grundler WG, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 1986; 315: 153–156.

    Article  PubMed  CAS  Google Scholar 

  4. Garnett AR, Ornato JP, Gonzalez ER, et al. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 1987; 257:512–517.

    Article  PubMed  CAS  Google Scholar 

  5. Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 1988; 318:607–611.

    Article  PubMed  CAS  Google Scholar 

  6. Sanders AB, Kern KB, Otto CW, et al. End-tidal carbon dioxide during cardiopulmonary resuscitation: a prognostic indicator of survival. JAMA 1989; 262:1347–1352.

    Article  PubMed  CAS  Google Scholar 

  7. Callaham M, Barton C. Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 1990;18:358–362.

    Article  PubMed  CAS  Google Scholar 

  8. Bergman KS, Harris BH. Arteriovenous pH difference-a new index of perfusion. J Ped Surg 1988; 23: 1190–1192.

    Article  CAS  Google Scholar 

  9. Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. New Engl J Med 1989; 320:1312–1316.

    Article  PubMed  Google Scholar 

  10. Benjamin E, Paluch TA, Berger SR, Premus G, Wu C, Iberti TJ. Venous hypercarbia in canine hemorrhagic shock. Crit Care Med 1987; 15:516–518.

    Article  PubMed  CAS  Google Scholar 

  11. Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 1990; 18:585–589.

    Article  PubMed  CAS  Google Scholar 

  12. Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med 1991; 19:1362–1364.

    Article  PubMed  CAS  Google Scholar 

  13. Mathias DW, Clifford PS, Klopfenstein HS. Mixed venous blood gases are superior to arterial blood gases in assessing acid-base status and oxygenation during acute cardiac tamponade in dogs. J Clin Invest 1988; 82: 833–838.

    PubMed  CAS  Google Scholar 

  14. Bishop RL, Weisfeldt ML. Sodium bicarbonate administration during cardiac arrest: Effect on arterial pH, PCO2, and osmolality. JAMA 1976; 235:506–509.

    Article  PubMed  CAS  Google Scholar 

  15. Grundler WG, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 1986; 74:1071–1074.

    PubMed  CAS  Google Scholar 

  16. von Planta M, von Planta I, Weil MH, et al. End-tidal carbon dioxide as a hemodynamic determinant of cardiopulmonary resuscitation in the rat. Cardiovasc Res 1989; 23:364–368.

    Google Scholar 

  17. Weil MH, Gazmuri RJ, Kette F, et al. End-tidal PCO2 during cardiopulmonary resuscitation. JAMA 1990; 263:814–816.

    Article  PubMed  CAS  Google Scholar 

  18. Ralston SH, Voorhees WD, Showen L, et al. Venous and arterial blood gases during and after cardiopulmonary resuscitation in dogs. Am J Emerg Med 1985; 3:132–138.

    Article  PubMed  CAS  Google Scholar 

  19. Chazan JA, McKay DB. Acid-base abnormalities in cardiopulmonary arrest: Varying patterns in different locations in the hospital. N Engl J Med 1989; 320:597–598.

    Article  PubMed  CAS  Google Scholar 

  20. Fillmore S, Shapiro JM, Killip T. Serial blood gas studies during cardiopulmonary resuscitation. Ann. Intern. Med. 1970; 72:465–469.

    PubMed  CAS  Google Scholar 

  21. Capparelli EV, Chow MSS, Kluger J, Fieldman A. Difference in systemic and myocardial blood acid-base status during cardiopulmonary resuscitation. Crit Care Med 1989; 17:442–446.

    Article  PubMed  CAS  Google Scholar 

  22. Gudipati CV, Weil MH, Gazmuri RJ, Deshmukh HG, Bisera J, Rackow EC. Increases in coronary vein CO2 during cardiac resuscitation. J Appl Physiol 1990; 68:1405–1408.

    PubMed  CAS  Google Scholar 

  23. von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 1989; 80:684–692.

    Google Scholar 

  24. MacGregor DC, Wilson GJ, Holness DE, et al. Intramyocardial carbon dioxide tension. A guide to the safe period of anoxic arrest of the heart. J Thor Cardiovasc Surg 1974; 68:101–107.

    CAS  Google Scholar 

  25. Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 1993; 21:901–906.

    Article  PubMed  CAS  Google Scholar 

  26. Guerci AD, Chandra N, Johnson E, et al. Failure of sodium bicarbonate to improve resuscitation from ventricular fibrillation in dogs. Circulation 1986; 74(Suppl 4):75–79.

    Google Scholar 

  27. Ralston SH, Voorhees WD, Babbs CF. Intrapulmonary epinephrine during prolonged cardiopulmonary resuscitation: Improved regional blood flow and resuscitation in dogs. Ann Emerg Med 1984; 13:79–86.

    Article  PubMed  CAS  Google Scholar 

  28. Sanders AB, Ewy GA, Taft TV. Resuscitation and arterial blood gas abnormalities during prolonged cardiopulmonary resuscitation. Ann Emerg Med 1984; 13:676–679.

    Article  PubMed  CAS  Google Scholar 

  29. Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990; 263:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  30. Schaff HV, Bixler TJ, Flaherty JT, et al. Identification of persistent myocardial ischemia in patients developing left ventricular dysfunction following aortic valve replacement. Surgery 1979; 86:70–76.

    PubMed  CAS  Google Scholar 

  31. Magovern GJJ, Flaherty JT, Kanter KR, Schaff HV, Gott VL, Gardner TJ. Assessment of myocardial protection during global ischemia with myocardial gas tension monitoring. Surgery 1982; 92:373–379.

    PubMed  Google Scholar 

  32. Kruse JA, Hukku P, Carlson RW. Constancy of blood carbonic acid pK’ in patients during cardiopulmonary resuscitation. Chest 1988; 93:1221–1224.

    Article  PubMed  CAS  Google Scholar 

  33. Opie LH. Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 1976; 38:I52–I74.

    PubMed  CAS  Google Scholar 

  34. Javaheri S, Clendending A, Papadakis N, et al. pH changes on the surface of brain and in cisternal fluid in dogs in cardiac arrest. Stroke 1984; 15:553–558.

    PubMed  CAS  Google Scholar 

  35. Posner JB, Plum F. Spinal fluid pH and neurologic symptoms in systemic acidosis. N Engl J Med 1967; 277:605–613.

    Article  PubMed  CAS  Google Scholar 

  36. Berenyi KJ, Wolk M, Killip T. Cerebrospinal fluid acidosis complicating therapy of experimental cardiopulmonary arrest. Circulation 1975; 52:319–324.

    PubMed  CAS  Google Scholar 

  37. Sanders AB, Otto CW, Kern KB, Rogers JN, Perrault P, Ewy GA. Acid-base balance in a canine model of cardiac arrest. Ann Emerg Med 1988; 17:667–671.

    Article  PubMed  CAS  Google Scholar 

  38. Rosenberg JM, Martin GB, Paradis NA, et al. The effect of CO2 and non-CO2 generating buffers on cerebral acidosis after cardiac arrest: a 31P NMR study. Ann Emerg Med 1989; 18:341–347.

    Article  PubMed  CAS  Google Scholar 

  39. Wiklund L, Sahlin K. Induction and treatment of metabolic acidosis: A study of pH changes in porcine skeletal muscle and cerebrospinal fluid. Crit Care Med 1985; 13:109–112.

    Article  PubMed  CAS  Google Scholar 

  40. Kucera RR, Shapiro JI, Whalen MA, et al. Brain effects of NaHCO3 and Carbicarb in lactic acidosis. Crit Care Med 1989; 17:1320–1325.

    PubMed  CAS  Google Scholar 

  41. Shapiro JI, Whalen M, Kucera R, Kindig N, Filley G, Chan L. Brain pH responses to sodium bicarbonate and Carbicarb during systemic acidosis. Am J Physiol 1989; 256:H1316–H1321.

    PubMed  CAS  Google Scholar 

  42. Katz LM, Wang Y, Rockoff S, Bouldin TW. Low-dose carbicarb improves cerebral outcome after asphyxial cardiac arrest in rats. Ann Emerg Med 2002; 39:359–365.

    Article  PubMed  Google Scholar 

  43. Gerst PH, Fleming WH, Malm JR. Relationship between acidosis and ventricular fibrillation. Surg Forum 1964; 15:242–243.

    PubMed  CAS  Google Scholar 

  44. Turnbull AD, Dobell ARC. The effect of pH change on the ventricular fibrillation threshold. Surgery 1966; 60:1040–1043.

    PubMed  CAS  Google Scholar 

  45. Turnbull AD, MacLean LD, Dobell ARC, et al. The influence of hyperbaric oxygen and of hypoxia on the ventricular fibrillation threshold. J Thorac Cardiovasc Surg 1965; 50:842–848.

    PubMed  CAS  Google Scholar 

  46. Yakaitis RW, Thomas JD, Mahaffey JE. Influence of pH and hypoxia on the success of defibrillation. Crit Care Med 1975; 3:139–142.

    Article  PubMed  CAS  Google Scholar 

  47. Kerber RE, Pandian NG, Hoyt R et al. Effect of ischemia, hypertrophy, hypoxia, acidosis and alkalosis on canine defibrillation. Am J Physiol 1983; 244:H825–H831.

    PubMed  CAS  Google Scholar 

  48. Gerst PH, Fleming WH, Malm JR. Increased susceptibility of the heart to ventricular fibrillation during metabolic acidosis. Circ. Res. 1966; 19:63–70.

    CAS  Google Scholar 

  49. Dong E, Stinson EB, Shumway NE. The ventricular fibrillation threshold in respiratory acidosis and alkalosis. Surgery 1967; 61:602–607.

    PubMed  Google Scholar 

  50. Kerber RE, Sarnat W. Factors influencing the success of ventricular defibrillation in man. Circulation 1979; 60:226–230.

    PubMed  CAS  Google Scholar 

  51. von Planta I, Weil MH, von Planta M, Gazmuri RJ, Duggal C. Hypercarbic acidosis reduces cardiac resuscitability. Crit Care Med 1991; 19:1177–1182.

    Article  Google Scholar 

  52. Maldonaldo FA, Weil MH, Tang W, et al. Myocardial hypercarbic acidosis reduces cardiac resuscitability. Anesthesiology 1993; 78:343–352.

    Google Scholar 

  53. Sun S, Weil MH, Tang W, Fukui M. Effects of buffer agents on postresuscitation myocardial dysfunction. Crit Care Med 1996; 24:2035–2041.

    Article  PubMed  CAS  Google Scholar 

  54. American Heart Association: Guidelines for Cardiopulmonary Resuscitation and Emergency cardiovascular Care. Circulation 2000; 102:I1–I384; Resuscitation 2000; 46; 1–447.

    Google Scholar 

  55. American Heart Association: 2000 handbook for emergency cardiovascular care. Resuscitation. Dallas, TX: AHA, 2000.

    Google Scholar 

  56. European Resuscitation Council. Summary of guidelines 2000 and sequence of actions for resuscitation. Amsterdam: Elsevier, 2000.

    Google Scholar 

  57. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of sodium bicarbonate therapy in hypoxic lactic acidosis. Science 1985; 227:754–756.

    Article  PubMed  CAS  Google Scholar 

  58. Ritter JM, Doktor HS, Benjamin N. Paradoxical effect of bicarbonate on cytoplasmic pH. Lancet 1990; 335:1243–1246.

    Article  PubMed  CAS  Google Scholar 

  59. Bersin RM, Arieff AI: Improved hemodynamic function during hypoxia with carbicarb, a new agent for the management of acidosis. Circulation 1988; 77:227–233.

    PubMed  CAS  Google Scholar 

  60. Poole-Wilson PA, Langer GA. Effect of pH on ionic exchange and function in rat and rabbit myocardium. Am J Physiol 1975; 229:570–581.

    PubMed  CAS  Google Scholar 

  61. von Planta M, Gudipati C, Weil MH, Kraus LJ, Rackow EC. Effects of tromethamine and sodium bicarbonate buffers during cardiac resuscitation. J Clin Pharmacol 1988; 28:594–599.

    Google Scholar 

  62. Mattar JA, Weil MH, Shubin H, Stein L. Cardiac arrest in the critically ill: Hyperosmolal states following cardiac arrest. Am J Med 1974; 56:162–168.

    Article  PubMed  CAS  Google Scholar 

  63. Lindner KH, Ahnefeld FW, Dick W, Lotz P: Natriumbikarbonatgabe während der kardiopulmonalen Reanimation. Anaesthesist 1985; 34:37–45.

    PubMed  CAS  Google Scholar 

  64. Bland RD, Clarke TL, Harden LB. Rapid infusion of sodium bicarbonate and albumin into high-risk premature infants soon after birth: a controlled, prospective trial. Am J Obstet Gynecol 1976; 124:263–267.

    PubMed  CAS  Google Scholar 

  65. Thomas DB. Hyperosmolarity and intraventricular hemorrhage in premature babies. Acta Paed Scand 1976; 65:429–432.

    CAS  Google Scholar 

  66. Douglas ME, Downs JB, Mantini EL, Ruis BC. Alteration of oxygen tension and oxyhemoglobin saturation. Arch Surg 1979; 114:326–329.

    PubMed  CAS  Google Scholar 

  67. Bureau MA, Begin R, Berthiaume Y, Shapcott D, Khoury K, Gagnon N. Cerebral hypoxia from bicarbonate infusion in diabetic acidosis. J Pediatrics 1980; 96:968–973.

    Article  CAS  Google Scholar 

  68. Lee WH, Darby TD, Aldinger EE, Thrower WB. Use of THAM in the management of refractory cardiac arrest. Am Surg 1962; 28:87–89.

    Google Scholar 

  69. Telivuo L, Maamies T, Siltanen P, Tala P. Comparison of alkalizing agents in resuscitation of the heart after ventricular fibrillation. Ann Chir Gyn Fenn 1968; 57:221–224.

    PubMed  CAS  Google Scholar 

  70. Minuck M, Sharma GP. Comparison of THAM and sodium bicarbonate in resuscitation of the heart after ventricular fibrillation in dogs. Anesth Analg 1977; 56:38–45.

    Article  PubMed  CAS  Google Scholar 

  71. Gazmuri RJ, von Planta M, Weil MH, Rackow EC. Cardiac effects of carbon dioxide-consuming and carbon dioxide-generating buffers during cardiopulmonary resuscitation. J Am Coll Cardiol 1990; 15: 482–490.

    Article  PubMed  CAS  Google Scholar 

  72. Roberts D, Landolfo K, Light RB, Dobson K. Early predictors of mortality for hospitalized patients suffering cardiopulmonary arrest. Chest 1990; 97:413–419.

    Article  PubMed  CAS  Google Scholar 

  73. Wiklund L, Ronquist G, Stjernstrom H, Waldenstrom A. Effects of alkaline buffer administration on survival and myocardial energy metabolism in pigs subjected to ventricular fibrillation and closed chest CPR. Acta Anaesthesiol Scand 1990; 34:430–439.

    Article  PubMed  CAS  Google Scholar 

  74. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion pressure. JAMA 1991; 266:2121–2130.

    Article  PubMed  CAS  Google Scholar 

  75. Redding JS, Pearson JW. Resuscitation from ventricular fibrillation. JAMA 1968; 203:255–260.

    Article  PubMed  CAS  Google Scholar 

  76. Federiuk CS, Sanders AB, Kern KB, Nelson J, Ewy G. The effect of bicarbonate on resuscitation from cardiac arrest. Ann Em Med 1991; 20:1173–1177.

    Article  CAS  Google Scholar 

  77. Vukmir RB, Bircher NG, Radovsky A, Safar P. Sodium bicarbonate may improve outcome in dogs with prolonged cardiac arrest. Crit Care Med 1995; 23:515–522.

    Article  PubMed  CAS  Google Scholar 

  78. Bar-Joseph G, Weinberger T, Castel T, et al. Comparison of sodium bicarbonate, Carbicarb, and THAM during cardiopulmonary resuscitation in dogs. Crit Care Med 1998; 26:1397–1408.

    Article  PubMed  CAS  Google Scholar 

  79. Leong ECM, Bendall JC, Boyd AC, Einstein R. Sodium bicarbonate improves the chance of resuscitation after 10 minutes of cardiac arrest in dogs. Resuscitation 2001; 51:309–315.

    Article  PubMed  CAS  Google Scholar 

  80. van Walraven C, Stiell IG, Wells GA, Hebert PC, Vendemheen K. Do advanced cardiac life support drugs increase resuscitation rates from in-hospital cardiac arrest? Ann Emerg Med 1998; 32:544–553.

    Article  PubMed  Google Scholar 

  81. Bar-Joseph G, Abramson NS, Jansen L, et al. Clinical use of sodium bicarbonate during cardiopulmonary resuscitation-is it used sensibly? Resuscitation 2002; 54:47–55.

    Article  PubMed  Google Scholar 

  82. Levy RD, Rhoden WE, Shearer K, Varley E, Brooks NH. An audit of drug usage for in-hospital cardiopulmonary resuscitation. Eur Heart J 1992; 13:1665–1668.

    PubMed  CAS  Google Scholar 

  83. Rothe KF, Diedler J. Comparison of intra-and extracellular buffering of clinically used buffer substances: Tris and bicarbonate. Acta Anaesth Scand 1982; 26:194–198.

    PubMed  CAS  Google Scholar 

  84. Kette F, Weil MH, von Planta M, Gazmuri RJ, Rackow EC. Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation. Circulation 1990; 81:1660–1666.

    PubMed  CAS  Google Scholar 

  85. Paradis NA, Martin GB, Rosenberg J, et al. The effect of standard-and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. JAMA 1991; 265:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  86. Filley GF, Kindig NB. Carbicarb. An alkalinizing ion-generating agent of possible clinical usefulness. Trans Am Clin Climat Assoc 1984; 96:141–153.

    CAS  Google Scholar 

  87. Dybvik T, Strand T, Steen PA. Buffer therapy during out of hospital cardiopulmonary resuscitation. Resuscitation 1995; 29:89–95.

    Article  PubMed  CAS  Google Scholar 

  88. Bellingham AJ, Detter JC, Lenfant C. Regulatory mechanism of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest 1971; 50:700–706.

    Article  PubMed  CAS  Google Scholar 

  89. Lawson NW, Butler GH, Ray CT. Alkalosis and cardiac arrhythmias. Anest Analg 1973; 52:951–961.

    Article  CAS  Google Scholar 

  90. Sotos JF, Dodge PR, Meara P, Talbot NB. Studies in experimental hypertonicity. I. Pathogenesis of the clinical syndrome, biochemical abnormalities and cause of death. Pediatrics 1960; 26:925–938.

    Google Scholar 

  91. Kravath RE, Aharon AS, Abal G, Finberg L. Clinically significant physiologic changes from rapidly administered hypertonic solutions: Acute osmol poisoning. Pediatrics 1970; 46:267–275.

    Google Scholar 

  92. Huseby JS, Gumprecht DG. Hemodynamic effects of rapid bolus hypertonic sodium bicarbonate. Chest 1981; 79:552–554.

    Article  PubMed  CAS  Google Scholar 

  93. Arieff AI, Leach W, Park R, Lazarowitz V. Systemic effects of NaHCO3 in experimental lactic acidosis in dogs. Am J Physiol 1982; 242:F586–F591.

    PubMed  CAS  Google Scholar 

  94. Ng ML, Levy MN, Zieske HA. Effects of changes of pH and of carbon dioxide tension on left ventricular performance. Am J Physiol 1967; 213:115–120.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

von Planta, M. (2005). Buffer Therapy. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:335

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:335

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics